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DeepNull models non-linear covariate effects to
improve phenotypic prediction and association
power

Zachary R. McCaw® "3, Thomas Colthurst?3, Taedong Yun® 2, Nicholas A. Furlotte!, Andrew Carroll® ',
Babak Alipanahi® !, Cory Y. McLean® 24 & Farhad Hormozdiari® 24*

Genome-wide association studies (GWASs) examine the association between genotype and
phenotype while adjusting for a set of covariates. Although the covariates may have non-
linear or interactive effects, due to the challenge of specifying the model, GWAS often
neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for
non-linear and interactive covariate effects using a deep neural network. In analyses of
simulated and real data, we demonstrate that DeepNull maintains tight control of the type |
error while increasing statistical power by up to 20% in the presence of non-linear and
interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of
power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull dis-
covered more hits (+6%) and loci (+7%), on average, than conventional association ana-
lyses, many of which are biologically plausible or have previously been reported. Finally,
DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).

TGoogle Health, Palo Alto, CA, USA. 2 Google Health, Cambridge, MA, USA. These authors contributed equally: Zachary R. McCaw, Thomas Colthurst.
“These authors jointly supervised this work: Cory Y. McLean, Farhad Hormozdiari. ™email: cym@google.com; fhormoz@google.com

| (2022)13:241] https://doi.org/10.1038/s41467-021-27930-0 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27930-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27930-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27930-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27930-0&domain=pdf
http://orcid.org/0000-0002-2006-9828
http://orcid.org/0000-0002-2006-9828
http://orcid.org/0000-0002-2006-9828
http://orcid.org/0000-0002-2006-9828
http://orcid.org/0000-0002-2006-9828
http://orcid.org/0000-0002-6242-5536
http://orcid.org/0000-0002-6242-5536
http://orcid.org/0000-0002-6242-5536
http://orcid.org/0000-0002-6242-5536
http://orcid.org/0000-0002-6242-5536
http://orcid.org/0000-0002-4824-6689
http://orcid.org/0000-0002-4824-6689
http://orcid.org/0000-0002-4824-6689
http://orcid.org/0000-0002-4824-6689
http://orcid.org/0000-0002-4824-6689
http://orcid.org/0000-0001-8216-7178
http://orcid.org/0000-0001-8216-7178
http://orcid.org/0000-0001-8216-7178
http://orcid.org/0000-0001-8216-7178
http://orcid.org/0000-0001-8216-7178
http://orcid.org/0000-0001-9928-8216
http://orcid.org/0000-0001-9928-8216
http://orcid.org/0000-0001-9928-8216
http://orcid.org/0000-0001-9928-8216
http://orcid.org/0000-0001-9928-8216
http://orcid.org/0000-0002-5617-6174
http://orcid.org/0000-0002-5617-6174
http://orcid.org/0000-0002-5617-6174
http://orcid.org/0000-0002-5617-6174
http://orcid.org/0000-0002-5617-6174
mailto:cym@google.com
mailto:fhormoz@google.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

enome-wide association studies (GWASs) aim to detect

genetic variants or single-nucleotide polymorphisms

(SNPs) that are associated with complex traits and dis-
eases. Over the past decade, GWASs have successfully identified
thousands of variants associated with various and diverse
phenotypes!=¢. These associations have expanded our knowledge
of biological mechanisms’ and improved our ability to predict
phenotypic risk8.

In most GWAS, the association strength between genotype and
phenotype is assessed while adjusting for a set of covariates, such
as age, sex, and principal components (PCs) of the genetic
relatedness matrix. Covariates are included in GWAS for two
main reasons: to increase precision and to reduce confounding. In
the linear model setting, adjustment for a covariate will improve
precision if the distribution of the phenotype differs across levels
of the covariate. For example, when performing GWAS on height,
males and females have different means. Adjusting for sex
reduces residual variation, and thereby increases power to detect
an association between height and the candidate SNPs. Note,
however, that omitting sex from the association test is entirely
valid. In contrast, omitting a confounder will result in a biased
test of association. By definition, a confounder is a common cause
of the exposure (i.e. genotype) and the outcome (i.e. phenotype)®.
In GWAS, a potential confounder is genetic ancestry: two
ancestral groups may differ with respect to minor allele frequency
(MAF) at common SNPs and, for unrelated reasons, in their
phenotypic means. Failure to adjust for ancestry will lead to
spurious associations between the phenotype and the SNPs whose
MAFs differ across ancestries, inflating the type I error of the
association test. To reduce confounding due to population sub-
structure, or the presence of genetically related subgroups within
the cohort, multiple genetic PCs are commonly included as
covariates during association testing!®11.

The simplest form of covariate adjustment is to include a linear
term for the covariate in the association model. If the phenotypic
mean changes non-linearly with the covariate, the residual var-
iation may be further reduced by including higher order adjust-
ments, such as quadratic or interaction terms, as in the following
recent examples!2-14, Shrine et al.!? included age? as a covariate
when studying chronic obstructive pulmonary disease; Chen
et al.13 included squared body mass index (BMI?) when studying
obstructive sleep apnea; and Kosmicki et al.'4 included an age by
sex interaction (age X sex) when studying COVID-19 disease
outcomes. Although these recent works have recognized the
potential importance of modeling non-linear covariate effects, no
systematic approach has been described for detecting the
appropriate non-linear functions to adjust for in GWAS. The
difficulty stems from the exponential number of possible inter-
actions that can arise from a finite set of covariates (e.g. age x
sex,age?x sex, ), and the infinite number of possible
transformations of any given continuous covariate (square,
logarithm, exponentiation, etc.). Lastly, the optimal number of
covariate interactions is not known a priori and requires evalu-
ating different possibilities (Supplementary Table 1).

In this work, we address the issue of model misspecification in
GWAS; specifically, misspecification of the relationship between
the phenotype and covariates. DeepNull uses a flexible deep
neural network (DNN) to learn this potentially complex and non-
linear relationship, then adjusts for the network’s expectation of
the phenotype (based on covariates only) during association
testing. Although simpler models (e.g. a second-order interaction
model) may suffice in particular cases, the DNN architecture is
sufficiently expressive to capture the broad range of phenotype-
covariate relationships that researchers might encounter in
practice. Moreover, no loss of power is observed when the rela-
tionship between the phenotype and covariates is in fact linear.

Using simulated data, we show that DeepNull markedly improves
association power and phenotypic prediction in the presence of
non-linear covariate effects, and retains equivalent performance
in the absence of non-linear effects. We then demonstrate
improvements in association power and phenotype prediction
across 10 phenotypes from the UK Biobank (UKB)!>, indicating
DeepNull’s potential for broad utility in biobank-scale GWAS.
We provide DeepNull as freely available open-source software
(Code Availability) for straightforward integration into existing
GWAS association platforms.

Results
DeepNull overview. DeepNull trains a DNN to predict a phe-
notype of interest from covariates not directly derived from
genotypic data (hereafter “non-genetic covariates”). Due to its
ability to approximate any continuous mapping!®!7, the DNN
can capture complex non-linear relationships between the phe-
notype and covariates. When performing genetic association
testing, the DNN’s prediction of the phenotype for each indivi-
dual is included as a single additional covariate within the asso-
ciation model. Adjusting for the DNN’s prediction in the
association model is equivalent to regressing it out from both
phenotype and genotype. By flexibly modeling the association
between phenotype and non-genetic covariates, DeepNull reduces
the residual variation, and thereby increases the statistical power
(Supplementary Fig. 1, Supplementary Note).

Consider a quantitative phenotype ascertained for a sample of
n individuals genotyped at m SNPs. Let Y = (y,)._, denote the
n x 1 phenotype vector, where y; is the phenotypic value of the ith
individual; let G = [g;] denote the n x m sample by SNP genotype
matrix, where g;; is the minor allele count for the ith individual at
the jth variant. Let G =[g;] € R™" denote the standardized
version of G, in which columns have been centered and scaled to
have mean zero and unit variance. Furthermore, let h be a
(possibly non-linear) function that predicts the phenotype from
non-genetic covariates; we learn h using a DNN trained with
cross-validation on the sample. The DeepNull association model
is as follows:

Y =GB+ Xy+HX)y, +e 1)

Here B; is the effect sizes for the jth variant on the phenotype;
X = [x;] is the nx (p + g) covariate matrix that includes p non-
genetic covariates (e.g. age and sex) and g adjustments for genetic
confounding (e.g. genetic PCs); y is the (p+g) x1 vector of
association coefficients for all covariates. Compared with the
standard GWAS association model, the DeepNull association
model differs only by the inclusion of a single additional term
H(X)y,: X is the nxp subset of X consisting of non-genetic
covariates (see “Methods”); H : R™? — R”" is the function that
applies h row-wise to X; and yj, is the scalar association coefficient
for the DNN’s prediction of the phenotype based on non-genetic
covariates.

DeepNull and Baseline perform similarly under linear effects.
We simulated phenotypes based on genotypes and covariates
from the UK Biobank!>. Standardized age, sex, and geno-
typing_array served as true covariates for 10,000 randomly
sampled individuals (“Methods”). First, we considered a linear
effect for covariates on phenotypes (f(x) = yx). We simulated 100
phenotypes for each of six different genetic architectures with
varying amounts of phenotypic variance explained by the genetic
data (02) and by covariates (d2): (i) 0; =0.2 and o2 = 0.1; (ii)
0; = 0.2 and ¢} = 0.2; (iii) 0; = 0.4 and 07 = 0.1; (iv) 0} = 0.4
and 02 =0.2; (v) 02 = 0.4 and 02 = 0.4; and (vi) oé = 0.6 and
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Fig. 1 DeepNull and baseline model achieve similar results under simulated linear covariate effects. a Statistical power, and (b) expected y? statistics for
variants in the causal chromosome (chr22); (¢) type | error, and (d) expected 42 statistics for variants on the non-causal chromosomes (chr1 and
chr2.). In the case of power and the expected 2 statistics in the causal chromosome, higher is better. Methods should have a type | error of 0.05 (gray
dashed horizontal line). The expected 42 statistics for the non-causal chromosomes should be 1 (gray dashed horizontal line). X-axis values indicate the
proportion of phenotypic variance explained by genotypes and covariates, respectively. Error bars are the standard error of the mean for each estimate and
and each bar plot summarizes results from n =100 independent simulation replicates. None of the quantities shown is significantly different between
Baseline and DeepNull (Wilcoxon signed-rank one-sided test). Source data are provided as a Source Data file.

02 =0.2. Causal variants were randomly embedded within
chr22 and non-causal variants within chrl and chr2. We
compared the DeepNull GWAS with standard GWAS (hereafter
referred to as “Baseline”), each of which was performed using
BOLT-LMM!8 (“Methods”). Statistical power and expected x?
statistics for the causal chromosome (chr22) were similar for
DeepNull and Baseline (Fig. 1a, b, Supplementary Table 2). Sta-
tistical power for both DeepNull and Baseline increased as genetic
heritability of, increased, which is expected since the non-

centrality parameter of the y? test increases with the heritability.
Additionally, the type I error was maintained at the nominal level,
and the expected y? statistics for non-causal variants are similar
for both methods (Fig. 1c, d). Thus, DeepNull and Baseline
produce similar GWAS results when the effect of the covariates
on the phenotype is linear. Lastly, DeepNull and Baseline perform
similarly both when excluding non-confounding covariates (i.e.,
hidden non-confounding covariates, Supplementary Table 3) and
when including irrelevant covariates (Supplementary Table 4).

DeepNull increases power when covariates interact. We simu-
lated phenotypes using a similar process as described above and
used standardized age, sex, genotyping_ array, age?
age x sex, and age x genotyping_array as true covariates.
However, both DeepNull and Baseline are only given age, sex,
genotyping_array as known covariates. This simulation
setting explores the case where the true covariates are known but
their possible interactions are not. DeepNull had higher statistical
power (2-13% relative improvement) than baseline, and higher
expected y? statistics at causal variants (2-20% relative
improvement) across all genetic architectures (Fig. 2a, b, Sup-
plementary Table 5). Importantly, both DeepNull and Baseline
control the type I error and generate similar expected y? statistics
for non-causal variants (Fig. 2¢, d).

DeepNull increases power under non-linear models. We
simulated phenotypes using a similar process as described above
and again used age, sex, genotyping_ array, age?
age x sex, and age x genotyping_array as true covariates.

However, here we fix the genetic architecture (0; =0.4 and

oﬁ = 0.4) and consider non-linear effects of the covariates on the
phenotype by using different non-linear functions for f{ - ) in Eq.

(9): sin(x), exp(x), log (|x]), and sigmoid(x). Again, both DeepNull
and Baseline are only given age, sex, and genoty-
ping_array as known covariates. In all cases, DeepNull out-
performs Baseline both in terms of statistical power (3%-9%
relative improvement) and expected y? statistics (13%-22%
relative improvement), while both methods control the type I
error (Supplementary Table 6).

DeepNull is computationally efficient (Supplementary Notes)
and its power increases as the sample size increases (Supplemen-
tary Notes; Supplementary Fig. 2, Supplementary Table 7).
Finally, DeepNull’s results are not affected by random seed
initialization (Supplementary Notes; Supplementary Fig. 3).

DeepNull detects more hits than Baseline GWAS on real data.
To explore whether applying DeepNull is beneficial in non-
simulated data, we performed GWAS for ten phenotypes from
the UK Biobank, using both Baseline and DeepNull. These were:
alkaline phosphatase (ALP), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), apolipoprotein B (ApoB),
calcium, glaucoma referral probability (GRP), LDL cholesterol
(LDL), phosphate, sex hormone-binding globulin (SHBG), and
triglycerides (TG), each of which has evidence of potentially non-
linear relationships between covariates and the phenotype (Sup-
plementary Figs. 4-13). All phenotypes except GRP were
extracted directly from the UK Biobank. age, sex, and gen-
otyping_array were considered as input covariates for
DeepNull's DNN (Supplementary Table 8). We performed
GWAS for these phenotypes using age, sex, genoty-
ping_array, and the top 15 genetic PCs as covariates.

GRP differs from the other phenotypes considered in that it
was derived from color retinal fundus images, using the model
presented in Alipanahi et al.!%. As in that study, we are interested
in biological signals for glaucoma that are not driven by the
vertical cup-to-disc ratio (VCDR). Thus, for GRP only, several
additional covariates were included in the association
model: VCDRvisit, refractive-error, and image-
gradability. To train DeepNull’s DNN, we used VCDRvi-
sit, age, sex, and genotyping_array to predict GRP. We
then performed GWAS for GRP using age, sex, genoty-
ping_array, the top 15 PCs, VCDRvisit, refractive-
error, and image-gradability as covariates.
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Fig. 2 DeepNull increases power in the presence of covariate interactions. a Statistical power, and (b) expected y? statistics for variants in the causal
chromosome (chr22); () type | Error, and (d) expected y2 statistics for variants in the non-causal chromosomes (chr1 and chr2.). In the case of power
and expected y2 statistics for the causal chromosome, higher is better. Methods should maintain a type | error of no more than 0.05, which is shown by the
dashed gray horizontal line. For the non-causal chromosomes, the expected y?2 statistics should be 1, which is also shown in dashed gray horizontal line.
X-axis values indicate the proportion of phenotypic variance explained by genotypes and covariates, respectively. Error bars are the standard error of the

mean for each estimate and each bar plot summarizes results from n =100 independent simulation replicates. The numerical results are shown in

Supplementary Table 5. Indicators for P value (Wilcoxon signed-rank one-sided test) ranges: "P < 0.05, P < 0.01,

as a Source Data file.

Kk

P < 0.001. Source data are provided

Table 1 DeepNull improves association results relative to the Baseline model on ten phenotypes from the UK Biobank.

Pheno n #Hits %Improve #Loci %Improve
Baseline DeepNull Baseline DeepNull

ALP 416,232 1697 1759 3.65% 336 350 417%

ALT 416,057 371 379 2.16% 173 174 0.58%

AST 414,743 337 351 4.15% 137 145 5.84%

ApoB 414,639 n7z2 1219 4.01% 200 217 8.50%

Calcium 381,934 726 739 1.79% 272 281 3.31%

GRP 65,896 28 38 35.71% 26 38 46.15%

LDL 415,892 950 993 4.53% 193 202 4.66%

Phosphate 381,362 658 664 0.91% 224 229 2.23%

SHBG 378,459 1084 1120 3.32% 319 323 1.25%

TG 416,295 1221 1254 2.70% 261 266 1.92%

Avg. 370,151 824.4 851.6 6.29% 2141 222.5 7.86%

n is the sample size, hits refers to the number of independent genome-wide significant associations detected, and loci is the number of independent regions after merging hits within 250 kb. Bold values

in the table indicate the best results.

Phenotypic abbreviations: ALP alkaline phosphatase, ALT alanine aminotransferase, AST aspartate aminotransferase, ApoB Apolipoprotein B, GRP glaucoma referral probability, LDL low-density

lipoprotein, SHBG sex hormone-binding globulin, TG triglycerides.

For all GWAS, we first verified that the DeepNull prediction
was consistent across all five data folds (Supplementary Table 9).
After running GWAS across the entire dataset, we computed the
stratified LD score regression (S-LDSC) intercept??:21 to deter-
mine whether there was evidence of inflation due to confounding.
In no case did the S-LDSC intercept differ significantly from 1,
providing no evidence of inflation due to confounding in our
analysis (Supplementary Table 10). In addition, the SNP-
heritability of all phenotypes was estimated from both the
DeepNull and Baseline summary statistics. For all phenotypes
except GRP, the heritability was nominally, though not
significantly, greater with DeepNull (Supplementary Table 10).

DeepNull detects more genome-wide significant hits (i.e.
independent lead variants) and loci (independent regions after
merging hits within 250 kbp together; see Methods) than Baseline
for all phenotypes examined (Table 1). For example, we found
46% more significant loci (38 vs. 26) for GRP using DeepNull
compared to the Baseline model. Similarly, in the case of LDL, we
detected 202 significant loci using DeepNull compared to the
193 significant loci detected with Baseline (4.5% more hits and

4.7% more loci). In addition, 99 of the DeepNull loci were
replicated in the GWAS catalog compared with 96 loci for
Baseline (Supplementary Fig. 14). For ApoB, DeepNull detected
1219 hits compared to 1172 hits detected by Baseline (4.0%
improvement) and DeepNull detected 217 significant loci
compared to 200 significant loci obtained from Baseline (8.5%
improvement; see Table 1). In addition, 166 of the DeepNull loci
were replicated in the GWAS catalog compared with 165 loci for
Baseline (Supplementary Fig. 15). For these three phenotypes, we
further investigated the biological significance of the detected
associations using FUMA?2 (Supplementary Table 11). For GRP,
42 gene sets, predominantly related to pigmentation, were
enriched among DeepNull’s results, whereas none were enriched
among the Baseline results. For LDL, DeepNull detected more
gene sets overall (955 Baseline vs. 1000 DeepNull), although the
gene sets detected by Baseline scored higher in terms of the
average —logjo(p-value) (8.60 Baseline vs. 8.38 DeepNull).
However, when focusing on the subset related to lipid
metabolism, DeepNull detected more gene sets (65 Baseline vs.
72 DeepNull) and did so at a higher level of significance (average
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—log;o(p-value): 13.88 Baseline vs. 14.34 DeepNull). For ApoB,
DeepNull detected fewer gene sets overall (983 Baseline vs. 946
DeepNull), but at a higher level of significance (average —log;o(p-
value): 7.65 Baseline vs. 7.81 DeepNull). The gene sets detected by
DeepNull related to lipid metabolism and neurological condi-
tions, including Alzheimer’s disease.

Overall, the average percentage improvement with DeepNull,
taken across phenotypes, was 6.29% for significant hits and 7.86%
for loci (Table 1). The average number of hits increased by 3.29%,
from 824.4 for Baseline to 851.6 for DeepNull, and the average
number of loci increased by 3.93%, from 214.1 to 222.5. In
addition, the median number of hits and loci increased by 3.48%
and 3.74%, respectively. Lastly, DeepNull tends to have a higher
level of significance for variants compared to Baseline (Supple-
mentary Figs. 16-25).

To further understand the source of the DeepNull improve-
ments, we evaluated three additional Baseline models of
increasing complexity and a gradient boosted decision tree
(GBDT) non-linear model. The first model, which we call
“Baseline+ReLU", featurizes age into five additional covariates
by applying the ReLU function at different thresholds (and solely
for GRP, also featurizes VCDRvisit in the same way). We
observed that while Baseline+ReLU generally identified more
significant hits and loci than Baseline, DeepNull consistently
outperformed both baseline methods (Supplementary Table 12).
The second model, which we call “Second-order Baseline",
extends the Baseline model to include all second-order interac-
tions between age, sex, and genotyping_array: agez,
age x sex, age xgenotyping_array, and sex xgeno-
typing_array. Although the additional second-order interac-
tion covariates consistently improve over the Baseline model
results, DeepNull detects as many or more significant loci than
Second-order Baseline for nine of the 10 phenotypes (Supple-
mentary Table 13). For AST, LDL, phosphate, and TG, Second-
order Baseline and DeepNull detected similar numbers of hits and
loci (Supplementary Tables 14 and 15), providing evidence that
the hits and loci not found by the Baseline model, which does not
include interactions, were in fact true signals. The utility of
DeepNull arises because the optimal order of covariate interac-
tions is unknown a priori (Supplementary Table 1), exhaustively

Method
mmm Baseline
mmm DeepNull

0.7

0.6

0.5

~ 0.4

0.3

0.2

0.1

0.0
AST Calcium ALT LDL

Phosphate

enumerating higher order interactions in impractical, and
attempting to do so will likely introduce collinearity. Next, we
compared the number of hits and loci of DeepNull with an
extended Baseline model that performs sex-specific spline fitting
(Methods) and observed that DeepNull outperforms this Baseline
extension as well (compare Supplementary Tables 14, 16 for hits
and Supplementary Tables 15, 17 for loci). Finally, we compared
the number of hits and loci of DeepNull with a non-linear GBDT
model (Methods) and observed similar numbers of hits and loci
(Supplementary Tables 16, 17).

DeepNull improves phenotype prediction for UKB phenotypes.
An important feature of DeepNull is that it provides additional
signal for phenotype prediction. Typically, phenotype prediction
models are created using a linear combination of common cov-
ariates (such as age and sex) and a polygenic risk score (PRS)
defined using GWAS association results. Covariate interactions or
higher order terms are occasionally included, but typically in an
ad hoc fashion. DeepNull provides a way to easily include
potential covariate interactions or higher order terms. The
Baseline model includes a PRS computed using PLINK
(PRSy,se1ine) and linear covariate effects (PRSy, 011 ne+ Linear
covariates). The DeepNull-Baseline model includes a PRS com-
puted in the same way except using association results from
DeepNull (PRSp,epy,11+ Linear covariates), and DeepNull is a
model that includes both the DeepNull-based PRS and the
DeepNull prediction (non-linear covariate effects).

When compared to the Baseline model, the DeepNull model
performs significantly better in terms of the Pearson R? (Fig. 3).
We calculated R? following previous works2324. We observed that
in the case of GRP, LDL, calcium, and ApoB, DeepNull improves
phenotype prediction by 83.42%, 40.33%, 23.90%, and 21.61%,
respectively. Overall, DeepNull improves phenotype prediction
(average improvement = 23.72%, median improvement=16.08%)
across the ten phenotypes analyzed (average n = 370K;
Supplementary Table 18). In addition, DeepNull has an average
R? of 0.1940 compared to Baseline average R? of 0.1315 (33.65%
improvement; Supplementary Table 18). To determine whether
the improved predictive power stems from more accurate GWAS

ApoB TG ALP SHBG GRP

Phenotype

Fig. 3 DeepNull improves phenotype prediction compared to Baseline. The X-axis provides the phenotype names and the Y-axis is the R2 where R is
Pearson'’s correlation between true and predicted value of phenotypes. Center of each bar indicates the computed R? over all samples and the error bars
indicate the standard error. Standard errors are computed by performing bootstrapping for each phenotype (n = 1000 bootstrapping trials). Phenotypic
abbreviations: alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), apolipoprotein B (ApoB), glaucoma referral
probability (GRP), LDL cholesterol (LDL), sex hormone-binding globulin (SHBG), and triglycerides (TG).
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effect size estimates or inclusion of the DeepNull DNN
prediction, we examined predictive performance of a model that
uses age, sex, and PRS; . y,; ("DeepNull-Baseline”). This
model produces slightly higher R? compared to Baseline for seven
of the ten phenotypes, though the difference is not statistically
significant for any phenotype (Supplementary Table 18), indicat-
ing that most of the improved predictive power arises due to
better modeling the effects of non-genetic factors. Next, we
compared phenotype prediction of DeepNull to an extended
Baseline model that incorporates second-order interactions
(additional covariates such as age?, age x sex, age x geno-
typing_array). The second-order Baseline model produces
similar R? to DeepNull for many of the phenotypes, but DeepNull
increases phenotype prediction of GRP by 11.81% (compare
Supplementary Tables 13, 18). Third, we compared phenotype
prediction of DeepNull to an extended Baseline model that
performs sex-specific spline fitting (Methods) and observed that
DeepNull outperforms this Baseline extension as well (compare
Supplementary Tables 18, 19). Finally, we compared phenotypic
prediction of DeepNull to a non-linear GBDT model (“Methods”)
and observed similar performance (Supplementary Tables 20, 21).

DeepNull’s covariates should remain in the association model.
When performing genetic association analysis via the model
shown in Eq. (1), the covariates X input row-wise to the DNN
prediction function h are also included as components of the
linear term Xy. This secondary adjustment for X is necessary
because h captures the association between the covariates X; and
the phenotype y;, but does not capture any association between
the covariates X; and genotype g;. Failure to include X; in the
final association model is comparable to projecting X; out of y;
but not g;;. To empirically demonstrate the necessity of adjusting
X; in the final association model, we generated phenotypes via

y; =8B +xy, +xy, + e

For this simulation only, g, was generated as a continuous
random variable, allowing for fine control of the correlation
between g; and x;, and the model / for predicting y; from x; was
the oracle model

Vi =Xy + 5y + e

We compare two methods for estimating the genetic effect 3.
The unadjusted model incorporates the prediction h(x;) of y;
based on x; but omits x; from the association model, emulating
the exclusion of covariates provided to DeepNull from the asso-
ciation model as shown in Eq. (1),

¥ = &B + h(x)y, + ;. ()

The adjusted model includes both h(x;) and a linear correction
for x;, emulating the application of (1) in practice where the
functional form linking y; and x; is unknown,

¥ = &P+ x;y, + h(x)y, + €;. (3)

Figure 4 presents the relative bias of the unadjusted and
linearly adjusted models for estimating the association parameter
B. The relative bias for estimating  from the generative model,
which represents the best possible performance, is also provided.
For these simulations y; =2, y,=—1,and B € {1, £2,+ 3}; the
correlation between g; and x; was 0.5. The unadjusted estimate is
generally biased. The magnitude and direction of the bias depend
on the coefficients of the generative model. For the unadjusted
estimator to be unbiased, g; and x; must be independent. Since the
dependence of g; and x; is seldom clear, and the linearly adjusted
model is unbiased in either case, we adopted the linearly adjusted
model for all other analyses. Moreover, the linearly adjusted
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° °
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° R . ¢ . °
0%+
$
-10%4 H . .
. .
.

% Bias in Estimated
Genetic Effect

-20%1

Linear A(Ijjustment Generative
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Fig. 4 Adjusting for covariates provided to DeepNull during association
testing is necessary to avoid bias. The unadjusted model regresses y; on g;
and h(x;), the prediction of y; based on x; omitting x; from the association
model. This approach results in biased estimation of the genetic effect. The
linear adjustment model regresses y; on g;, x; and h(x;). This approach is
unbiased. The generative model regresses y; on g, x; and x. This
represents the best possible performance. Each box plot summarizes
results from n =103 independent simulation replicates. The box
demarcates, from top to bottom, the 75th, 50th, and 25th percentiles of the
corresponding distribution. The whiskers extend between the largest and
smallest values within 1.5 times the interquartile range. Any values outside
the whiskers are marked by points. Source data are provided as a Source
Data file.

Unadjusted

estimator remained unbiased in the presence of lower- and higher
order covariate effects (Supplementary Figs. 26, 27).

Discussion

A typical GWAS examines the association between genotypes and
the phenotype of interest while adjusting for a set of covariates.
While covariates potentially have non-linear effects on the phe-
notype in many real world settings, due to the challenge of spe-
cifying the model, GWAS seldom include non-linear terms.
Although it is theoretically possible to model the non-linear
effects by considering all possible covariate interactions in a linear
model, this approach has multiple limitations. First, the optimal
order of covariate interactions is unknown a priori (Supple-
mentary Table 1) as it depends on the particular phenotype and
set of covariates. Second, adding higher order covariate interac-
tions requires careful analysis to avoid overfitting and collinearity.
We proposed a new framework, DeepNull, that can model the
non-linear effect of covariates on phenotypes when such non-
linearity exists. We show that DeepNull can substantially improve
phenotype prediction. In addition, we show that DeepNull
achieves results similar to a standard GWAS when the effect of
covariate on the phenotype is linear, and can significantly out-
perform a standard GWAS when the covariate effects are non-
linear. DeepNull reduces residual variation, thereby increasing
statistical power (Supplementary Fig. 1).

Increasing the statistical power of GWAS is an area of active
research that aims to uncover the many variants, each with
individually small effect sizes, that collectively explain substantial
variation in complex traits and diseases. Multiple complementary
approaches have been proposed for increasing statistical power.
The most fundamental is to increase the sample size?>. However,
when resources are limited, the sample size cannot be increased
indefinitely, and power can be improved through the use of more
refined statistical analyses. Linear mixed models (LMMs) were
introduced to perform GWASs that include related individuals,
who are not statistically independent!®26-33 An orthogonal
modeling-based approach is to remap or transform the

6 | (2022)13:241| https://doi.org/10.1038/s41467-021-27930-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

phenotype to make the distribution of phenotypic residuals more
nearly normal®4-38, While normality of the phenotypic residuals
is not necessary for valid association testing, standard association
tests are most powerful when the residuals are in fact normally
distributed. The final class of methods increases power by
leveraging external data on the prior biological plausibility of the
variants under study. Highly conserved variants, variants in
exons, and protein-coding variants all have higher prior prob-
ability of being causal than variants in intergenic regions. A series
of methods have been developed that incorporate functional data
to detect biologically important variants and up-weight their
association statistics or reduce their significance thresholds39-44,
By focusing on capturing non-linear covariate effects, DeepNull
constitutes a distinct approach to improving statistical power of
GWAS, one which can be used in combination with any or all of
the approaches discussed above.

We note several limitations of our work. First, while training
the DeepNull model, we assume individuals (e.g. samples) are
independent. Although this is a general assumption among
machine learning methods and optimization frameworks, this is
not necessarily true in the presence of related individuals. Thus,
we believe that an ML optimizer that can incorporate sample
relatedness may improve the prediction accuracy of DeepNull’s
DNN. Importantly, although DeepNull makes the independence
assumption during training, this does not mean that type I error
is not controlled. Our analyses used BOLT-LMM to perform the
association testing, which does correctly account for the relat-
edness between individuals. Second, DeepNull does not attempt
to model possible genotype-covariate (GxX) or genotype-
genotype (G x G) interactions. This limitation is shared by stan-
dard GWAS and can only be overcome by employing different
statistical models that explicitly capture these interactions during
association testing. Third, DeepNull’s DNN is not easily inter-
pretable compared to less expressive models such as the Baseline
model. For improving GWAS power, this is not a major limita-
tion as the parameter of interest is the coefficient describing the
relationship between genotype and phenotype. By estimating this
coefficient within a linear model that incorporates DeepNull’s
prediction of phenotype, we obtain a more precise estimate of the
genetic effect. For more interpretable phenotypic prediction,
possibly at the expense of some prediction accuracy, it may be
beneficial to use an alternative non-linear model such as spline
regression, generalized additive models*>, symbolic regression®,
or neural additive model?’. Alternatively, the trained DeepNull
model can be interrogated with a variety of methods*8->1,
although we note that DNN interpretability is still an active and
evolving area of research. Lastly, DeepNull is a proof of concept.
For some phenotypes, a simpler model such as the Second-order
Baseline model may suffice to capture the phenotype-covariate
relationship. For others, an alternative non-linear model such as a
GBDT may perform similarly to DeepNull's DNN; for the 10
example UKB phenotypes presented here, a GBDT implemented
in XGBoost provided similar performance. Although XGBoost
and DNN performed similarly for these phenotypes, the added
flexibility of DNNs may prove advantageous for other phenotypes
or sets of covariates. For example, DNNs can handle complex
inputs such as image and text that XGBoost typically cannot.
Importantly, we observed in all cases that DeepNull performed as
well or better than current standard practice, and the underlying
DNN is sufficiently expressive to capture many of the phenotype-
covariate relationships likely to be encountered in practice.

By accurately modeling the non-linear interactions between
covariates and the phenotype of interest, DeepNull improved
phenotype prediction and association power, both in simulations
and on 10 UKB phenotypes. Software for performing end-to-end
cross-validated training and prediction is freely available (Code

Availability). The resulting phenotypic predictions can readily be
included among the input data to commonly-used GWAS
models, including PLINK and BOLT-LMM. The improved per-
formance of DeepNull, combined with its ease of use, suggest that
it or similar approaches to modeling non-linear covariate effects
should become a standard component of performing phenotypic
prediction and association testing.

Methods

Notation: We use bold capital letters to indicate matrices, non-bold capital letters to
indicate vectors, and non-bold lowercase letters to indicate scalars.

Standard GWAS. We consider GWAS of a quantitative trait for a sample of n
individuals genotyped at m SNPs. Let Y = (y;)i_, denote the 7 x 1 phenotype
vector, where y; is the phenotypic value of the ith individual, and G = [g;] the
nx m sample by SNP genotypes matrix, where gj; is the minor allele count for the
ith individual at the jth variant. Since human genomes are diploid, each variant has
3 possible minor allele counts: g;; € {0, 1,2}. G; = (gij):':1 is a vector of minor allele
counts for all individuals at the jth SNP. For simplicity, assume the phenotypes and
genotypes are standardized to have zero mean and unit variance. Let G = 8] €

R"*"™ be the standardized version of G, i.e. the empirical mean and variance of G_j
are zero and one, respectively: ;,37,g; = 0 and ;Y,g; = 1 for each jth SNP.

A typical GWAS assumes the effect of each variant on the phenotype is linear
and additive. Thus, we have the following generative model:

Y =GB+ Xy+e 4)

where f is the m x 1 vector of effect sizes for each variant on the phenotype,
X = [x;] is the n x g covariate matrix, including covariates such as age and sex, and
y is the g x 1 vector of association coefficients for the covariates. Let X indicate
covariates not directly derived from genotypic data ("non-genetic covariates"). For
genotypes g;; € {0, 1, 2} the assumptions of linearity and additivity are not
restrictive. On the other hand, a typical GWAS also assumes that the covariates are
linearly associated with the phenotype. This is a far more restrictive assumption if
any of the covariates are continuous. & = (g;)’_, is an 7 x 1 residual vector that
models the environmental effects and measurement noise.

To perform a GWAS, each variant is individually tested for association with the
phenotype. For example, the jth variant is tested for association using the following
model:

Y =G+ Xy+e 5)

Here X contains the known set of covariates (e.g. age and sex), in addition to
adjustments for confounding that become necessary when the genotypes at SNPs
j#j are omitted from the model shown in Eq. (4). Confounding due to the presence
of genetically related subgroups within the sample, for example subgroups of
individuals with common ancestry, is referred to as population structure, and is
commonly accounted for by including the top several genetic PCs in X10-11,52,

The model in Eq. (5) can be simplified by projecting away the covariates!83.
Define P =1 — X(XIX)’lXT, which is the projection onto the orthogonal
complement of the linear subspace spanned by X. Multiplying Eq. (5) through by P
on the left yields:

PY = PG, + ¢". ©)

The projected phenotype PY is the residual from regression of Y on X. Likewise,
PG is the residual from regression of G; on X. Importantly, if G and X are

dependent, which is necessarily true if X contains confounders of the genotype-
phenotype relationship, then PG, will differ from G,;. Consequently, an analysis

that residualizes only Y with respect to X will be misspecified. Instead, to remove
dependence on X, both Y and Gj should be residualized in Eq. (5).

Though including genotypic PCs can control for population structure, it fails to
correct for cryptic or family relatedness between individuals?®275455, LMMs were
introduced to GWAS to overcome these limitations!'$26-33, LMMs account for
random variation in the phenotypic mean that is correlated with the genetic
relatedness of the individuals under study, and have proven effective for increasing
power even when the kinship among subjects is more distant!®3233. We use
BOLT-LMM!8:33 to perform our analyses and we refer to it as the Baseline method.

DeepNull model. In this work, we consider a model in which the covariates have
potentially non-linear effect on the phenotypes. The corresponding generative
model for an individual i can be written as

y; =G +f(Xi~)yf te

where all variables are defined identically as in formula (4), f: R? — R is any
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Fig. 5 DeepNull DNN model architecture. Each rectangle represents one
layer and all layers are fully connected. Shaded layers use the RelLU
activation and the non-shaded layers do not use an activation function (i.e.
linear connection). The input is the set of known covariates and the output
is the predicted phenotype.

(potentially non-linear) function, G; = @[j)jyil, and X, = (x;)}_,. In vector form,
Y =GB+ FX)y; +¢

where F: R"*7 — R" is the function that applies f to each row of X.

We convert the estimation of u; = f{X;.) into a learning problem, where we
predict u; using y; and X;. as targets and input features, respectively. In other words,
we train a model & using the covariates X;. and the phenotype y; by minimizing

Il y; = hCGI. @)

We designed a DNN architecture for modeling the function & (Fig. 5). We
explored the model proposed previously to detect interpretable statistical
interactions®® but found that a simpler model with an explicit linear effect
performed equally well on four UKB phenotypes tested (data not shown). The
resulting model is inspired by residual networks®” and consists of two components.
One component (the shorter path from input to output in Fig. 5) is linear, to
directly represent the linear effect of the covariates on the phenotype. The other
component (the longer path in Fig. 5) is a multi-layer perceptron (MLP), to model
a potentially non-linear effect of the covariates. The MLP component has 4 hidden
layers, all of which use the Rectified Linear Unit (ReLU) activation.

In an equation form, the DeepNull model & can be written as

h(X;)=H® +H©,
where

HO = (Wl X, + By,
H® = ¢(Wg;)>< 64H(1) + B(Gi)x ")

H® = ‘b(w(;z)x 64H(2) + Bg)xl
HY = ¢(W(146)>< 32H(3) + B(I?X ")

H® = W(lsx)lsH(4) + B(lsx)]

H® = Wi X, + B,

and ¢ is the coordinate-wise ReLU function, i.e.

¢((xp)§:1) = (max(O, xp)>:;l .

DeepNull learns
—_ (1) (2) (3) (4) (4) (5) (6)
W= {Wes g Weanon Wazxsss Wiswszr Wiexsz Wikier Wiy
and
(1 (2 (3 (4 (5 6)
B= {Bezn)ansq)x 17B32)>< 1sBls)x1ale)1-,B(1x 1}

by minimizing the mean squared error in (7) using the Adam optimizer®8
implemented in Keras for TensorFlow 2. Adam is run with ; = 0.9 and 3, = 0.99.
We also used a batch_size of 1024 and a 1earning_rate of 104, We train DeepNull
for 1,000 epochs (running DeepNull with more epochs can improve the results
with the cost of increasing the training time), without early stopping, batch
normalization, or dropout. Kernel initializers were set to default (glorot_uniform)
and bias initializers were set to default (zeros).

Performing GWAS using DeepNull. After training DeepNull, we use the fol-
lowing model to test for association between the jth variant and the phenotype:

Yi= g[jﬁj +hX )y, + Xy + e

The vectorized form of the above association test is
Y =GB+ HX)y, + Xy + . (8)

Where H: R"*9 — R" is the function that applies h to each row of X.
Compared to the standard GWAS association model in Eq. (5), the DeepNull
association model differs only by the inclusion of an extra term H(X)yy, where
h(X;) is the DNN’s prediction of the phenotype, based on non-genetic covariates
only, and yy is a scalar association coefficient. As in the model shown in Eq. (5), X
includes both non-genetic covariates (e.g. age and sex) and adjustments for
confounding (e.g. genetic PCs) while X excludes PCs. PCs are excluded because the
aim of DeepNull is to predict phenotypes without utilizing genetic data, whereas
the PCs are computed from genotypes. In addition, higher order interactions of
PCs may capture true biological signals that it is not desirable to remove (e.g.
conditional associations) in GWAS.

To avoid overfitting, DeepNull should be trained and run on distinct sets of
individuals. However, to maximize the GWAS’s statistical power, all individuals in
the cohort should receive DeepNull predictions. To satisfy both of these criteria, we
split the cohort by individual into k partitions. For each selected partition, we train
a DeepNull model using data from k — 2 of the other partitions and use the
remaining partition for validation and model selection. The model that performs
best on the validation partition is then used to predict all individuals in the selected
partition. The partitioning scheme ensures that each partition is used as the
validation/selection partition exactly once.

Simulation framework. We simulate data using the model
_ q
Y=aGB+ k;f(X,k)Vk +e (O]

where X is the value of the k-th covariate for all individuals, yy is the effect size,
and f{ -) is an arbitrary function from R to R, such as the identity f{x) = x or
exponential function f(x) = exp(x). For j=1, ---, m, the variant effect sizes f; are
drawn independently from a normal distribution with mean zero and variance
equal to 0—rﬁ where 62 € [0, 1) is the proportion of phenotypic variance explained by
genotype (i.e., the heritability) and m is the number of causal variants:

B

2
normal distribution with mean zero and variance equal to %‘ such that ¢2 is the

Ny (0,%2'). Similarly, the covariate effects are drawn independently from a

proportion of phenotypic variance explained by the covariates: y, Y (0, %).
Lastly, ¢ is drawn from another independent normal distribution with mean 0 and
variance 1 — (ag +02): e~ N(0,1— a§ — 0%). Under this model, E(Y) = 0 and
V(Y) = E(Y?) = 1. In the case f{ -) is the identity function f(x) = x, our simula-
tion framework is similar to previous works!8-32,

Phenotypes were simulated based on genotypes and covariates from the UKB.
Age, sex, and genotype_array were included as covariates. Causal variants
were selected uniformly at random from chr22 such that 1% variants (i.e., 127
variants) were causal. Association testing was performed using BOLT-LMM?33
applied to chromosomes chrl, chr2, and chr22. BOLT-LMM is a linear mixed
model that incorporates a Bayesian spike-and-slab prior for the random effects
attributed to variants other than that being tested. The prior allows for a non-
infinitesimal genetic architecture, in which a mixture of both small and large effect
variants influence the phenotype. Specifically, the BOLT-LMM association statistic

arises from Eq. (8) with the inclusion of an additional random effect G5. Here

G denotes genotype at all variants not on the same chromosome as variant j,
and the components of 8 follow the spike-and-slab prior!8.

In our setting, chrl and chr2 are utilized to compute the type I error of the
association test, which is the proportion of non-causal variants erroneously
associated with the phenotype at a given significance threshold « (e.g. « = 0.05).
For null SNPs, the expected x? statistic is 1. Methods that effectively control type I
error are compared with respect to their power for correctly rejecting the null
hypothesis®®-°!, and their expected y? statistics!®3233. Power is defined as the
probability of correctly detecting that a variant with a non-zero effect size is
causal®®-6l. Additionally, the expected x? statistic of an association method is a
proxy for its prediction accuracy!8:32:33,

UKB GWAS evaluation. All GWASs were performed in a subset of UKB indivi-
duals of European genetic ancestry, identified as in Alipanahi et al.1%. Briefly, the
medioid of the top 15 genetic PC values of all individuals with self-reported
“British" ancestry was computed, then the distance from each individual in UKB to
the British medioid was computed and all individuals within a distance of 40 were
retained. The threshold of 40 was selected based on the 99th percentile of distances
of individuals who self-identify as British or Irish.
Association testing was performed via BOLT-LMM!833 (Code Availability)

with covariates specific to each experiment. GWAS “hits" were defined as genome-
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wide significant (i.e. P < 5x 10-8) lead variants that are independent at an R2
threshold of 0.1. Hits were identified using the — — clump command in PLINK
(Code Availability). The linkage disequilibrium (LD) calculation was based on a
reference panel of 10,000 randomly sampled unrelated subjects of European
ancestry from the UKB. The span of each hit was defined based on the set of
reference panel variants in LD with the hit at R?>0.1. GWAS “loci" were defined by
merging hits within 250 Kbp.

Comparison of two GWAS results G, and G, for shared and unique hits was
performed by examining overlap of the hit spans; a given hit H; from G; is
classified as shared if the span of any hit from G, overlaps it, otherwise it is
classified as unique.

Comparison of our GWAS with the GWAS catalog (Code Availability) was
performed analogously to comparing two GWAS. We used gwas_catalog_v1.0.2
—associations_e100.r2021 — 04 — 05 and converted coordinates from
GRCh38 to GRCh37 using UCSC LiftOver (Code Availability) with default
parameters. All catalog variants whose “DISEASE/TRAIT" column matched the
phenotype of interest and were genome-wide significant were converted into loci by
merging variants within 250 Kbp.

Learning phenotype-covariates relationship via spline regression. We can
learn the non-linear relationship between the phenotype and covariates by fitting
sex-specific spline regression models to predict the desired phenotype using a set of
covariates. For each sex, we learn an independent spline regression model based on
the other non-genetic covariates. We utilized the python scikit-learn package (Code
Availability) to perform spline fitting.

Learning phenotype-covariates relationship via XGBoost. We can also learn the
non-linear relationship between the phenotype and covariates by fitting gradient
boosted decision trees. XGBoost (Code Availability) is one existing implementation
of gradient boosted decision trees. We utilized XGBoost to learn the non-linear
relationship. The optimal XGBoost hyperparameters were selected by performing
black-box hyperparameter optimization with Google Vizier®2. The optimization
objective was to minimize root mean squared error for the totalprotein
phenotype in UKB. The dataset was randomly split into train (80%) and test (20%)
folds. The optimal parameters identified, and used for all 10 UKB phenotypes, were
the following: max_depth = 3, eta = 0.3190, alpha = 0.6577, and
lambda = 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This work used genotyped and phenotypes from the UK Biobank study (https://
www.ukbiobank.ac.uk) and our accessed was approved under application 65275. We
utilized GWAS Catalog (https://www.ebi.ac.uk/gwas/) for replication analysis. Source
data are provided with this paper.

Code availability

DeepNull software is available for download from GitHub (https://github.com/google-
health/genomics-research/tree/main/nonlinear-covariate-gwas) or installation via PyPI
(https://pypi.org/project/deepnull/). We used the following tools: BOLT-LMM (https://
data.broadinstitute.org/alkesgroup/bolt-lmm), S-LDSC (https://data.broadinstitute.org/
alkesgroup/ldscore), PLINK, scikit-learn (https://scikit-learn.org/stable/), TensorFlow
(https://www.tensorflow.org), UCSC LiftOver (https://genome.ucsc.edu/cgi-bin/
hgLiftOver), and XGBoost (https://xgboost.readthedocs.io/en/latest/).
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