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جلاعيفةديدجاصرفقلخيايلاخلاىلعمئاقلايديدجتلاجلاعلايفمدقتلانإ
ةلحرملانيسحتللاخنم،ماظعلابةطبترملاتاباصلإاوتابارطضلاا
،ماظعلاميعطتليكيسلاكلاجهنلانعرظنلافرصب.ماظعلاءافشلةيضيوعتلا
نمريثكلا،ةيعذجلاايلاخلاةصاخو،ايلاخلاىلعةمئاقلاتاجلاعلاقيبطتبستكا
جلاعلايفامهمارودةيعذجلاايلاخلابعلت.ةريخلأاتاونسلايفمامتهلاا
ميظنتمتي.ماظعللةنوكمايلاخىلإزيامتللةزاتمملااهصئاصخلارظن،يديدجتلا
تاكبشلاوتاراشلإاتائيزجنمةعونتمةعومجمللاخنمةديدجلاماظعلاديدجت
تاراشلإاةلسلسكراشت.ةيولخلاتايلمعلاقيسنتنعةلوؤسملاايلاخلالخاد
لعافتلاوجمربملاايلاخلاتومواهراشتناوايلاخلاءاقبيفريبكلكشبةطشنملا
نممغرلاىلع.ءافشلاعقوملخادىرخلأاايلاخلاعاونأوةطيحملاةئيبلاعم
تاراشلإاتاراسمىلعتيرجأيتلاتاساردلانماهعمجمتيتلاةديازتملاةلدلأا
ةلحرميفمكحتلااهيلعيوطنييتلاةقيقدلاةيللآانإف،ماظعلانيوكتبةطبترملا
يسيئرلاراسملاديدحتحمسيدق.اديجةموهفمتسيلةعورزملاايلاخللزيامتلا
ةلصلاتاذةراشلإاتائيزجبقيقدلابعلاتلابماظعلاديدجتيفنمضتملاطشنملا
ةقمعتملاةفرعملانوكتس.ءافشلاةيلمععيرستلةيفلسلاايلاخلاةعومجملخاد
يففدهتسملاجلاعلاويصخشلابطلاةءافكنيسحتيفةديفمةيئيزجلاتايللآاب
ماظعلاحلاصإةيلآةيرظنزاجيإبمدقن،ةعجارملاهذهيف.يديدجتلابطلا
يتلاةلصلاتاذتاراشلإاتاراسمىلعةماعةرظناهيلتماظعلاةجسنأةسدنهو
.ايلاخلاىلعمئاقلاماظعلليديدجتلاجلاعلايفامهمارودبعلتلاهديدحتمت
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Abstract

Advances in cell-based regenerative therapy create new

opportunities for the treatment of bone-related disorders

and injuries, by improving the reparative phase of bone

healing. Apart from the classical approach of bone

grafting, the application of cell-based therapies, particu-

larly stem cells (SCs), has gained a lot of attention in

recent years. SCs play an important role in regenerative

therapy due to their excellent ability to differentiate into

bone-forming cells. Regeneration of new bone is regu-

lated by a wide variety of signalling molecules and

intracellular networks, which are responsible for coordi-

nating cellular processes. The activated signalling cascade

is significantly involved in cell survival, proliferation,

apoptosis, and interaction with the microenvironment

and other types of cells within the healing site. Despite

the increasing evidence from studies conducted on sig-

nalling pathways associated with bone formation, the

exact mechanism involved in controlling the differentia-

tion stage of transplanted cells is not well understood.

Identifying the key activated pathways involved in bone

regeneration may allow for precise manipulation of the

relevant signalling molecules within the progenitor cell

population to accelerate the healing process. The in-depth

knowledge of molecular mechanisms would be advanta-

geous in improving the efficiency of personalised medi-

cine and targeted therapy in regenerative medicine. In this

review, we briefly introduce the theory of bone repair

mechanism and bone tissue engineering followed by an

overview of relevant signalling pathways that have been

identified to play an important role in cell-based bone

regenerative therapy.
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Introduction

Regenerative therapy for bone tissue has great potential
for individuals suffering from bone defects, particularly for a
bone defect that cannot heal normally or fails to recover after

a long period without any sign of healing. Although the
natural healing process is able to restore the defective tissue
to its preinjury state, there are cases of impaired bone healing

where surgical procedure and bone regeneration are required
as clinical intervention.1 The main objective of bone
regenerative therapy is to restore bone function by

reinstating its former properties with the newly formed
bone, which will be identical to the adjacent healthy bone.
The procedure involves the stimulation of new bone

formation during the fracture healing period followed by
continuous bone remodelling throughout adulthood.2

Fracture repair is the most prevalent form of bone
regeneration in the clinical context, where depending on

the degree of injury, healing mechanisms can be different.
Bone grafting is a widely used method in clinical practice

where the transplanted bone is utilised to augment bone

regeneration. However, the downside of this approach in-
cludes the additional time for surgery, donor site morbidity,
and limited bone availability. To address these limitations,

cell-based therapy is regarded as an alternative, which allows
stem cells (SCs), biomaterials, and growth factors to facili-
tate bone repair and regeneration.3 Theoretically, cell

therapy plays an important part in bone tissue engineering
by stimulating the migration of bone progenitor cells to the
injury site to promote bone repair and undergo further
differentiation into bone-forming cells and tissue.4 The

process also involves the regulation of various intracellular
signalling molecules with the incorporation of growth
factors and cytokines that are responsible for bone

regeneration.
Studies on signalling pathways in cell-based technology

allow the development of a new treatment approach by tar-

geting one or two specific pathways, which regulate the bone-
forming capacity of SCs. Understanding the fundamentals of
the signalling cascade, and the activated genes at the mo-
lecular level are advantageous for bone reconstruction. This

paper provides an overview of the basic biology of bone
repair and different modalities for regenerative therapy with
the focus of reviewing the relevant signalling pathways in the

osteogenesis of SCs during the bone reparative phase.

Overview of bone repair and regeneration

Notably, the bone healing mechanisms can be categorised
into primary bone healing, which involves restoration of the
cortex without callus formation; and secondary bone heal-

ing, which involves callus formation prior to the bone
remodelling stage.5 Primary or direct fracture healing rarely
occurs since it needs a stable complex, as well as appropriate
anatomical reduction of the fracture ends without any gap
formation.6 In contrast to the primary process, secondary

or indirect fracture healing is more prevalent, which
involves an inflammatory response of the periosteum and
the neighbouring soft tissue at the fracture area.7 The

repair process also involves recapitulation of both
endochondral and intramembranous bone formation aided
by the homing of mesenchymal cells and osteoprogenitor

cells. In secondary bone healing, the process undergoes an
anabolic phase at the beginning, which then overlaps with
the catabolic phase when callus volume is lessened.7 A
deeper understanding of basic bone biology is very

important to formulate a specific and personalised bone
reparative therapy, which effectively targets the key
biomolecules within the repair site, at an optimal dose and

within a precise timeframe.
To date, the bone grafting technique remains one of the

most common approaches in clinical settings to repair and

regenerate bone loss or defects. The method can be further
classified into autograft, allograft, and xenograft. Autolo-
gous bone grafts are the gold standard in bone regeneration
as it provides an osteoinductive, osteoconductive, and oste-

ogenic potential for bone formation while maintaining the
native cells’ osteogenic potential.2 In addition, it also carries
minimal risk of disease transfer, lower risk of graft rejection,

and lower cost of procedures.9 However, the downside of
autograft includes the limitation in graft supply, requiring
additional surgery due to shape restrictions, as well as

donor site morbidity.8 Hence, the use of allograft can be
beneficial, by eliminating the need for surgical procedures
to harvest the graft. However, patients have increased risk

of immunologic reaction and transmission of disease.9,10

Similarly, the use of xenografts or heterologous grafts from
other species may have biological limitations concerning
the low osteogenic and osteoinductive capacity of the

material.11 Considering the advantages and limitations of
each technique, an alternative strategy must be applied to
reduce the existing risk and increase the treatment efficiency.

SC-based bone regenerative therapy

Bone tissue engineering aims to restore bone function by
stimulating regeneration capacity via the use of SCs, growth
factors, and scaffolds for mechanical support and trans-

plantation.12 The approach can either be a cell-free or cell-
based procedure. Cell-free approaches refer to the uti-
lisation of constructs to support osteogenesis, osteo-
conductivity, and osteoinductivity while maintaining

mechanical stability such as scaffold and biomimetic mate-
rials.13 Meanwhile, cell-based approaches focus on manipu-
lating the differentiation of SCs or progenitor cells derived

from various tissues into osteoblasts, the bone-forming cells
that support new bone tissue formation.

Application of cell-based therapy to bone regenerative

strategy incorporates the use of multipotent cells that are
able to differentiate into osteogenic cells to restore the
damaged tissues.14 Osteoblasts are among the potential cell

types that can be employed for bone repair. Other types of
cells that could be used for bone regeneration are SCs,
namely embryonic SCs (ESCs), induced pluripotent SCs
(iPSCs), and mesenchymal SCs (MSCs).15 Osteoblasts are

http://creativecommons.org/licenses/by-nc-nd/4.0/
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commonly employed in the bone regeneration procedure as
they are naturally produced within the bone environment.

Even so, they are limited in number and exhibit low
proliferative capacity.16 Although ESCs are pluripotent,
the use of these cells in cell-based therapy is still controver-

sial due to the ethical concerns associated with their primary
source of isolation, and the risk of teratoma formation along
with the immunologic incompatibility.17 Hence, the use of

ESCs for bone tissue engineering is not favourable. Hence,
in recent years, an increasing number of studies have been
dedicated to exploring the potential benefit of IPSCs in
bone regenerative therapy. Nevertheless, the genetic

manipulation approach used to develop iPSCs is the main
concern in applying these cells to clinical applications.

Among the potential above-mentioned cells, MSCs

appear more suitable for bone engineering due to their high
proliferation rate and differentiation capacity, multi-
potency, and distinct immunological quality.18 MSCs are

capable of differentiating into bone-forming osteoblasts,
chondrocytes, and myocytes in response to different con-
ditions (transcription factors, signalling molecules, molec-
ular pathways), which makes them good cellular candidates

for bone tissue engineering.15 Bone marrow (BM) has been
the main source of MSCs since they were first isolated from
this tissue in 1976.19 However, obtaining MSCs from BM

sources is considered invasive, requires general
anaesthesia, and is a painful harvesting procedure. Hence,
the research and clinical applications of BM-MSCs are

rather limited.20

Nevertheless, the discovery of MSCs from noninvasive
sources such as adipose tissue, dental pulp, periosteum, pe-

ripheral blood, and umbilical cord provide alternative op-
tions for the isolation of MSCs.14,21,22 There are also a few
potential sites for the isolation of MSCs within the
craniofacial region. Accordingly, various types of dental

SCs have been isolated, characterised, and studied such as
dental pulp SCs (DPSCs),23 SCs from exfoliated deciduous
teeth (SHED),24 periodontal ligament SCs,25 SCs from

apical papilla,26 and dental follicle progenitor cells.27

Among the dental SCs, DPSCs and SHEDs are among
the most studied in bone regeneration, including craniofacial

bone defects. Regarding DPSCs alone, their osteogenic ca-
pacity has been frequently utilised for scaffold development
to improve the osteogenic inductivity of cells embedded in

scaffold.28e30 DPSC differentiation can be induced either
in vitro or in vivo by incorporating the use of several
growth factors such as bone morphogenetic proteins
(BMPs),31,32 transforming growth factor beta (TGF-b),33

vascular endothelial growth factor,34,35 and fibroblast
growth factor.36 Similarly, SHED has also been extensively
studied in the context of bone regeneration.37e39 Although

SHED is almost identical to DPSCs morphologically,
which exhibit fibroblast-like cells and the ability to differ-
entiate into osteogenic lineage, they differ in certain factors

such as the expression level of growth factors.59 Practically,
with a suitable microenvironment and appropriate delivery
of growth factors, osteogenic signalling molecules can be
transmitted to produce a desirable result. Given the

information gathered from relevant studies, it is crucial to
investigate the key signalling pathways that contribute to
the osteogenic differentiation of these osteoprogenitor cells,
to further comprehend their characteristics for bone repair
therapy.
Signalling pathways in bone regeneration

Although significant progress has been made in bone
regenerative therapy in recent years, understanding the fun-

damentals behind the cellular and molecular mechanisms is
important for successfully implementing this approach.
Depending on the signals or ligands that bind to the cell-

surface receptor, activation of the pathway can stimulate
different downstream signalling cascades, resulting in
different gene expression and SC fate. It further allows the
regulation of targeted pathways in osteoblast formation.

Activation of pathways that stimulate osteoblast recruitment
can lead to bone formation, while stimulation of pathways
involving osteoclast formation will lead to bone loss unless

there is interference from other factors.40

Differentiation ofMSCs to osteoblast progenitors in bone
formation is regulated by several signalling pathways such as

BMP, Hedgehog, Wnt/b-catenin, Notch, and extracellular
signal-regulated kinase (ERK), as shown in Figure 1.41,42

Table 1 depicts each of the signalling molecules’ functions
in bone repair and regeneration. Despite meaningful and

successfully collected experimental data from both in vitro
and in vivo methods, the knowledge of bone signalling
pathways has not yet been applied to the current cell-based

regenerative treatment.
In addition, several approaches within in vitro settings

have been tested to study cellular signalling pathways for

bone tissue engineering, comprising genomics and prote-
omics that can further be divided into different methodo-
logical approaches.43 Table 2 summarises the different

experimental works involving in vitro techniques for
signalling studies in bone repair. The inhibition assay has
been widely used in targeting a specific molecule in the
pathway to identify the molecule’s effect on cell activity,

which further leads to discovering the mechanisms of the
signalling pathway itself.44e47 Typically, the inhibition
assay and Western blotting are performed consecutively.

Western blotting used to evaluate the protein expressed
after the inhibition assay. The cytotoxic effect on the cell
determined by the inhibition assay depends on the doses

of inhibitor used following a specified parameters
consisting of the half maximal effective concentration
(EC50) and the half maximal inhibitory concentration
(IC50), which vary for different inhibitors.46,48 Due to the

nature of the inhibitor used to repress the signalling
molecules, performing an inhibition assay on the cells
may affect the cell’s activity such as proliferation,

survival, and osteogenesis, depending on the pathway.
targeted.

In the next section, the role of the relevant signalling

pathways in bone formation will be elaborated upon in
further detail. In studies performed between 2017 and 2022,
four major pathways have been extensively studied for

in vitro bone regeneration, namely the Wnt, phosphoinosi-
tide 3-kinase (PI3K)/AKT, ERK/mitogen-activated protein
kinase (MAPK), and TGF-b pathways.



Figure 1: Schematic illustration of the identified signalling pathways for craniofacial bone regeneration. The downstream of each pathway

differs depending on the ligand binding to the receptor. The activated molecule then triggers the cascade reaction of the downstream

molecules which will be transported into the nucleus to stimulate the osteogenic transcription factor associated with the osteoblast

formation.
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Wnt pathway

The Wnt signalling pathway plays a significant role in

cell regulation such as cell fate determination and prolifer-
ation during embryonic development while regulating cell
maintenance, differentiation, and pluripotency in adult
SCs.49 The Wnt/b-catenin pathway comprises canonical

and non-canonical branches consisting of Wnt/Ca2þ and
Wnt/planar cells polarity (PCP) pathways.50 The canonical
Wnt signalling cascade is activated by the attachment of

Wnt family proteins to the receptor. Notably, the
canonical pathway is the most widely studied Wnt
signalling pathway, specifically in bone homeostasis and

development. The canonical Wnt pathway is associated
with bone formation whereby b-catenin upregulation
stimulates downstream gene expression.51

The role of b-catenin in the Wnt pathway includes regu-
lating cell adhesion and mediating signalling activities,
depending on the protein structural composition.52 Wnt/b-
catenin induces bone formation through b-catenin/T-cell
factor 1-mediated activation of the transcription factor

Runt-related transcription factor 2 (Runx2), which is
responsible for the osteogenic lineage of MSCs.53 The Wnt
pathway plays a role in regulating osteoblast and osteoclast

formation by upregulating the transcription of
osteoprotegerin (OPG) while suppressing the level of
receptor activator of nuclear factor kappa B ligand

(RANKL), leading to a decrease in the RANKL/OPG
ratio.54 Higher OPG expression in the RANKL/OPG ratio
also inhibits the differentiation of osteoclasts while
promoting osteoblast differentiation.55,56

Theoretically, the Wnt pathway is regulated by various
effectors that either act as agonists or antagonists. A study
of the Wnt pathway is demonstrated by targeting the

signaling molecules and further analysis of gene and pro-
tein associated with mature bone formation. Recent studies
on aWnt inhibitor, Dikkopf 2 (DKK2), which binds to low-

density lipoprotein receptor-related proteins 5 and 6,



Table 1: Key signalling molecules involved in bone repair and regeneration.

Signalling molecules Features Function in bone regeneration References

Extracellular messengers

BMP-2 Osteogenic regulation

factor

Involved in enhancement of ALP activity, regulation of Dlx5

in osteogenic differentiation (specifically target)

68

BMP-4 Osteogenic and

chondrogenic regulation

factor

Increases in BMP4 expression activates the phosphorylation

of Smad1/5/8 in Smad signalling. BMP4 acts as an early

stimulator of endochondral ossification

69,70

BMP-6 Osteogenic regulation

factor

Regulation of BMP6 via Smad1/5/9 induces osteogenic

differentiation in hMSCs.

71

BMP-7 Osteoblast differentiation

factor

Regulates osteoblast lineage determination by inducing Osf2/

Cbfa1 expression before any other osteoblast-specific gene

72

BMP-9 Osteogenic regulation

factor

Stimulates early and late osteogenic differentiation and

enhances the osteogenic marker expression in MSCs.

Activation of Smad1/5/8 also depends on BMP-9-induced

osteogenic differentiation of MSCs.

73,74

TGF-b Osteoblast differentiation

factor; bone mineralisation

regulator

Induces osteoblast differentiation, proliferation, and

migration with the support of various signalling molecules

such as Smad, and AKT. It also regulates mineralisation of

the bone matrix.

75,76

p38MAPK Osteoblast differentiation

regulator

An important regulator of early bone formation and

development. p38 bound to BMP2/7 contributes to Runx2

and Osx transcriptional activity

77,78

ERK1/2 Osteoblast differentiation

factor

Regulates lineage specification into osteoblast and osteoclast

differentiation

79

Intracellular messengers

Runx2 Osteogenic transcription

factor

Also known as core-binding factor subunit alpha-1 (Cbfa1),

an important transcription factor that regulates the

expression of major bone matrix protein genes through

osteoblast-specific cis-acting element (OSE2), a direct binding

site in the promoter of several osteoblast-specific genes.

80

Osterix (Osx) Osteoblast-specific

transcription factor

Also known as transcription factor Sp7. Downstream of

Runx2 and is particularly expressed in osteoblast lineage cells.

Osx is only present in mature osteoblasts; however, it acts as a

negative regulator as it inhibits osteoblast proliferation via

the Wnt/b-catenin pathway.

81

Dlx5 Positive regulator of

osteoblastogenesis

Promotes osteogenic differentiation in MSCs in cooperation

of BMP-2

68

Osteocalcin (OCN) Bone formation marker;

bone turnover marker

Vitamin K-dependent protein that is secreted only by mature

osteoblasts into the bone microenvironment, which then

induce the formation of hydroxyapatite crystals. Production

of OCN only occurs at the mineralisation phase of bone

formation.

82,83

Alkaline phosphatase (ALP) Bone mineralisation

regulator; bone turnover

marker

Resides in osteoblast membranes and is then released into

circulation. It also assists in hydroxyapatite production by

providing inorganic phosphate. ALP can be utilised as a

biochemical parameter for osteoblast formation and rate of

fracture healing.

84e86

Bone sialoprotein (Bsp) Bone development

regulator, mineralisation

regulator

Produced by osteoblasts and assists in cell attachment by

promoting adherence of osteoblasts and osteoclasts to the

matrix. It stimulates hydroxyapatite crystal formation in

bones and teeth.

87,88

Msx1 Craniofacial bone

formation regulator

Involved in morphoregulation of craniofacial development as

well as teeth and alveolar bone formation. Expression of

Msx1 is also interrelated with other genes that regulate

osteogenic cell lines such as Runx2,and BMP2.

89,90

Msx2 Craniofacial bone

formation regulator

Mainly involved in cranial bone formation. Msx2 stimulates

MSCs into osteoblast lineage along in a Runx2-independent

pathway and is induced by BMPs. Msx2 also supresses

PPARg and C/EBP transcriptional activity from progressing

into adipocyte lineage.

91

b-catenin Osteoblast differentiation

factor

Its activation regulates bone-forming osteoblast activity and

osteoblast lineage determination via the canonical Wnt

pathway.

92

Bone repair and key signalling pathways1354



Table 2: Application of in vitro techniques in signalling pathway studies.

In vitro technique Type of method Principle Samples Analysed Key Findings References

Genomics Microarray

analysis

Identification of gene

expression profiles

involved in osteogenic

differentiation

Study of gene

expression profiling

microarray data during

osteogenic

differentiation of BM-

MSCs, focusing on

several signalling

pathways based on

KEGG pathway

analysis: LPS-

mediated, PI3K/AKT,

and Wnt.

Microarray data from database

repository revealed several

upregulated differentially

expressed genes (DEGs) related to

the biological processes and

pathways.

99

Real-time PCR

(qRT-PCR)

Assessment of

expression of bone-

specific markers or gene

expression of the

signalling molecules in

the osteogenic

differentiated cells

Study of the effect of

the PI3K inhibitor,

LY3023414, on

osteogenesis and

osteoclastogenesis for

bone remodelling using

a preosteoblast cell line

and bone marrow-

derived macrophage

cells (BMMs).

Treatment with a PI3K inhibitor

led to reduced mRNA expression

of osteoblast-specific genes in the

preosteoblast cell line as well as

expression of AKT in the

preosteoblast cell during

osteoclastogenesis in the BMMs.

96

Proteomics Specific

inhibition assay

Assessment of the effect

of pathway knockdown

Preosteoblast cell line

MC3T3-E1 was

subjected to a specific

inhibitor targeting the

PI3K pathway

Effect of inhibitor treatment

decreased the mRNA expression

of osteoblast-specific genes

(Runx2, ALP, OCN), and

expression of phosphorylated

AKT related to the downstream

process of the pathway.

96,100

Western blotting Evaluation of protein

expression and

signalling molecules

after cells were treated

with pathway

inhibitors.

.

MC3T3-E1 cells treated

with C3G to enhance

osteoblast regulation

were subjected to

ERK1/2 inhibition to

study the involvement

of the ERK/MAPK

pathway in osteoblast

proliferation.

Inhibition resulted in decreased

phosphorylated ERK1/2 and

OCN protein expression.

Although Runx2 and ALP

protein were not inhibited, it can

be concluded that ERK was

partially responsible for

osteoblast differentiation due to

the inhibitor effect on OCN.

101

Immunostaining Analysis of protein

expression,

distribution, and

localisation of

osteogenic

differentiated cells

Immunofluorescence

staining to examine the

expression level of type

I collagen in b-
ecdysterone-treated

MC3T3-E1 cells to

study the osteogenic

effect.

Expression of type I collagen in

the treated group was significantly

increased compared to the control

group, which shows that b-
ecdysterone can be implemented

for bone regeneration due to its

osteogenic properties.

102

Mass

spectrometry

(MS)

Analysis of intercellular

signalling proteins and

the regulation of

cellular

posttranslational

modifications

Comparative

proteomics of gingival

tissues and alveolar

bone after tooth

extraction to study the

protein interaction and

molecular mechanisms

involved in periodontal

bone tissue healing.

Several proteins and canonical

pathways in both soft tissue and

bone are interconnected for

cellular organization and

maintenance. This shows that

both soft tissue and hard tissue are

involved in bone repair and

regeneration.

103
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demonstrated that overexpression of DKK2 significantly
affects cell viability and DNA synthesis.56,57

Overexpression of DKK2 also results in lower mRNA
levels of the osteogenic-related factors, ALP, Runx, and
OCN, as well as lower protein levels of b-catenin and
Wnt1.56,57
Meanwhile, inhibition of pathways using DKK1 and
DKK2 leads to OPG expression in osteoblasts, showing that

inhibiting the Wnt pathway affects the ability of SCs to
produce osteogenic-related factors, which are crucial for
bone formation.58 Figure 2 depicts the mechanism of Wnt
signalling in osteoblast formation. Another notable



Figure 2: Schematic illustration of Wnt pathway mechanism in osteoblast differentiation. Wnt upregulates the expression of OPG in

osteoblast, resulting in low RANKL/OPG ratio and inhibit the osteoclast formation which in turn increases the osteoblast differentiation.
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component of the Wnt pathway, glycogen synthase kinase 3
(GSK-3), regulates various signalling pathways that
modulate cellular activities including cell signalling,

proliferation, and cell fate determination.59,60 One of the
GSK-3 isoforms, GSK-3b, negatively regulates the canoni-
cal Wnt/b-catenin whereby GSK-b by binding to adenoma-
tous polyposis coli and axon, forming a protein complex that

degrades b-catenin.61 A previous study showed that GSK-3b
inhibition enhanced bone formation through Runx2-
dependent transcription activity.62 Another study

confirmed the role of GSK-3 in cell fate determination by
demonstrating that inhibition of GSK-3b enhanced the
mesenchymal progenitors with osteogenic potential by

increasing the osteoblast number within 14 days.63 Despite
the great potential for activating the Wnt pathway,
inhibition of GSK-3b affects cell viability if the inhibitors

are used at high concentrations.64

PI3K/AKT pathway

PI3K has several downstream targets including

phosphoinositide-dependent kinase-1 (PDK1), serine/threo-
nine kinase AKT (also known as protein kinase B), and p70
ribosomal protein S6 kinase (p70S6K).65 PI3K/AKT plays an

important role in regulating various physiological processes
such as apoptosis, proliferation, and cell differentiation.
PI3K catalyses the conversion of phosphatidylinositol (4,5)-

biphosphate (PIP2) to phosphatidylinositol (3,4,5)-
triphosphate (PIP3), which then activates PDK1 and AKT
in sequence.66 The critical role of PI3K/AKT in bone
regulation has been demonstrated through the induction of
progenitor cells into mature osteoblasts, as observed in
AKT-knockout mice, which exhibited lesser bone mass

compared to control mice.67 PI3K inhibitors have also been
utilised in studies on the PI3K/AKT pathway in order to
observe changes in the bone healing process based on the
expression level of bone marker genes. Inhibition of the

PI3K inhibitor using LY294002 revealed diminished
osteoblast differentiation in the osteoporosis group.68

Furthermore, the inhibition of PI3K/AKT led to a decrease

in genes associated with bone markers such as ALP, OCN,
osterix (Osx), and Runx2.68,69 Collectively, these findings
suggest the potential role of the PI3K/AKT signalling

pathway in bone repair and regeneration.
A recent study on the role of the PI3K/AKT pathway in

bone regeneration showed that treating the samples with the

LY294002 inhibitor resulted in failure of the bone tissue to
fill in a gap of a fractured bone.70 However, the study
postulated possible crosstalk between PI3K/AKT and the
Wnt pathway, whereby activation of AKT inhibits GSK-

3b activity, leading to the accumulation of b-catenin,
further confirming that PI3K/AKT regulates osteoblast
function and fracture healing via b-catenin as well. This

finding is consistent with another study that focused on the
inhibition of pre-osteoblast apoptosis and showed that
AKT activation results in the phosphorylation of GSK-3b,
which leads to b-catenin activation via glucagon-like pep-
tide-1, which is associated with bone marrow-derived
mesenchymal stem/stromal cell (BMSC) osteogenic differ-
entiation.71,72 In addition, another study on the PI3K/AKT
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pathway targeting PDK1, which is an upstream regulator of
AKT, revealed that inhibition of PDK1 suppressed the

ability of BMSCs to differentiate into osteoblasts in vitro.73

PDK1 is partly responsible for AKT activation by
phosphorylating AKT at T308 upon binding to PIP3.74

The inhibition of PDK1 affects BMSCs at both the mRNA
and protein levels, causing the expression of PDK-1 and
AKT to steadily decrease over time.

Meanwhile, the mammalian target of rapamycin complex
2 (mTORC2) is responsible for phosphorylating AKT at
S473, leading to complete activation of AKT, and thus being
indirectly involved in regulating osteoblast differentiation.

Deletion of the mTORC2 component, Rictor, leads to a
lower level of ALP activity as well as the expression of the
other osteoblast markers, further suggesting that mTORC2

enhances osteoblast differentiation via the PI3K/AKT
pathway.75,76 In addition, mTORC2-activated hypoxia-
inducible factor 1 alpha (HIF-1) also induces BMSC to

differentiate into osteoblasts. Another multiprotein complex
of mTOR which is mTORC1 also involves in the regulation
of protein synthesis in the cell through p70S6K1.77

Activation of mTORC1 modulates osteoblast

differentiation by regulating Runx2 expression through
augmentation of Runx2 enhancer activity.78 The only
difference between mTORC1 and mTORC2 is the complex

component where mTORC1 consists of Raptor and is
sensitive to rapamycin, whereas mTORC2 comprises
Rictor which is insensitive to rapamycin.

Phosphatase and tensin homolog (PTEN) is a natural
inhibitor of the PI3K/AKT pathway that antagonizes the
action of PI3K by dephosphorylating PIP3 to generate

PIP2.79 Hence, the inactivation of PTEN may directly
contribute to the activation of AKT signalling. Targeted
PTEN inactivation has been investigated in several studies
to understand the role of the PI3K/AKT pathway in bone

formation.80e82 The suppression of PTEN leads to a higher
expression level of osteogenic markers, including OCN,
ALP, and Runx2, after treatment with a specific PTEN

inhibitor.83 Treatment of BMSCs with a PTEN inhibitor
further significantly enhances the osteogenic activity
through the PI3K/AKT pathway, which proves that

inhibition of this specific signalling component increases
osteoblast cell proliferation.84,85
ERK/MAPK pathway

MAPK is a protein kinase family responsible for the

activation of bone signalling pathways when stimulated by
extracellular messengers, such as growth factors and cyto-
kines. The three main pathways in mammalian cells are:

ERK1/2, c-Jun N-terminal kinases (JNK 1e3), and p38
MAPKs (a, b, d, and g).86 Each pathway class responds to
different extracellular stimuli. For instance, ERK1/2 is

stimulated by growth factors, hormones, and
proinflammatory stimuli; whereas JNK and p38 are
activated by environmental stresses and proinflammatory
mediators.87 Both ERK isoforms, ERK1 (MAPK3) and

ERK2 (MAPK1), are involved in the differentiation of
MSCs to osteoblast-lineage cells where activation of the
pathway is activated via phosphorylation at Thr202/Tyr204

and Thr185/Tyr187 by MAPK kinase (MEK1) and
MEK2.88 Cascade activation is initiated by the binding of
ligand to a membrane receptor, followed by RAS

activation, which further stimulates RAF protein
kinases.88 Runx2 is an ERK substrate that is involved in
osteoblast differentiation. Activation of ERK contributes

to the transcriptional activity of Runx2 at the
phosphorylation sites S301 and S319. Tandem mass
spectrometry analysis of Runx2 phosphorylation revealed

S319 to be a direct ERK substrate.89

Besides Runx2, ERK also has other substrates that
modulate osteogenesis such as RSK2, which phosphorylates
activating transcription factor 4 (ATF4) and plays an

important role in late osteoblast differentiation as it regulates
bone mineralisation.90,91 However, ATF4 deficiency does not
alter Runx2 although it does reduce Osx expression as Osx is

a downstream gene of Runx292. ATF4 and Runx2 are co-
expressed in osteoblast differentiation to enhance the acti-
vation of several osteoblast-specific genes such as Osx and

OCN.92e94 Another relevant substrate of ERK that is
associated with osteoblast formation is the Fos family of
subunits of the AP-1 transcriptional complex, comprising
FOS, FOSL1, FOSL2, and FOSB.95 The mechanism of Fos

and AP-1 stimulation in osteoblast formation by ERK
activation remains unclear; however, FOS proteins via
cGMP-mediated ERK are reportedly involved in bone for-

mation by mechanical stimulation.95,96

The role of ERK in the osteogenic differentiation of SCs is
demonstrated by increases in the phosphorylation of ERK1/

2 and Runx2 during cell growth in osteogenic conditions.97

ERK/MAPK involvement in osteoblast formation has also
been demonstrated via knockout of osteoblast-specific

MEK 1/2, leading to decreases in the transcriptional activ-
ities of Runx2, b-catenin, and ATF4, which that are crucial
for the proliferation and survival of osteoblasts.88,92 Also,
inhibition of ERK1/2 by PD98059 specifically suppresses

upstream activation of ERK1/2 which is MEK, affecting
the osteogenic capacity of dental SCs by decreasing the
mRNA expression levels of osteogenesis-associated genes

such as ALP, OPN, Col-1, and Bsp.98 Treatment of SCs with
the selective inhibitor ERK1/2 kinase, U0126, also led to
decreases in Runx2 protein level as well as the mRNA

expression level of ALP.99,100 Although U0126 significantly
suppressed the activation of ERK1/2, the inhibitor
somehow did not negatively affect the cell viability

depending on the dose applied.
By contrast, data from other studies have demonstrated

that inhibition of the ERK pathway suggests possible
crosstalk either within the MAPK pathway or with another

pathway.101,102 Inhibition of ERKwith U0126 in osteogenic-
induced BMSCs resulted in no significant increase in Runx2
gene expression, but a noticeable upregulation occurred in

the protein expression of ALP, OPN, and OCN.102 The
crosstalk concept suggested that inhibition of ERK
promotes p38 activity, which then modulates ALP

expression and mineralisation. Thus, inhibition of the ERK
pathway indicates mechanotransduction of the pathway by
improvement in bone mineralisation and higher deposition
of minerals into the collagenous matrix.103

Similarly, genetically deleted MEK1/2 in mature osteo-
blasts turned out to modulate bone formation by stimulating
osteogenesis and the osteogenic factors, suggesting the

involvement of another signalling pathway, specifically
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PI3K/AKT via mTORC2 molecules.101 Knockdown of
MEK1/2 exhibits an increase in phosphorylation of

mTORC2 downstream molecules, except mTORC1, which
showed no changes in the downstream molecules.
Therefore, it can be concluded that ERK may have a dual

role in osteoblast differentiation and bone formation
depending on various factors that remain unclear.

TGF-b pathway

The TGF-b superfamily consists of multiple subfamilies
that are involved in growth factor secretion as regulatory
peptides that control various cellular processes including

bone resorption and formation. The known TGF-b sub-
families are TGF-b, BMPs, growth and differentiation fac-
tors, nodal, and activin. There are three isoforms of the

TGF-b family in humans, namely TGF-b1, TGF-b2, and
TGF-b3, which are located in different locations on various
chromosomes.104 In the context of bone formation, TGF-b1
is the predominant growth factor in the bone matrix among
the other TGF-b isoforms. Activation of TGF-b involves the
binding of the ligands to the type II receptor (TGF-br2)
which recruits TGF-br1 activation once phosphorylated.105

Hence, inducing signals through different TGF-b signalling
can be divided into canonical and non-canonical pathways.
The canonical TGF-b signalling pathway consists of TGF-b/
activin/nodal activation, which requires the phosphorylation
of Smad2/3 complexes joined with Smad4 followed by
translocation into the nucleus where an additional co-factor

is recruited to regulate target gene expression.106 The
canonical pathway via Smad2/3 activation involves binding
of the ligand to the type II activin receptor, which then

recruits the type I receptor, activin receptor-like kinase
(ALK4/5/7).107e109 Another canonical TGF-b pathway
comprises the phosphorylation of Smad 1/5/8, whereby

BMP signals are transduced by type I receptors consisting
of ALK2/3/6, along with type II receptors.110

The BMPs involved in osteogenesis induction are BMP-
2,4,6,7, and 9. In most cell types, TGF-b signals via TGF-

brII and ALK5. ALK5 induces cells into the osteoblast
lineage by increasing the expression level of phosphorylated
Smad2/3, which slowly decreases with osteoblast matura-

tion.108 One study showed ALK5 inhibition by SB431542,
which targets the activin/BMP/TGF-b pathway, resulting
in the decreased expression of Runx2, RANKL, and

OCN.111 Conversely, several other studies showed
osteoblast induction when ALK5 was inhibited, leading to
the elevated mRNA expression of osteoblast-specific
markers such as Runx2, ALP, Osx, and OCN but

decreased expression of phosphorylated Smad2/3.112,113 It is
postulated that the crosstalk with various pathways such as
ERK, p38, and BMP result in osteoblast differentiation

even when TGF-b/Smad is inhibited.112,114

Meanwhile, non-canonical TGF-b signalling is stimulated
independently of Smad2/3 activation. For instance, TGF-b1
via PI3K/AKT/mTOR/S6K1 induces osteogenic differenti-
ation in human osteoblasts cell lines upon treatment with a
PI3K/AKT inhibitor, leading to a reduction in ALP activ-

ity.115 The constitutively active AKT induces osteoblast
induction when osteoblasts are inhibited by TGF-b1
treatment in the early stages when it exhibits increased
OCN and ALP expression.116 The study also suggested
that AKT plays a significant role in the TGF-b1-induced
osteoblastic differentiation of pre-osteoblast MC3T3-E1
cells. Furthermore, the activation of TGF-b via p38 MAPK
regulates osteoblast differentiation by upregulating the

expression of Smad1/5/8, MKK3, p38 and several other
osteoblast-specific markers such asRunx2,Osx, andOPN.117

The mechanism of p38 MAPK activation is suggested via

phosphorylation at Thr and Tyr residue, which is
stimulated by cytokines and in vivo environmental stress.
Depending on the condition, TGF-b may also have dual
roles where it is capable of regulating osteoblast

differentiation in the early stages, but acts as an inhibitor
in the late stages.118e120 In the late stages of osteoblast
differentiation, TGF-b inhibits the expression of Runx2

and the terminal differentiation of osteoblasts, most likely
via Smad3 that suppresses matrix mineralisation.121,122

Overall, it can be concluded that the TGF-b pathway plays

a significant role in regulating molecular and cellular
biological processes at the bone repair site, depending on
the stage of bone cell formation.

Conclusion

Rapid development in SC research indicates huge poten-

tial for the utilisation of cells in regenerative medicine. Cell-
based bone regenerative therapy serves as a great opportu-
nity for the advancement of techniques used in bone repair

and regeneration. This review emphasises the extreme ne-
cessity of understanding basic bone biology to identify the
best strategies for a therapeutic approach. It is important for
studies on bone tissue engineering, including biomaterials

design and scaffold development, to understand the funda-
mental knowledge on cell growth and bone formation at the
cellular and molecular levels to correctly assess the cell’s re-

sponses. Apart from manipulating the external source, it is
rather interesting to venture into manipulating the key
players in bone formation itself, namely the bone progenitor

cells. As we briefly discussed, the multipotent capacity of SCs
to differentiate into various lineages offers vast opportunities
for researchers to control the cell’s commitment to osteoblast

lineage, which is a crucial element for bone repair and
regeneration. Despite the sufficient number of studies
investigating the relevant pathways in bone regeneration, the
lack of unanimous evidence on targeting a specific, identifi-

able predominant pathway remains a challenge. However,
some of the studies reviewed within this paper demonstrated
consistent beneficial outcomes for future therapy. Some of

the reviewed signalling pathways should be explored in
further detail, within in vitro and in vivo settings to obtain a
wider picture of the different expression levels of osteoblastic

markers at the gene, protein, cell, and tissue levels. The role
of each signalling pathway could also be explored by tar-
geting the downstream molecules and regulators within the
signalling cascade. However, the crosstalk that occurs be-

tween different pathways and the system of the cellular ac-
tivity when pathway alteration occurs needs to be further
investigated. To date, only limited data exist on the efficacy

of manipulating targeted signalling pathways for personal-
ised cell-based bone regenerative treatment. The information
provided in this review, coupled with an optimised
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biomaterials design, may potentially accelerate the rate of
recovery, and improve treatment modalities for bone repair.
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21. Hass R, Kasper C, Böhm S, Jacobs R. Different populations

and sources of human mesenchymal stem cells (MSC): a com-

parison of adult and neonatal tissue-derived MSC. Cell Com-

mun Signal 2011; 9. https://doi.org/10.1186/1478-811x-9-12.

22. Shaikh MS, Shahzad Z, Tash EA, Janjua OS, Khan MI,

Zafar MS. Human umbilical cord mesenchymal stem cells:

current literature and role in periodontal regeneration. Cells

2022; 11. https://doi.org/10.3390/CELLS11071168.

23. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Post-

natal human dental pulp stem cells (DPSCs) in vitro and

in vivo. Proc Natl Acad Sci U S A 2000; 97: 13625e13630.

https://doi.org/10.1073/PNAS.240309797.

24. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG,

et al. SHED: stem cells from human exfoliated deciduous

teeth. Proc Natl Acad Sci U S A 2003; 100: 5807e5812. https://

doi.org/10.1073/PNAS.0937635100.

25. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S,

Brahim J, et al. Investigation of multipotent postnatal stem

cells from human periodontal ligament. Lancet 2004; 364:

149e155. https://doi.org/10.1016/S0140-6736(04)16627-0.

26. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M. Mesen-

chymal stem cell-mediated functional tooth regeneration in

swine. PLoS One 2006; 1: 79. https://doi.org/10.1371/

journal.pone.0000079.
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Medina-De La Garza CE, et al. Epidermal growth factor en-

hances osteogenic differentiation of dental pulp stem cells

in vitro. https://doi.org/10.1186/s13005-015-0086-5 2015; 2015.

37. Farea M, Husein A, Halim AS, Abdullah NA, Mokhtar KI,

Lim CK, et al. Synergistic effects of chitosan scaffold and

TGFb1 on the proliferation and osteogenic differentiation of

dental pulp stem cells derived from human exfoliated decidu-

ous teeth. Arch Oral Biol 2014; 59: 1400e1411. https://doi.org/

10.1016/J.ARCHORALBIO.2014.08.015.

38. Kharaziha M, Fathi MH, Edris H, Nourbakhsh N, Talebi A,

Salmanizadeh S. PCL-forsterite nanocomposite fibrous mem-

branes for controlled release of dexamethasone. J Mater Sci

Mater Med 2015; 26: 1e11. https://doi.org/10.1007/S10856-

014-5364-4.

39. Hiraki T, Kunimatsu R, Nakajima K, Abe T, Yamada S,

Rikitake K, et al. Stem cell-derived conditioned media from

human exfoliated deciduous teeth promote bone regeneration.

Oral Dis 2020; 26: 381e390. https://doi.org/10.1111/

ODI.13244.
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