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Abstract

The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history

shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evo-

lution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented.

Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the

probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the

expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan.

Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent

immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained

by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that

immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose

expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely

assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in

A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on

flowering time is predicted to have on diversity in host immunity.

Key words: immunity, flowering time, lifespan, Arabidopsis thaliana, transcriptomics, trade-off, pleiotropy, bulk-segregant

sequencing.

Introduction

The ability of organisms to defend against pathogens is a

major determinant of survival in natural populations (Parker

and Gilbert 2004; Chisholm et al. 2006; Lee and Mazmanian

2010). Pathogens have long been suspected to impose a fast

evolution of the host immune system and the “Red Queen”

Hypothesis is nowadays a keystone of evolutionary biology

(Van Valen 1973; Liow et al. 2011). Evidence that pathogens

drive the molecular evolution of host defense systems has

been accumulating in an array of plant and animal systems

(Bergelson et al. 2001; de Meaux and Mitchell-Olds 2003;

Moeller and Tiffin 2005; Laine et al. 2011; Maekawa et al.

2011; Ravensdale et al. 2011; Dybdahl et al. 2014; Karasov

et al. 2014; Siddle and Quintana-Murci 2014; Parker et al.

2015; Metzger et al. 2016).

Yet, the possible impact of changes in ecology on the evo-

lution of defense systems should also be considered as they

may durably change the exposure of hosts to pathogens.

Invasive species, for example, owe much of their success to

the release from pathogen and pest pressures (Mitchell and

Power 2003; Mitchell et al. 2010). Similarly, shifts in life history

can alter the balance between costs and benefits of host
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defense systems (Herms and Mattson 1992). Shifting from

perennial to annual life cycles, or evolving from a winter-

annual to summer-annual cycling occurs frequently across

plant phylogenies (Garnier 1992; Michaels et al. 2003;

Franks et al. 2007; Tank and Olmstead 2008; Matthew

Ogburn and Edwards 2015; Kiefer et al. 2017). The reduction

in lifespan that follows such life history changes concomitantly

reduces the probability to encounter ennemies (Jokela et al.

2000). As a matter of fact, woody plant species with longer

lifespan often display stronger herbivore defenses (Endara and

Coley 2011). As a consequence, immunity and lifespan are

expected to coevolve.

Arabidopsis thaliana populations offer an optimal model

for catching the coevolution of life history and immunity in

the act. A. thaliana has become over the last decade a pow-

erful model system to address ecological questions at the

genetic level (Mitchell-Olds and Schmitt 2006; Bergelson

and Roux 2010; Roux and Bergelson 2016). Experiments

in common gardens have been performed to describe the

architecture of natural variation in fitness and to infer geo-

graphic distributions of locally adaptive mutations (Fournier-

Level et al. 2011, 2016; Hancock et al. 2011). Analyses of

mutants and recombinant inbred lines (RIL) have allowed

reconstructing the contribution of phenotypes to fitness

(Wilczek et al. 2009; Chiang et al. 2013; Fournier-Level

et al. 2013). Secondary chemical compounds were shown

to have evolved to deter predominant herbivores in natural

populations (Brachi et al. 2013; Kerwin et al. 2015). Clinal

variation along the latitudinal range of the species reveals

how phenotypes expressed along the life cycle are jointly

shaped by natural selection (Lasky 2012; Debieu et al. 2013;

Vidigal et al. 2016).

A. thaliana is arguably one of the species for which we

have the largest amount of genetic and phenotypic informa-

tion on both immune reactions against pathogens and varia-

tion in the duration of the vegetative lifespan. As such, it is an

optimal model system for assessing the impact of life history

changes, which modify plant vegetative lifespan, on the evo-

lution of the immunity system. Indeed, in annual (monocarpic)

species, which grow and reproduce only once, flowering time

marks the end of the vegetative growth phase. Seed produc-

tion in monocarpic species is terminated by senescence and

death, so that flowering time provides a good proxy for life-

span. In A. thaliana, it has been scored in a number of con-

ditions (Brachi et al. 2010; Sasaki et al. 2015; Roux and

Bergelson 2016) and flowering time changes are often locally

adaptive (Le Corre 2005; Toomajian et al. 2006; Montesinos-

Navarro et al. 2011; Debieu et al. 2013; Li et al. 2014; Hu et al.

2017). Natural variation in flowering time can thus be used to

investigate the impact of lifespan changes on host defenses.

The immune system has also been intensively studied in

this species, revealing multiple layers of defenses, ranging

from basal immunity, which is sufficient to control most

microbes, to severe reactions that actively defeat virulent

pathogens (Jones and Dangl 2006). Strain-specific immunity

components are likely to be linked in their evolution to the

virulence specificity of co-occurring pathogens (de Meaux and

Mitchell-Olds 2003; Moeller and Tiffin 2005; Roux and

Bergelson 2016). Recent fluctuations in the composition of

the pathogen population may therefore affect the specific

components of immunity targeted by these epidemics and

thereby mask or blur the long-term impact of lifespan mod-

ifications. To minimize this effect and to highlight the impact

of lifespan variation, we took a genomics approach and ex-

amined how flowering time covaries with expression levels of

genes with an experimentally supported function in immunity.

These approximately 700 genes jointly reflect a broad spec-

trum of traits, which, when their expression increases have a

positive effect on immunity (Eulgem 2005; Vetter et al. 2012;

Boccara et al. 2014). We test below whether their expression

level, a proxy for their effectiveness, covariates with flowering

time, a proxy for lifespan in the field and further examine the

roles played by demographic history and pleiotropy in shaping

patterns of covariation.

Results

Positive Covariation between Expression Levels of
Immunity Genes and the Timing of Flowering in Swedish
A. thaliana Populations

We first focused on a set of 138 genotypes originating from

Sweden because high quality data were available for both

genome-wide expression profiles and flowering time esti-

mates (Dubin et al. 2015; Sasaki et al. 2015). These two stud-

ies were part of a single experiment in which flowering time

and gene expression were characterized at both 16�C and

10�C under long day conditions in growth chambers. We

focused on the data collected at 16�C and computed

Spearman correlation coefficients between the expression

level of each gene and flowering time. Of 22,686 genes,

for which expression levels could be quantified, 1,374 (6%)

were significantly correlated with flowering time under a 5%

false discovery rate (FDR). We first verified that genes anno-

tated for their function in flowering time were among the

genes whose expression correlates with the phenotype.

Overall, genes with an experimentally validated function in

flowering time in the genome were not enriched among

those genes (6.9% of 630 genes at FDR 0.05, hypergeometric

test, P¼ 0.19), yet the two well-known regulators of flower-

ing time, FLOWERING LOCUS C and SUPPRESSOR OF

OVEREXPRESSION OF CONSTANS-1 (FLC and SOC1,

Spearman correlation q¼0.50 and �0.62, FDR-corrected

P¼ 2.87e-6 and P¼ 7e-12, respectively) were the two

most strongly correlated genes. In addition, using the R-

package TopGO, we examined patterns of functional en-

richment among genes that tended to be more expressed

in early flowering genotypes. Many functional gene
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ontology (GO) categories related to cell differentiation and

growth were enriched (supplementary table 1,

Supplementary Material online) and the GO category

“regulation of flower development” was among the

most overrepresented (P¼ 8.00e-14, supplementary table

1, Supplementary Material online). This observation con-

firmed the biological relevance of the data set examined.

Next, we tested whether immunity genes were enriched

among genes whose expression correlated with the timing of

flowering. Among genes with significant correlation with the

phenotype, we observed a significant excess of immunity

genes (8.6% of 691 genes at 5% FDR, hypergeometric test,

P¼ 0.002). The distribution of correlation coefficients was

also significantly skewed toward higher correlation coeffi-

cients for immunity genes (fig. 1A, Kolmogorov–Smirnov

test, P< 2.2e-16). GO enrichment analysis showed that genes

involved in GO “oxidation–reduction process” and “response

to wounding” were among the most strongly enriched

(P< 1e-30, P¼ 1.1e-19, respectively, supplementary table 1,

Supplementary Material online). This first analysis revealed a

pronounced pattern of positive covariation between flower-

ing time and the expression of immunity genes.

In laboratory conditions, genotypes with a strong require-

ment for vernalization tend to show a strong delay in flower-

ing that often does not translate into late flowering in the field

(Brachi et al. 2010; Li et al. 2014). Indeed, in the field plants

often experience sufficient levels of cold to fulfill their vernal-

ization requirement. In fact, only the 51 genotypes that ad-

vanced their flowering time at 16�C compared with 10�C

(e.g., those that did not need low temperatures to induce

flowering), showed a correlation in their flowering across

temperatures (Sasaki et al. 2015). Flowering time variation

across the latter subsample of genotypes may therefore allow

a more accurate classification of genotypes with increasing

vegetative lifespan. Among the 507 out of 22,686 (2.2%)

genes that displayed a significant positive correlation with

flowering time at 10% FDR across this restricted sample of

genotypes, 16/630 genes were annotated for their function in

FIG. 1.—Distribution of Spearman correlation coefficients between expression levels of each expressed Arabidopsis thaliana gene and flowering time.

Gray: All expressed genes; Blue: Genes annotated as flowering time genes (FT genes); Red: Genes annotated as immunity genes; Pink: Flagellin-responsive

(FlaRe) genes (Navarro et al. 2004). (A) For 138 Swedish genotypes; (B) Analysis restricted to 51 Swedish genotypes showing correlated flowering time at

10�C and 16�C; (C) Species-wide sample of 52 genotypes. Distribution for each group of genes was compared with the genome-wide distribution (black

double-head arrow) with a Kolmogorov–Smirnov test. P values are given in the color corresponding to the gene class. Spearman correlation coefficients were

computed between expression levels of each of 23,511 expressed A. thaliana genes, reported in Durbin et al. (2015) for ninth leaf seedlings, and flowering

time measured in the same condition for 51 genotypes originating from natural populations in Sweden (Sasaki et al. 2015). ***P<0.001.
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flowering. As in the above, several known flowering time

regulators were among the genes associated with flowering

time, such as FLOWERING LOCUS C (FLC), GIGANTEA,

FLOWERING PROMOTING FACTOR 1-LIKE PROTEIN 2 (FLP2)

or even the genes PHYTOCHROME INTERACTING FACTOR 4

(PIF4) and PHYTOCHROME INTERACTING FACTOR 5 (PIF5),

which had been associated with accelerated flowering

(Andr�es and Coupland 2012; Thines et al. 2014). Although

the whole set of flowering time genes was not significantly

enriched among genes correlating positively with the timing

of flowering (2.5%, hypergeometric test, P¼ 0.24), they

tended to be more highly expressed in early flowering geno-

types (excess of negative correlations, Kolmogorov–Smirnov

test, P¼ 1.16e-13, fig. 1B). The GO category “regulation of

flower development” was even more overrepresented in this

data set (P< 1e-30, supplementary table 1, Supplementary

Material online). Higher expression of genes associated with

the positive regulation of flowering was observed among ear-

ly flowering genotypes. This further confirms that expression

variation was correctly quantified.

We also observed that variation in immunity gene expres-

sion tended to correlate positively with variation in flowering

time, after excluding vernalization-sensitive genotypes. In

total expression of 28 of the 691 genes belonging to the

immunity gene category correlated significantly with

flowering at 10% FDR. They were significantly enriched

(4%, 1.8-fold enrichment, hypergeometric test,

P¼ 0.0009). Compared with the ensemble of expressed

genes in the genome, they generally tended to be more

highly expressed in late flowering genotypes (marked ex-

cess of positive correlations, Kolmogorov–Smirnov test,

P< 2.2e-16, fig. 1B). GO enrichment analysis showed

that genes involved in the GO categories “response to

chitin” and “regulation of plant-type hypersensitive

response” were the two most strongly enriched (both

P< 1e-30, supplementary table 1, Supplementary

Material online). We thus conclude that the correlation

between expression of immunity genes and the timing

of flowering is independent of allelic variation in vernali-

zation requirements.

Positive Covariation of Immunity Gene Expression with
Flowering Time Is Independent of Population Structure and
Is Also Detected in a Second Sample of Broader
Geographic Origin

Relatedness among individuals in the sample may drive the

correlation between expression of immunity genes and the

timing of flowering. In fact, flowering time in the Swedish

lines is strongly associated with the demographic history of

these populations and thus with their population structure

(Dubin et al. 2015; Sasaki et al. 2015). We therefore also

computed for each gene, the correlation between gene ex-

pression and flowering time with a mixed-model that

included a kinship matrix for the 51 genotypes that lacked

vernalization requirement (see Materials and Methods;

Yu et al. 2006; Stich et al. 2008). This analysis revealed

that, for immunity genes, the distribution of correlation coef-

ficient estimates remained strongly skewed toward positive

values, after population structure was accounted for

(Kolmogorov–Smirnov test, P¼ 2.2e-16, supplementary fig.

1, Supplementary Material online). However, the whole set

of immunity genes was no longer enriched among genes with

a significant covariation with flowering time (5.2% vs. 5%,

hypergeometric test, P¼ 0.6).

We note that accounting for population structure also did

not change the pattern of covariation between gene expres-

sion of flowering genes and timing of flowering itself.

They showed a coefficient distribution that was strongly

skewed toward negative values (Kolmogorov–Smirnov test,

P¼ 2.2e-16) and were significantly overrepresented among

genes with expression significantly associated with flowering

time (8% vs. 5% at 5% FDR, hypergeometric test,

P¼ 0.0005).

We further investigated whether the skew toward positive

covariation between immunity gene expression and flowering

time is limited to the regional subset of genotypes growing in

Sweden or whether it is a feature of diversity that segregates

across the whole range of the species. For this, we turned to a

species-wide data set of gene expression variation collected in

young seedlings (Schmitz et al. 2013). For 52 of these geno-

types, the duration of vegetative growth had been deter-

mined under natural conditions in the field (Brachi et al.

2010). Although a skew toward negative correlation for flow-

ering time genes was observed (Kolmogorov–Smirnov test,

P¼ 5.3e-5, fig. 1C), the seedling of these earlier flowering

genotypes did not yet express genes important for the forma-

tion of flower (supplementary table 1, Supplementary

Material online).

Nevertheless, we again observed a strong skew toward

positive correlation between immunity gene expression and

flowering time, indicating that genotypes that will flower later

expressed them at a higher level (Kolmogorov–Smirnov test,

P< 2.2e-16, fig. 1C). Immunity genes were not particularly

enriched among genes with significantly correlated expression

and flowering time at 5% FDR (5% for both, hypergeometric

test, P¼ 0.24). Yet, GO categories such as “response to

chitin,” “respiratory burst involved in immunity response,”

“response to wounding,” and “immunity response to

fungus” were the four most strongly enriched functions

among genes with highest Spearman correlation coefficients

(all P< 1e-30, supplementary table 1, Supplementary

Material online).

Contrasting genotypes of diverse flowering time (e.g.,

lifespan) revealed that, in natural populations, immunity

genes tend to covary positively with this trait. The latter

two analyses showed that this effect remained when pop-

ulation structure was accounted for and was also detectable
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in another gene expression data set and with a different set

of genotypes.

A Bulk-Segregant Analysis Demonstrates That Covariation
Is Not Due to Pleiotropic Effect of Flowering Time Control

The tendency of immunity genes to show expression levels

correlating positively with flowering may be due to the pleio-

tropic action of regulatory genes that coregulate flowering

time and immunity. In plants, the impact of development

and growth regulators on defense systems is being increas-

ingly recognized (Alc�azar et al. 2011). There is evidence that

flowering time and defense control each other (Korves

and Bergelson 2003; Martinez et al. 2004; Whalen 2005;

Develey-Riviere and Galiana 2007; Pagan et al. 2008;

Pajerowska-Mukhtar et al. 2009; Fan et al. 2014;

Jim�enez-G�ongora et al. 2015; Kerwin et al. 2015; Lozano-

Dur�an and Zipfel 2015; Lyons et al. 2015; Davila Olivas et al.

2017). If so, the pattern we observed would not reflect the

joint optimization of immunity and life history strategy but

only the pleiotropic action of their regulators. We therefore

asked to which extent flowering time and the expression of

immune-related genes could be genetically separated and

thus evolve independently.

We therefore designed an experiment to describe the level

of pleiotropy of flowering time regulators on the expression of

immunity genes. If such regulators control the pattern of co-

variation reported in figure 1, it should not be possible to

separate variation in immunity gene expression from variation

in flowering time in a segregating recombinant inbred popu-

lation. We used the two genotypes Col-0 and Bur-0, which

differ in flowering time (Simon et al. 2008) and were also

reported to exhibit markedly distinct sensitivities to flagellin,

with the later flowering genotype Bur-0 displaying stronger

basal immunity (Vetter et al. 2012). We analyzed the tran-

scriptomes of these two lines at 14 and 28 days after germi-

nation (see Materials and Methods) and found that the skews

shown in figure 1 remain when the data set was reduced to

the genes that differed in expression between these two lines

(supplementary fig. 2, Supplementary Material online).

This confirmed that these two genotypes could help identify

immunity genes that share genetic regulators with

flowering time.

We designed a cost-effective approach to identify the

genes whose expression variation cannot be separated from

flowering time. We used 244 recombinant inbred lines (RILs)

derived from a cross between the parents Bur-0 and Col-0,

followed by>8 generations of selfing (Simon et al. 2008). We

bulked RILs by their flowering time and characterized their

transcriptomes at 14 and 28 days after germinations using

RNA sequencing (see Materials and Methods). In RILs, the

genomes of the parental genotypes are randomly shuffled

by recombination. Because of this genetic property, RILs are

commonly used to identify Quantitative Trait Loci (QTL), which

are genomic regions underlying the genetic control of phe-

notypic variation. In our approach, this means that differences

in gene expression between early- and late-flowering RILs re-

flect differences that are genetically associated with flowering

time. The experimental strategy is described in supplementary

figures 3 and 4, Supplementary Material online. This strategy

does not allow characterizing the exact genetic architecture of

gene expression variation, but it allows the identification of

genes whose expression variation is controlled either by

flowering-time regulators or by genes located in the genomic

vicinity of these regulators. Thereafter, we named these genes

Flowering-Time (FT)-dependent genes.

Of a total of 20,553 genes expressed in both the parental

genotypes and RIL pools, 6,097 (29%) were differentially

expressed between early and late flowering RIL pools, that

is, FT-dependent. As expected, there was a strong excess of

genes annotated as having a function in flowering time

among FT-dependent genes (223/630–36%, hypergeometric

test, P¼ 3.7e-5). This demonstrated that this strategy effec-

tively highlighted genes whose expression is under the genetic

control of flowering time regulators. By contrast, immunity

genes were not overrepresented among FT-dependent genes.

More so, they were clearly underrepresented among FT-

dependent genes at the second time point of sampling

(1.15-fold less abundant than expected by chance at day

28, hypergeometric test, P¼ 0.01). Only 19% of all immunity

genes were FT-dependent. These genes, however, did not

explain the skew toward positive covariation with flowering

time reported in figure 1. Immunity genes, whose expres-

sion was not differently expressed between RIL pools (i.e.,

genes whose expression is not dependent on the regulators

of flowering time), in fact, tended to be more skewed

toward positive correlation coefficients than FT-dependent

immunity genes (Kolmogorov–Smirnov test, P¼ 0.01,

fig. 2A). We observed that FT-dependent flowering time

genes did not shift significantly from the distribution of cor-

relation in the rest of the genome (Kolmogorov–Smirnov

test, P¼ 0.15, fig. 2A). Therefore, the excess of positive

expression covariation with flowering time observed among

immunity genes is most strongly driven by genes whose

expression level was easily separated from variation in flow-

ering by recombination.

Age-Regulated Immunity Genes Often Show Positive
Covariation with Flowering Time

Immunity genes are often observed to change their activity

with age and development (Barton and Boege 2017). Because

we had sampled material at day 14 and day 28 after germi-

nation, we could also separate genes whose expression

changed with age (here after named age-regulated genes)

from genes with similar expression levels in 14- and 28-day-

old plants (see Materials and Methods). Age-regulated

genes were markedly more frequent among annotated
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immunity genes than among annotated flowering time

genes (243/630–38% vs. 334/691—48%, for flowering-

time and immunity genes, respectively, v2 test, P¼ 7.2e-

11). In A. thaliana, a so-called age-related resistance is ac-

tivated in older A. thaliana plants, providing them with a

immunity barrier against a broad spectrum of pathogens

(Rusterucci et al. 2005). In agreement with our findings,

the timing of age-related resistance had been reported

not to stand under the direct control of flowering time

(Wilson et al. 2013).

The subset of genes, whose expression variation in natural

populations correlated with flowering time, were also

enriched among age-regulated genes (hypergeometric test,

P¼ 7.2e-11). Altogether, 4% (348/8,565) and 6% (498/

7,935) of age-independent and age-regulated genes, respec-

tively, were correlated with flowering time at 5% FDR.

FIG. 2.—Distribution of Spearman correlation coefficients between gene expression level and flowering time. (A) Partition of genes controlled by

flowering time (hatched boxes with blue border) versus independent from flowering time (uniform boxes with black border); (B) Partition of genes controlled

by development (hatched boxes with orange border) versus independent from development (uniform boxes with black border). Inserts in the top of the figure

illustrates how these gene classes were defined. Immunity genes that are not controlled by flowering time but controlled by development tend to have higher

correlation coefficients of natural variation for expression with natural variation for flowering time. Gray: All expressed genes; Blue: Genes annotated as

flowering time genes (FT genes); Red: Genes annotated as immunity genes; Pink: Flagellin-responsive (FlaRe) genes (Navarro et al. 2004). P values for

Kolmogorov–Smirnov test comparing the distribution of genes within each category that are independent of or regulated by (A) flowering time or (B) age are

shown when significant. Note that only 12 FlaRe genes are controlled by flowering time in our experiment. Spearman correlation coefficients were computed

between expression levels of each of 23,511 expressed Arabidopsis thaliana genes, reported in Dubin et al. (2015) for ninth leaf seedlings, and flowering time

measured in the same condition for 51 genotypes originating from natural populations in Sweden (Sasaki et al. 2015). *P<0.05, ***P<0.001.
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Immunity genes contributed significantly to this excess,

because the expression levels of immunity genes that were

age-regulated tended to show a strong skew toward positive

correlation with flowering time in natural populations (fig. 2B,

Kolmogorov–Smirnov test, P¼ 0.0009). Our analysis thus

indicates that the tendency of immunity genes to covary pos-

itively with flowering time in natural population is 1) not

explained by the genetic control of flowering time and 2)

increased among genes whose expression is regulated by

plant age.

Genes Activated by Elicitors of Basal Immunity Also Show
an Excess of Positive Correlations with Flowering Time

In the above analyses, immunity levels were represented by a

set of 731 genes annotated for functions related to immunity.

To test whether this trend toward positive covariation be-

tween immunity gene expression and flowering time was lim-

ited to the set of genes defined by Gene Ontology categories,

we analyzed an independent set of immunity-related genes:

the 245 genes whose expression is activated in Arabidopsis

seedlings upon perception of flagellin by the PAMP receptor

kinase FLAGELLIN SENSING 2 (FLS2), hereafter named FlaRe

genes (Navarro et al. 2004). FlaRe genes coordinate cellular

and developmental responses to exposure of molecular sig-

natures of bacteria. Only 10 FlaRe genes overlapped with the

immunity-annotated genes used above. We observed that

FlaRe genes were enriched among genes showing positive

covariation with flowering time (fig. 1A–C, Kolmogorov–

Smirnov test, P< 2.2e-16). This observation remained when

accounting for population structure (supplementary fig. 1,

Supplementary Material online, Kolmogorov–Smirnov test,

P< 2.2e-16) and was also seen for flowering time measured

in the field in a species-wide sample of genotypes (fig. 1C,

Kolmogorov–Smirnov test, P< 2.2e-16). When partitioning

genes according to whether or not they were FT-dependent

or age-regulated, we observed that FT-dependence did not

significantly change the distribution of correlation coefficients

between FlaRe gene expression and flowering time across

natural genotypes (fig. 2A and B, Kolmogorov–Smirnov test,

P¼ 0.15 and P¼ 0.32, for FT-controlled and age-regulated

genes, respectively). Nevertheless, FlaRe genes were signifi-

cantly underrepresented among FT-dependent genes, espe-

cially at the second sampling time point (1.8-fold less frequent

among flowering time controlled genes, hypergeometric test,

P¼ 2.24e-05). By contrast, they were overrepresented among

age-regulated genes (2.1-fold more frequent among age-

regulated genes, hypergeometric test, P¼ 2.6e-08). Thus,

the positive covariation reported in figure 1A–C is unlikely

to result from the pleiotropic action of flowering time regu-

lators on FlaRe genes. This suggests that, like for annotated

immunity genes, alleles attenuating the expression of FlaRe

genes were assorted with early flowering alleles in natural

populations and vice versa.

Fitness-Associated Immunity Genes Show Higher
Correlation Coefficients with Flowering Time

We further asked whether genes with fitness-relevant var-

iation have expression levels that are more strongly assorted

with variation in the timing of flowering. A reciprocal trans-

plant experiment performed in 4 locations throughout

Europe identified 866 nucleotide variants in the genome

of A. thaliana that significantly associated with fitness dif-

ferences manifested in natural conditions (Fournier-Level

et al. 2011). Of these variants, 15 mapped to immunity

genes and 17 to flowering genes. Association with fitness

coincided with a skew toward higher correlation coeffi-

cients for immunity genes only (fig. 3, Kolmogorov–

Smirnov test, D¼ 0.46, P¼ 0.014, and P> 0.05 for

immunity and flowering time genes, respectively). One of

the immunity genes (AT3G16720), which is activated upon

exposure to the fungal PAMP chitin, was FT-dependent but

it did not explain this pattern (Kolmogorov–Smirnov test,

P¼ 0.028 without AT3G16720). Five of the immunity genes

with FT-independent immune functions were age-regulated

(AT1G18150, AT1G80840, AT4G01700, AT5G19510,

AT5G57220) but this did not explain the pattern either

(Kolmogorov–Smirnov test, P¼ 0.009 without these genes).

Of the 245 FlaRe genes, 3 contained fitness-associated

SNPs. These three genes were among the genes with high-

est correlation coefficients (AT1G19670: q¼0.397,

AT3G16720: q¼0.282, AT4G38860: q¼0.487). We thus

observe that immunity genes that can be most relevant

for fitness in natural populations of A. thaliana are also

genes whose expression levels were most strongly assorted

with alleles determining flowering time.

Discussion

Evidence for Concerted Evolution of Immunity and
Flowering Time in A. thaliana

Our analyses reveal that, in A. thaliana, individuals with a

shorter vegetative lifespan tend to express immunity genes

at a lower level. The bulk analysis of early- and late-

flowering RILs shows that this pattern of covariation results

from the combination of independent alleles controlling

immunity gene expression and flowering time in natural pop-

ulations, because these alleles could be separated in the

segregating recombinant offspring of an early- and a

late-flowering genotype. Because covariation is also 1) robust

to the demographic history of the populations and 2) partic-

ularly pronounced for immunity-gene variants that associate

with fitness, our analyses suggest that this allelic combination

is assembled by natural selection. This pattern is confirmed by

the examination of genes annotated with a function in im-

munity and genes observed to respond to elicitation by the

common bacterial elicitor flagellin. Our data further suggest

that much of the positive covariation between immunity
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gene expression and flowering depends on plant age. This

factor is of recognized importance in plant immunity

(Alc�azar et al. 2011; Carella et al. 2015; Lozano-Dur�an

and Zipfel 2015) and also very well documented in ecological

studies (Barton and Boege 2017). Based on our findings, it

is tempting to speculate that variation in age-dependent

regulation of immunity may mediate the covariation we

report.

Covariation between Immunity and Flowering Time Is Not
Explained by Variation in Vernalization Requirements

Flowering time variation depends on seasonal fluctuations, on

the timing of germination and on the genetics of its control

(Lempe et al. 2005; Balasubramanian et al. 2006; Korves et al.

2007; Burghardt et al. 2015; Hu et al. 2017). Genotypes with

a strong vernalization requirement, which are thought to

have an obligate winter annual strategy, contribute strongly

to the variation reported in the literature because they display

much delayed flowering in the laboratory (Lempe et al. 2005;

Li et al. 2014; Sasaki et al. 2015). The pattern we report,

however, is not due to the assortment of immunity gene ex-

pression variants with alleles imposing a strong vernalization

requirement. Indeed, since we observed that the pattern of

covariation between immunity gene expression and flowering

time is magnified in plants whose flowering is not accelerated

by cold exposure (fig. 1A and B), this pattern is not driven by

the genotypes requiring vernalization. In addition, the same

pattern of covariation is observed in a global sample of eco-

types, whose flowering time was scored in an outdoor com-

mon garden experiment, where plants were naturally

vernalized (fig. 1C). Therefore, we believe that the flowering

time measures we used here do capture some of the natural

lifespan variation. Future studies will have to confirm that

flowering time variation scales with average differences in

the lifespan expressed at the location of origin of each

genotype.

Positive Covariation between Lifespan and Immunity
Suggests Cascading Effect of Flowering Time Adaptation
on Immunity Evolution

Two alternative scenarios may lead to concerted evolution of

flowering time and immunity. First, in conditions where dis-

ease pressure is high, both shorter lifespan and stronger im-

munity can be expected to be advantageous, in order to

simultaneously minimize the probability of attack, and maxi-

mize the probability of survival in case of attack. Under such

scenario, negative covariation between immunity and lifespan

is expected. Alternatively, if lifespan is evolving under evolu-

tionary forces independent of disease pressure, a reduced

probability to encounter pathogens will favor mutations trans-

ferring energy allocated to immunity into energy allocated to

growth. Indeed, defensive functions are known to be costly

for the organism (Lochmiller and Deerenberg 2000;

Purrington 2000). As a consequence the allocation into im-

munity is predicted to decrease where shorter lifespan

evolves. Under this second scenario, a pattern of positive

covariation is expected between immunity and lifespan.

The pattern of covariation we report here for immunity

versus flowering time is indeed positive and thus lends sup-

port to the second scenario. Local adaptation of flowering

time is well documented in A. thaliana (Le Corre 2005;

Toomajian et al. 2006; M�endez-Vigo et al. 2011; Brachi

et al. 2013; Debieu et al. 2013; Li et al. 2014; Burghardt

et al. 2015; Vidigal et al. 2016). In addition, several studies

support the idea that increased basal level in immunity com-

ponents improves immunity (Vetter et al. 2012; Boccara et al.

FIG. 3.—Distribution of Spearman correlation coefficients between

gene expression level and flowering time. All expressed genes—uniform

boxes with black border—versus genes with fitness-associated SNPs in

Fournier-Level et al. (2011)—hatched boxes with purple border. Gray:

All expressed genes; Blue: Genes annotated as flowering time genes (FT

genes); Red: Genes annotated as immunity genes. Immunity genes that

carry SNPs associating with fitness tend to have higher correlation coef-

ficients of natural variation for expression with natural variation for flower-

ing time. P values for Kolmogorov–Smirnov test comparing the distribution

for genes within each category are shown when significant. Spearman

correlation coefficients were computed between expression levels of each

of 23,511 expressed Arabidopsis thaliana genes, reported in Durbin et al.

(2015) for ninth leaf seedlings, and flowering time measured in the same

condition for 51 genotypes originating from natural populations in

Sweden (Sasaki et al. 2015). *P<0.05.
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2014). At the same time, variants involved in the surveillance

systems directed against pathogenic virulence factors were

shown to incur substantial fitness costs (Tian et al. 2003;

but see also MacQueen et al. 2016) and variation in basal

immunity was negatively correlated with plant growth

(Vetter et al. 2012). Our results are thus compatible with an

evolutionary scenario in which local adaptation of flowering

time has cascading effect on immunity, possibly because a

reduction of the plant’s lifespan increases the cost/benefit ra-

tio of immunity. This may also explain why genes involved in

local adaptation in China are enriched among both flowering

time and immunity genes (Zou et al. 2017).

However, a positive pattern of covariation could also arise

even if the two traits evolve independently. Indeed, it is pos-

sible that populations where early flowering is advantageous

coincide with populations where disease pressure is lower and

vice versa. We cannot formally exclude that this scenario does

not apply, because too little is known about variation in dis-

ease pressure in A. thaliana natural populations. Several ele-

ments, however, indicate it is unlikely. First, the rapid cycling

genotypes are more frequent at intermediate latitudes, where

summers are mild and wet (Lempe et al. 2005; Debieu et al.

2013). Since these conditions are also favorable to diseases, it

is unlikely that higher disease pressure is found in areas where

delayed flowering is more adaptive. Second, it is unlikely that

this pattern may be due to herbivore enemies. Indeed, more

severe herbivory damage has been observed on early flower-

ing A. thaliana individuals grown in the field (Weinig et al.

2003). This seems to be common in plant species and should

select for higher defense among early flowering genotypes

(Carmona et al. 2011). Third, such scenario would assume

that variation in disease pressure does not alter the trade-off

between survival and reproductive output. This trade-off,

however, is central in many models explaining the evolution

of the timing of flowering in monocarpic plant species

(Mitchell-Olds 1996; Metcalf and Mitchell-Olds 2009;

Ashworth et al. 2016).

Our results are therefore compatible with a scenario, in

which adaptation of life history traits has a cascading effect

on the evolution of immunity in A. thaliana. These findings

do not contradict evidence that a tug of war characterizes

the evolution of pathogen-specific components of immu-

nity (Tellier and Brown 2007; Roux and Bergelson 2016).

Indeed, by examining the basal expression level of a large

set of genes involved in the immune reaction, the impact

of durable selective forces on general immunity levels can

be detected. This approach circumvents the potentially

confounding signature left by a recent epidemics on

strain-specific R-genes. Indeed, testing phenotypic variation

in disease resistance across genotypes with different life-

history alleles would probably reveal variation in gene-

for-gene resistance, but the pervasive impact of selection

fine-tuning energetic costs associated with immunity strat-

egies would remained masked.

Interspecific differences in the investment in defence

against herbivory has been often associated with differ-

ences in lifespan and growth rate (Endara and Coley

2011; Kooyers et al. 2017). Future studies will also have

to examine whether a similar evolutionary trend has

emerged in species that have reshaped their life history

to decrease overall vegetative lifespan. Early flowering is

actually often favored when the favorable season is short-

ened (Franks et al. 2007; Kenney et al. 2014). Ongoing

selection for early flowering is clearly widespread at tem-

perate latitudes (Mungu�ıa-Rosas et al. 2011) and transi-

tions from perenniality to annuality occur frequently

within phylogenies (Kiefer et al. 2017). Testing whether

life span reduction associates with an attenuation of im-

munity gene expression should therefore be possible in

many taxa.

The Impact of Life History Evolution on Defense Systems Is
Expected across All Kingdoms

In animals, the idea that the optimal investment in immunity

depends on the life history of a species was also incorporated

in evolutionary models (Jokela et al. 2000). For plants and

animals alike, resources available to the organism are limited.

Energetic demands on growth may compete with those re-

quired for mounting immunity or counteracting the negative

effects of parasites and pathogens (van Boven and Weissing

2004; Dowling and Simmons 2009; Lazzaro and Little 2009;

Sepp€al€a 2015). Several evolutionary models show that a pro-

longed lifespan is predicted to favor resource investment into

immunity (Jokela et al. 2000; Medzhitov and Janeway

2000; van Boven and Weissing 2004; Miller et al. 2007).

As a consequence, changes in life history can mold the

evolution of immune systems in animals as well (Van

Valen 1973; Sheldon and Verhulst 1996; Schulenburg

et al. 2009). This theoretical prediction is supported by

analyses of sexual dimorphism in the duration of effective

breeding: females with increased reproductive longevity

show stronger immune-competence but also by a meta-

analysis of selection experiments (Rolff 2007; Nunn et al.

2009; van der Most et al. 2011). In frogs, fast developing

species were also shown to be more susceptible to infec-

tion by trematodes (Johnson et al. 2012). Yet, such studies

cannot exclude that longevity and immunity are con-

strained in their evolution by common regulatory factors

or causal interdependence. To the best of our knowledge,

this study is the first to provide evidence that natural var-

iation in the activity of genes that are important for

defeating pathogens is assorted with alleles controlling

variation in a life history trait of considerable importance

for adaptation. Local adaptation for lifespan should there-

fore be considered as a potentially important contributor

to the maintenance of genetic diversity in immune

systems.
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Materials and Methods

Flowering and Immunity Candidate Genes

Gene Ontology (GO) categories were used to identify func-

tionally related genes whose annotation was inferred from

experiments, direct assays, physical interaction, mutant phe-

notype, genetic interactions or from expression patterns.

Based on the keyword “flowering” in the TAIR database,

659 flowering time genes were selected. For immunity genes,

we united 17 GO categories yielding 731 genes (supplemen-

tary table 2, Supplementary Material online). For flagellin re-

sponsive (FlaRe) genes, we took the set of 245 genes that

were activated in seedlings described in (Navarro et al.

2004) (supplementary table 2, Supplementary Material on-

line). Subsets of flowering, immunity, and FlaRe genes con-

taining fitness-associated single nucleotide polymorphisms

(SNPs) were retrieved from Fournier-Level et al. (2011).

Correlation between Gene Expression and Flowering Time
in a Natural Population

We analyzed two published sets of natural ecotypes for which

both genome-wide expression profiles and flowering time

estimates were available. The first data set comprised 138

lines from Sweden scored for both flowering time (for plants

grown at 16-h light–8-h dark at constant 16�C) and gene

expression in whole rosette collected at the 9-true-leaf stage

(Dubin et al. 2015; Sasaki et al. 2015). For this first data set,

gene expression and flowering were determined in the same

experiment. The second data set combined data from two

sources. RNA extracted from 7-day-old seedlings of 144 gen-

otypes grown on agar plate in long days had been sequenced

(Schmitz et al. 2013) and expression levels quantified as quan-

tile normalized fragment numbers per kilobases and million

reads (FPKM). For 52 of these genotypes, flowering time,

measured in cumulative photothermal units, had been scored

in the field (Brachi et al. 2010). Photo-thermal units sum up

the combination of temperature and day length and thus

provide an estimate of the duration of the favorable season.

Expression counts were loge þ1-transformed to include

null values of expression and a Spearman correlation coeffi-

cient between flowering time and expression level was com-

puted for each gene. P values were adjusted for false

discovery rate using the p.adjust function in R (Benjamini

and Hochberg 1995; Yekutieli and Benjamini 1999). A

Kolmogorov–Smirnov test was used to compare the distribu-

tion of Spearman correlation coefficients q of flowering time

and immunity genes with the distribution of q for 22,686

genes for which gene expression was quantified. Gene

enrichments were tested using hypergeometric tests in R.

The GO enrichment analysis was performed with the Gene

Set Enrichment Analysis (GSEA) test akin to nonparametric

Kolmogorov–Smirnov tests, first described by Subramanian

et al. (2005), and implemented in the “topGO” R package

(Alexa and Rahnenfuhrer 2010). We further applied the elim

procedure, available in this package, which calculates enrich-

ment significance of parent nodes after eliminating genes of

significant children nodes. This controls for the dependency

among nested parent–child GO categories so that the signif-

icance of each enrichment can be interpreted without over-

conservative P value corrections for multiple-testing (Alexa

et al. 2006). To test the impact of population structure on

the correlation, we ran a mixed model with the help of the R

package lmekin. For each gene, we used gene expression

level as a dependent variable. Flowering time was used as

independent variable and a kinship matrix, generated with a

matrix of SNPs segregating among Swedish genotypes (Duin

et al. 2015), was included as random effect. The estimate of

the flowering time effect was extracted. This allowed com-

pared the distribution of estimates observed for the whole

genome, the subset of flowering time genes, or the subsets

of defense genes.

Analysis of Gene Expression in Segregant Pools Bulked by
Flowering Time

Seeds of Bur-0, Col-0, and 278 Bur-0xCol-0 Recombinant

Inbred Lines (RIL) obtained after 8 generations of selfing

were provided by the Arabidopsis Stock Center at INRA

Versailles (France, Simon et al. 2008). Each line was grown

individually in six replicates, each in 6 cm diameter pots ran-

domly allocated to 24 trays, each containing 35 pots. Seeds

were stratified at 5�C for 3 days and grown in growth cham-

bers (Elbanton BV, Holland, equipped with Sylvania Gro-Lux

F36W/Gro [T8] fluorescent tubes and Osram 25 W 220

Lumen light bulbs) under long-day conditions (21�C, 16 h

light, 18�C, 8 h dark). Trays were rotated within the chamber

every other day. Flowering time was scored as the day to the

first open flower. Genotypes of individuals lines were re-

trieved from Simon et al. (2008) and mapping of flowering

time recovered the same QTL (not shown).

We selected the 40 RIL in the 15% and 85% quantiles of

flowering time for RNA sequencing. Each RIL and the two

parental lines were planted in 20 replicates in the conditions

described earlier. At days 14 and 28, the oldest true leaf was

flash-frozen in liquid nitrogen. Three pools, each combining

13 RIL, were produced at each time point for early and late

lines, for a total of 3 biological replicates, 2 pool types (early

and late RIL) and 2 time points (14 and 28 days). For each of

the two parental lines, leaves of 12 replicates were pooled for

each time point.

RNA was isolated using the TRIzol extraction protocol

(ThermoFisher Scientific). DNA traces were removed with

the Ambion DNA-free kit (ThermoFisher Scientific) and puri-

fied RNA was stored in TE buffer at �80�C. RNA quality and

integrity was confirmed with the 2100 Expert Software on a

Bioanalyzer (Agilent Technologies, Inc. Waldbronn,

Germany). All samples had RNA integrity index (RIN) >8.
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Single-read libraries were prepared with 1lg of total RNA per

sample using the Illumina TruSeq RNA Sample Preparation Kit

v2 (Illumina Inc. San Diego) based on poly-A RNA purification.

Sequencing of 75-bp single reads was performed on the

Illumina HighScan SQ system of the Core Facility of the

Department of Genetic Epidemiology, Institute of Human

Genetics, University of Münster, Germany. Raw data have

been deposited in NCBI’s Gene Expression Omnibus (Edgar

et al. 2002) and are accessible through GEO Series accession

number GSE97664.

Data Analysis of RNA-Seq from Bulk Segregant Pools

In total, 24 RNA libraries were sequenced. Raw sequences

were demultiplexed and read quality validated with FastQC.

Bad quality base calls were trimmed using the fastx-toolkit

(Version 0.013). Trimmed reads (FastQ, quality score 33, qual-

ity threshold 20 and minimum length 30 base pair) were

mapped to the A. thaliana TAIR10 annotated transcriptome

using Bowtie 2 (version 2-2.0.0-beta6; Langmead and

Salzberg 2012). Tophat (version-2.0.5.Linux_x86_64) was

used to discover splice sites and Cufflinks for assembling the

transcriptome (Trapnell et al. 2010). In total 411, 5-M se-

quence reads were obtained, with a mean read count per

sample of 17, 1-M reads. After trimming, 96.5% of the reads

were mapped uniquely with a final average coverage of 66

reads per base pair.

We used a custom R script to verify that coverage was

uniform across transcripts and confirmed that the RNA se-

quenced was not degraded. Read counts were calculated

by counting the number of reads that mapped uniquely to

the corresponding gene (isoforms were not considered).

Lowly expressed genes with <20 reads over all samples

were excluded from the analysis. The samples clustered by

time point of sampling (fig. 1), with the exception of RNA

samples from the Col-0 at 28 days, which resembled more

expression levels measured at 14 days, probably because of its

early shift to flowering. Differentially expressed (DE) genes

were identified by running a nested analysis of sampling

time effects within parental genotype (and/or early- and

late-flowering leaf pools) with DESeq2 version 1.2.5 (Anders

et al. 2013; Love et al. 2014). P values were corrected for false

discovery rate (Benjamini–Hochberg correction; Benjamini

and Hochberg 1995). DE genes were defined as having an

adjusted P value< 0.05. This analysis allowed the identifica-

tion of genes showing differential expression between the

parents (supplementary table 3, Supplementary Material on-

line) and genes showing flowering time dependent expression

(differential expression between early and late flowering RIL

pools, i.e., FT-regulated genes supplementary table 4,

Supplementary Material online) both at day 14 and at day

28. We performed further analyses to disentangle significant

sources of gene expression variation. To test whether gene

expression was significantly modified at each time point,

separate tests were performed for each parental genotype

and RIL pool type. Genes differentially regulated at 14 and

28 days in Bur-0 (adjusted P value< 0.05) were defined as

age-regulated genes (supplementary table 5, Supplementary

Material online). To determine whether one or both sampling

time points drove significant differential expression, separate

tests were performed for each time point (not shown).

Confirmation with qRT-PCR

We confirmed gene expression levels for 11 selected immu-

nity genes with differential expression between Bur-0 and

Col-0 or early versus late flowering pools (log2-fold change

> 1.5) using RT-PCR. We followed standard protocols and

used RNA Helicase (AT1G58060), Protein Phosphatase 2A

Subunit A3 (PP2AA3) and transcript AT5G12240 as control

genes. Gene expression based on RNA sequencing and

RT-PCR were strongly correlated (Pearson correlation,

0.58<R< 0.96, max P< 0.01).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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