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Abstract: Isoprenoids are natural compounds essential for a great number of cellular functions. One
of them is farnesol (FOH), which can reduce cell proliferation, but its low solubility in aqueous
solvents limits its possible clinical use as a pharmacological tool. One alternative is the use of
cyclodextrins (CDs) which house hydrophobic molecules forming inclusion complexes. To assess
FOH potential application in anticancer treatments, Sulfobutylated β-cyclodextrin Sodium Salt (SBE-
β-CD) was selected, due to it has high solubility, approbation by the FDA, and numerous studies that
ensure its safety to be administered parenterally or orally without nephrotoxicity associated. The
therapeutic action of farnesol and complex were studied in different carcinoma cells, compared with
a normal cell line. Farnesol showed selectivity, affecting the viability of colon and liver cancer cells
more than in breast cancer cells and fibroblasts. All cells suffered apoptosis after being treated with
150 µM of free FOH, but the complex reduced their cell viability between 50 and 75%. Similar results
were obtained for both types of isomers, and the addition of phosphatidylcholine reverses this effect.
Finally, cell cycle analysis corroborates the action of FOH as inducer of a G0/G1 phase; when the
cells were treated using the complex form, this viability was reduced, reaching 50% in the case of
colon and liver, 60% in fibroblasts, and only 75% in breast cancer.

Keywords: farnesol; phosphatidylcholine; phosphocholine cytidylyltransferase; cyclodextrins;
sulfobutylated β-cyclodextrin

1. Introduction

Cancer is considered one of the main social and economic concerns of the public health
systems. It is currently the second most common cause of human mortality in the world
after cardiovascular diseases. In 2020, cancer was responsible for approximately 10 million
deaths worldwide [1]. Cytotoxic drugs are the most widely used cancer treatment, but
their action is not selective, causing serious side effects. For this reason, the development
of new treatments (with selective action) using cytostatic drugs is being studied. The main
drawback of using cytostatic drugs is that they are less effective than traditional cytotoxic
drugs, requiring longer treatments. However, prolonged use of cytostatics can have adverse
effects [2].

Isoprenoids are natural compounds produced from a common precursor, mevalonate
(a diagram of the isoprenoid pathway is summarized in Figure 1A). All isoprenoids are
essential for numerous cellular functions, including cell signalling, lipid and protein synthe-
sis, maintenance of membrane integrity, cell proliferation, cell cycle arrest, and apoptosis [3].
During recent years, there has been a growing interest in their potential clinical applications
due to their multiple purposes in different treatments, including antifungal, antibacte-
rial, antiviral, antitumour, antiparasitic, hypoglycaemic, anti-inflammatory, and analgesic
use [4–6]. Moreover, some authors have identified that isoprenoids with hydroxy groups
possess more anticancer activity than the corresponding compounds with hydrocarbon
groups [7,8]. Different authors have suggested the possibility of using farnesol (FOH),
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an isoprenoid with a hydroxy group, as an inducer of G0/G1 cell cycle arrest and apop-
tosis in a variety of carcinoma cell types. These studies indicate that FOH can reduce
cell proliferation, with half maximal inhibitory concentration (IC50) ranging from 25 to
250 µM [3,5,9–12].
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The first paper in which FOH showed selective toxicity was published by Adany et al.
in 1994 [13]. According to the authors, tumour cells are generally more sensitive to farnesol-
induced growth inhibition than normal cells. After 48 h of treatment using 10 µM FOH, the
viability of neoplastic cell lines reduced up to 10%, and when the dosage reached 45 µM,
all tumour cells suffered apoptosis [10,13,14]. Other articles have studied the mechanism
of action of FOH, suggesting that it depends on different signalling pathways [4–6].

One of the most studied signalling pathways is related to cell membrane formation.
The rapid proliferation of cancer cells requires an accelerated cell membrane formation.
Several studies report that exogenous FOH modulates subcellular localization and activ-
ity of phosphocholine cytidylyltransferase (CTP), a rate-limiting enzyme in the cytidine
diphosphate-choline (CDP-choline) pathway (Figure 1B). CTP participates in the biosyn-
thesis of phosphatidylcholine (PC), which is one of the major membrane lipids (accounting
for 50% of the total phospholipids in mammalian cells) and a precursor of lipid second
messengers [15–19]. In this way, Voziyan et al. [20] studied the effect of 20 µM FOH on
leukemic cells (CEM-C1). When FOH is added, CTP rapidly translocates to the nuclear
envelope (NE) resulting in nucleoplasmic reticulum proliferation and a transient increase in
CTP activity. CTP is subsequently exported from the nucleus to the cytoplasm, disrupting
PC synthesis. In addition, the activation of caspases during farnesol-induced apoptosis
results in CTP cleavage [5].

Other effects that have been reported for farnesol activity in tumour cells include:
reduction in HMG-CoA reductase [21,22]; activation of the extracellular signal-regulated
kinase (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) [4,9]; translocation of
protein kinase C (PKC) from membrane fraction to cytosol [14]; inhibition of Janus-like
kinase (JAK1 and JAK2) and induction of proto-oncogene tyrosine-protein kinase Src (c-Src
kinases) activation by the inhibition of a constitutive signal transducer and activator of
transcription 3 (STAT3) [23]; an increase in the expression of the cyclin-dependent kinase
(Cdk) inhibitors p21 Cip1 and p27 Kip1, and a reduction in levels of cyclin A, cyclin B1,
and protein Cdk2 [5,12]; and, finally, activation of caspases 3, 6, 7, and 9 [4,11,24].

Further FOH effects have been observed, but their influence on mammalian cell apop-
tosis is unknown. For example, FOH increases the levels of reactive oxygen species (ROS),
activates the nuclear farnesoid X receptor (FXR), inhibits thyroid hormone receptor beta
(THRβ) mediated transcriptional activation, and inhibits Ca2+ signalling by blocking the
plasma membrane channels [5,25]. In addition, FOH may inhibit cholesterol biosynthesis,
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causing a reduction in the proliferation of tumour cells, as they require increased levels of
cholesterol [9].

One drawback of the previously mentioned studies is the lack of information concern-
ing the FOH isomers used (the chemical structure of FOH isomers is shown in Supple-
mentary Material S1, Figure S1). Some studies do not mention which isomers have been
used [21,26–28], while others only use trans-trans isomers (E,E-FOH) [25,29,30]. Peroxi-
some proliferator-activated receptors (PPAR) are nuclear receptors with multiple cellular
functions. E,E-FOH has been reported to destabilize the transcriptional activation of PPAR-
response elements (PPRE), while Z,Z isomers remain inactive [5,8]. However, E,E-FOH
is five times more expensive than the mix of isomers. Thus, the application of these pure
isomers would increase the cost of treatment and limit its clinical uses [21,30].

Although FOH acts as an anticancer agent, its low solubility in aqueous solvents
(7.65 × 10−6 M in water) [31] narrows its possible clinical applications. Most isoprenoids
are hydrophobic compounds, so organic solvents such as ethanol or dimethyl sulfoxide
(DMSO) are needed when using them. However, these solvents have limited clinical
application due to their toxicity above certain concentrations. A standard alternative to
this drawback is the use of cyclodextrins (CD), oligomers composed of linked glucose
monomers (glucopyranose).

The cyclic structure of CD consists of (α-1,4)-linked α-D-glucopyranose units and
contains a lipophilic central cavity with the ability of housing hydrophobic molecules
and forming inclusion complexes (the structural representation of SBE-β-CD is shown in
Supplementary Material S1, Figure S2).

Recent studies have shown the benefits of the complexation of cyclodextrins and
isoprenoids, which significantly improve the physicochemical, pharmacodynamic and
pharmacokinetic properties of drugs. For example, the use of a complex produced by
hosting Aphidicolin (APH) in β-CD was analysed as a cancer treatment [32]. Cabral Silva
et al. [33] use a β-CD and FOH inclusion complex to improve the physicochemical and
pharmacological properties of FOH. However, the authors only determined which com-
plexation method was more effective to reduce orofacial pain using an animal model,
and the effects of the complex on cancer cells was not studied. Moreover, natural cy-
clodextrins, particularly β-cyclodextrin, have low aqueous solubility [34], limiting their
applications. Therefore, to assess the potential application of FOH in anticancer treatments,
Sulfobutylated β-cyclodextrin Sodium Salt (SBE-β-CD) was selected as a cyclodextrin
because of its high solubility. In addition, SBE-β-CD has the approval of the Food and Drug
Administration (FDA), facilitating potential future commercialization.

SBE-β-CD is a polyanionic cyclodextrin derived from β-CD that is functionalized with
a sodium sulfonate salt separated from the lipophilic cavity by a butyl ether spacer group.
This cyclodextrin is commercialized as captisol. Due to its structural advantages, it has
higher interaction and solubility levels than other cyclodextrins. Furthermore, numerous
preclinical and clinical studies assure SBE-β-CD is safe when administered parenterally or
orally if used in safe concentration ranges already well-described in the literature, and it
does not have the nephrotoxicity associated with traditional beta-cyclodextrins [32,34].

According to the previously mentioned facts, the main objective of this paper is the
design and validation of a CD-FOH complex that acts on CDP-choline, reducing membrane
formation selectively in cancer cells and, consequently, contributing to the suppression of
tumour proliferation.

2. Materials and Methods
2.1. Reagents

Farnesol 95% (FOH), E,E-Farnesol 96% (E,E-FOH), deuterium oxide (D2O), Thiazolyl
Blue Tetrazolium Bromide, L-α-phosphatidylcholine 99% and Ribonuclease A were pur-
chased from Sigma-Aldrich (Barcelona, Spain) and Sulfobutylated β-cyclodextrin Sodium
Salt (SBE-βCD) was purchased on Cyclolab (CY-2041.2).
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Phosphate Buffer Saline solution (pH 7.5) was prepared using 136.9 mM Sodium chlo-
ride (Sigma), 2068 mM Potassium chloride (Sigma), 10 mM Disodium hydrogen phosphate
(Sigma) and 1 mM Potassium dihydrogen phosphate (Sigma). DNA labelling solution was
obtained by Cytognos (CYT-PIR-25).

2.2. Inclusion Complex Formation

The inclusion complex consisted of a 1:1 molar proportion mixture of FOH and SBE-
β-CD at a final concentration of 100 mM, using two types of solvents: D2O for further
characterization by nuclear magnetic resonance (NMR); and phosphate-buffered saline
(PBS) to carry out in vitro tests.

2.2.1. Optimal Time for Complex Formation

The slurry method was followed to study the time required for complex formation [33].
CD and FOH were dissolved in 5 mL of PBS, both at a concentration of 100 mM, contin-
uously stirring at room temperature for 48 h. Samples were taken from the medium at
different times, frozen at −20 ◦C in a conventional freezer and lyophilized with a LyoQuest
−55 freeze dryer (Telstar, Tarragona, Spain). The lyophilized powder was suspended in
D2O to characterize the degree of complexation through NMR (as described in Section 2.2.4).

2.2.2. Temperature Effect on Complex Formation

The influence of temperature on complex formation was studied by dissolving CD
and FOH in 0.5 mL of D2O, at a concentration of 100 mM for both components. The
effect of temperature was analysed by modifying the experimental conditions in the NMR
spectrometer, from 25 to 65 ◦C with an interval of 10 ◦C.

2.2.3. Stability Studies

Once the complex had been formed, the stability of the complex had to be determined.
To this end, the tube containing the complex was kept at room temperature for one month,
being periodically checked by NMR to quantify the release of FOH from the complex.

2.2.4. NMR

The NMR spectra were recorded using two different devices: a Bruker WEP-200-SY
spectrophotometer at 200 MHz for 1H from the Organic Chemistry Department of the
University of Salamanca and a Bruker Avance Neo 400 MHz DRX with BBO cryoprobe
spectrophotometer at 400 MHz for 1H and 100 MHz for 13C from the Nuclear Magnetic
Resonance Service of the University of Salamanca.

The proton chemical shifts (δ) were reported in parts per million (ppm), and the signals
relative to the solvent residual peak as an internal standard of the solvent (D2O—4.79 ppm)
and tetramethylsilane (TMS 0.0 ppm). Coupling constants (J) have been expressed in hertz
(Hz) and the following abbreviations have been used to explain multiplicities: s (singlet), d
(doublet), t (triplet), c (quartet), q (quintuplet), dd (double doublet), dt (double triplet), and
m (multiplet).

Spectra were analysed with MestReNova v6.0.5475 (Mestrelab Research S.L.). The
FOH/SBE-β-CD molar ratios were calculated by direct NMR integration of their appropri-
ate signals. The concentration of SBE-β-CD was constant at 0.1 mM and FOH concentration
was calculated according to Equation (1):

[ ]FOH =

δFOH
MWH· nH

δSBE − β − CD
MWH· nH

·[ ]SBE − β − CD (1)

2.2.5. UV Spectrophotometry

Spectrophotometry was carried out to corroborate the NMR results. Absorbance
spectrums were performed on a Shimadzu UV-1800 spectrophotometer. The scan was
performed for 3 repetitions at a fast measurement speed in a range of 900–190 nm with
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a pitch of 2 nm. Finally, they were analysed with UVProbe Software (2.42, Shimadzu
Scientific Instruments, Tokyo, Japan).

2.3. Validation of Inclusion Complex by In Vitro Tests
2.3.1. Cell Lines and Culture Conditions

To analyse the effects of the CD-FOH complex, four cell lines were used for in vitro
studies (three tumour cells and a normal one): fibroblast normal HS5 (ATCC® CRL11882™),
colorectal carcinoma HCT-116 (ATCC® CCL247™), hepatocellular carcinoma HepG2 (ATCC®

HB8065™), breast carcinoma BT-474 (ATCC® HTB20™). The cell lines were obtained from
the American Tissue Collection (Manassas, VA, USA).

All cells were cultured in Dulbecco’s Modified Eagle Medium supplemented with
10% fetal bovine serum (DMEM+) (Gibco) and 1% penicillin-streptomycin (Corning). They
were maintained at 37 ◦C in a 5% CO2 atmosphere. At 70–90% confluence, the cells were
sub-cultured using 0.05% trypsin/EDTA 1× (Gibco).

2.3.2. In Vitro Tests

To evaluate an anticancer agent, it is essential to determine its cytotoxicity with in vitro
tests. Farnesol toxicity was evaluated in its free form (FOH in DMSO) and in the complex
form (with SBE-β-CD in PBS).

The first step involved the calculation of the half maximal inhibitory concentration
(IC50) of each treatment. Stock solutions of FOH at 50 mM were prepared and added to
DMEM+, reaching final FOH concentrations between 0 and 750 µM, which implies a final
DMSO concentration between 0 and 1.5% (vol). Cell viability was calculated as indicated
below (Section 2.3.3). In order to perform a comparative trial of the treatments, the optimal
dose was chosen following the same procedure as for the IC50 test.

Given the price difference in FOH isomers, an analysis was carried out to observe
if they presented any variation in cytotoxicity levels. Results of the mix of isomers were
compared (under the optimal conditions determined in Section 2.2) with the use of single
E,E-FOH (in free or complex form) to determine if the racemic mixture presented any
difference in the therapeutic effect of FOH.

Finally, as mentioned in the introduction, one of the FOH mechanisms of action
involves the inhibition of the CDP-choline enzyme. This inhibition reduces PC synthesis,
decreasing cell membrane formation and, therefore, cell proliferation. Since normal cells
have a slower growth rate and a correspondingly reduced need to create new membrane
components, FOH is expected to affect them less [3]. To verify this statement, another
in vitro culture was carried out by supplementing the cell medium using PC and monitoring
the cell growth in the presence of FOH (free or complex) at the same concentration of PC.

2.3.3. Cell Viability

An MTT assay was performed in cells in exponential growth to measure cell viability.
The cells were plated by quadruplicate in flat-bottomed 24-well plates (Falcon) at an initial
concentration of 16,000 cells per well. Plates were incubated for 24 h in a 5% CO2 humidi-
fied incubator, and cell viability was tested by incubating cells with different treatments
dissolved in DMEM+. In all tests, plates included medium control and cell control.

The MTT assay is a colorimetric assay to determine the cytotoxicity of certain drugs
(measuring cell viability). Thiazolyl Blue Tetrazolium Bromide dissolved in PBS at 5 mg/mL
was added to the cells (20 µL/well), reacting with living cells and producing violet formazan
crystals. After incubation at 37 ◦C for 1 h, the DMEM+ medium was removed, and
the crystals were dissolved by adding 0.5 mL DMSO. Absorbance was measured using
ultraviolet light (λ = 550 nm) by means of an EZ Read 2000 Microplate Reader (Biochrom).
Cell viability was calculated as indicated in Equation (2) [30].
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cell viability (%)

=
average OD wells−average OD wells medium control

average OD control wells−average OD wells medium control
(2)

2.3.4. Cell Cycle Analysis

Flow cytometry analysis was carried out in order to corroborate the hypothesis sus-
taining that FOH acts as an inducer of cell cycle arrest, causing apoptosis [3,12,23].

Fibroblast (HS-5) and colorectal cancer (HCT-116) cells were seeded onto 6-well plates
at a density of 2 × 105 cells/well and stabilized by incubating them for 24 h at 37 ◦C.
After treatment using FOH for 24 h and 48 h, the cells were collected and washed with
1× PBS. Cell pellets were resuspended in 1 mL of DNA labelling solution, which contained
propidium iodine (CYT-PIR-25, Cytognos, Santa Marta de Tormes, Spain), and stained
for 30 min at room temperature in the dark. The DNA contents of the stained cells were
analysed using Cell Quest Software with a FACScan Calibur flow cytometry (Becton-
Dickinson, Franklin Lakes, NJ, USA).

In this experiment, 6-well plates were used instead of the 24-well ones, therefore need-
ing a higher cell concentration than in the viability tests. Two different FOH concentrations
were tested since the optimal dose had to reduce cell viability but not cause total apoptosis
(150 µM for free FOH and 300 µM for FOH in its complex form with cyclodextrin).

2.4. Statistical Analysis and Parameters Estimation

The data analysis was performed using Statgraphics Centurion XVI Version 16.1.03
(StatPoint Technologies, Inc. 1982–2010, Warrenton, VA, USA). This procedure performed a
one-way analysis of variance (ANOVA) for absorbance at 550 nm (MTT assay). The F-test
in the ANOVA table determined if there were significant differences between the means.
Differences were considered significant with a confidence interval of 95% (p < 0.05).

The data from the previously described IC50 tests were used to model the response
of cell lines to FOH treatment. IC50 was calculated by parameter estimation (Hessian) of
Equation (3), which expresses the variation of cell viability in percentage (y) according to
the dose administered (D):

dy
dD

=
−100·n·

(
D

IC50

)n

D
[(

D
IC50

)n
+ 1
]2 (3)

where n is the order of the inhibition and the IC50 expresses the dose at which the inhibition
process reaches 50% of the cells. All the simulations were carried out by considering the
cell viability results at 48 h.

The equation was implemented in gPROMS 6.0 (PSE) and a Hessian estimation was
carried out by parameter estimation (n and IC50 are estimated). The constant variance
model was selected and the sensor for parameter estimation was fixed as a function of the
viability variable (y) in a range between 0.005 and 0.10.

Boundary conditions were set for each parameter: IC50 could take values from 10 µM
to 2000 µM and n could take values from 0.1 to 10. For statistical analysis, the goodness of
fit was performed by comparing the value of weighted residuals (WR) with the chi-square
value (X2) and a confidence interval of 95%. On the other hand, the lack of fit test was
performed by comparing the F-value with F-critical. The accuracy of a model is generally
considered precise if the value of WR is less than X2 and the F-value is lower than F-critical.

Parameter estimation was performed in a personal computer Intel Core I3 3.70 GHz
and 4 GB RAM.

3. Results and Discussion

The results section begins with a description of complex formation, followed by the
results of in vitro tests. Firstly, the dose-response results are shown, both for the free form
drug and the complex. Secondly, once the IC50 had been established, a comparative test of
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the free form drug and the complex at the same concentration is described. Finally, the last
two assays compare pure FOH and a mixture of isomers, as well as how the addition of PC
would reverse the action of FOH.

3.1. Complex Formation (SBE-β-CD-FOH and SBE-β-CD-E,E-FOH)

Firstly, the complex formation was studied following the methodology described in
Section 2.2. The amount of FOH included in SBE-β-CD cyclodextrin was determined by
NMR, comparing the complex spectrum and SBE-β-CD spectrum (Figure 2). One single
peak was identified for FOH at 4.35–4.75 ppm. As this peak did not overlap with the signal
of SBE-β-CD, it could be used for quantifying the yield of complexation. The established CD
concentration for this experiment (100 mM) presented another single peak at 5.4 (without
interferences).
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By comparing the integral value for both peaks, it was possible to estimate the amount
of FOH included in the well (the calculation of proportion ratio FOH-CD is shown in
Supplementary Material Equation (S3)). The results indicated that there were 2 moles of
CD for each mole of FOH. Based on this numerical result, a conformation of the inclusion
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complex could be proposed. Figure 3 indicates a possible structure of the inclusion complex
based on the results of stoichiometry (2:1).
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Figure 3. Formation cyclodextrin—drug inclusion complexes [35].

In terms of complex stability, no significant differences were found in the spectra of
the samples collected at different times for one month. Moreover, temperature does not
affect the inclusion rate and the complexation process can be considered instantaneous.
(The series of NMR spectra are presented in Supplementary Material S1 Figures S4 and S5).

The spectrum of the sample can be compared with the spectra of serial dilutions of the
different types of FOH dissolved in ethanol (Supplementary Material S1, Figure S6). In this
way, the amount of FOH obtained is consistent with the results from the NMR.

Size and zeta potential were analysed by DLS (Supplementary Material S1, Figure S7);
it is possible to observe that results offer a particle size around 1–2 nm, which is the size
reported in literature for cyclodextrins; however, this is the detection limit of DLS technique,
and therefore the results are not conclusive.

3.2. Therapeutic Effect (In Vitro Tests)
3.2.1. Dose-Response Modelling

According to the Materials and Method sections, parameters of the dose-response
model were predicted by Hessian estimation using gPROMS software. Table 1 showed the
results of the parameters estimated (IC50 and n) for the four cell lines studied (fibroblasts,
colorectal, breast, and liver). Moreover, the table presents the values of statistical analysis
(variance value, goodness of fit and lack of fit test) as well as some data related to execution
(the number of non-linear iterations and the CPU time required). Likewise, a graphical
representation of IC50 is presented in Figure 4.

Table 1. Parameter estimation for fitting the data to dose-response curve.

Cell Line Treatment IC50
(uM) n Weighted

Residuals X2 F-Value F-Critical NLP
Iterations

CPU
Time (s)

Variance
(%)

LIVER
(HepG2)

CD 1215 1.3 7 9.5 0.8 4.1 23 0.9 3.20
FOH-CD 152 2.7 7 9.5 0.8 4.1 52 2.8 2.80

FOH 62 2.9 7 9.5 0.8 4.1 13 0.4 4.10

BREAST
(BT-474)

CD 1605 1.6 7.1 9.5 0.8 4.1 19 0.6 5.50
FOH-CD 243 4.2 7 9.5 0.8 4.1 23 1.0 2.00

FOH 101 6 7 11.1 0.4 4 12 0.4 10.0

COLORECTAL
(HCT-116)

CD 1039 0.9 9 12.6 0.5 3.4 31 1.1 3.70
FOH-CD 127 1.9 9 12.6 0.8 4.1 14 0.4 5.60

FOH 71 2.7 9 12.6 0.5 3.4 38 1.5 6.40

FIBROBLAST
(HS-5)

CD 1191 1 9 12.6 0.5 3.4 28 0.6 2.70
FOH-CD 204 3.2 7 9.5 0.8 4.1 16 0.7 4.00

FOH 113 6.7 10 14.1 0.4 3.1 15 0.4 8.60

n: parameter from IC50 model, X2: chi-squared value, NLP: nonlinear programming.
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According to Table 1, IC50 for CD is considerably higher than the one for FOH and the
complex. Therefore, the toxicity of CD can be considered negligible for the doses to be used.
In general, the inclusion of FOH in CD doubled the IC50. There is a significant difference
between two cancer cell lines (liver and colorectal) and normal cell lines (fibroblasts). This
difference can be an advantage for treatment, as it implies that the inclusion is selective
towards cancer cells without damaging normal ones.

All the estimations have passed both tests (goodness of fit and lack of fit), with an
average of 24 iterations. Most of them had a CPU time of less than 1 s, and a variance
average of 4.9% (with only one simulation on the 10% limit).

The curve fitting graphs are presented in the Supplementary Material S2 (S8). The
results from IC50 were used for the design of the next experiments to validate the thera-
peutic effect.

3.2.2. FOH Effects on Cell Viability

Based on the results predicted by the Hessian estimation previous described, a compar-
ative test of the treatments (free FOH and SBE-β-CD—FOH complex) was carried out with
a final FOH concentration of 150 µM. Figure 5 shows cell viability results for each of the
cell lines treated using CD and FOH separately, and in the complex form after comparing
the average absorbance with their respective control at each time.
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(hatched columns).

The difference between absorbances is better appreciated after 48 h, making the results
more reliable (Figure 5). At this time, CD control did not show a significant decrease
in viability, except in the case of the liver line, in which it only reduced up to 80%. The
complexes showed less reduction in cell viability than the free form. Viability of colon
and liver cells remained at 50%, while free FOH reduced it up to 31–36% respectively. In
the case of the breast line, there was a smaller difference between the free form and the
complex, where the viability was 85% and 74%, respectively. The best results were obtained
by the normal cell line, since free FOH reduced its viability up to 61%, and the complex
had a lower inhibition, keeping it above 80%.

3.2.3. FOH Isomers Effect on Cell Viability

As it was mentioned in the introduction, the previous studies in literature have only
used one type of FOH isomer (E,E-FOH). However, due to its high price, it was necessary
to study if a mix of isomers offered the same result as the purified isomer (E,E-FOH).
According to Figure 5, there are no significant differences between the different types of
FOH (neither the free form nor the complex). Hence, it is not necessary to use E,E-FOH.
This would reduce the cost of a potential treatment with this isoprenoid, as its price is 10%
of the one for trans-trans isomer.

3.2.4. PC Effect of FOH on Cell Viability

Finally, in order to corroborate the mechanism used by FOH to reduce cell proliferation
(by inhibiting the CDP-choline enzyme), another in vitro culture test was carried out. For
this test, 150 µM of phosphatidylcholine (PC) was added to the cell medium following the
protocol described in Section 2.3.3. Figure 6 shows the results of this experiment, indicating
that controls were not significantly altered by the presence of PC, except in the case of the
breast line, where an increased proliferation was observed. Cell viability in cells treated
using FOH is increased in the presence of PC at 24 h, but this effect disappears at 48 h (it is
shown in Supplementary Material S3, Figures S9 and S10).
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Figure 6. Cell viability results for each cell line treated for 24 h in absence (filled columns) or presence
(dotted columns) of PC.

A possible explanation for this phenomenon could be that cells may have consumed
all the available PC in the medium. These results indicate that the inhibition of CPD-choline
is one of the main FOH pathways of action, having a remarkable effect on tumour cell
proliferation. In addition, the amount of PC available in the medium would control the
reversibility of the treatment.

3.3. Cell Cycle Analysis

To determine the effect FOH has on the cell cycle, propidium iodide-stained cells were
analysed using flow cytometry as described in Section 2.3.4. Figure 7A shows the results
of cytometry for HS5 and HCT116 cells treated with 150 µM FOH and Figure 7B shows
the effect in the same lines with double FOH concentration (300 µM). The use of these two
different concentrations allowed us to identify the effects of the complex and the free form
drug in cell cycle arrest.

In both cases, CD at this concentration did not affect cell cycle arrest, whereas FOH
caused a substantial increase in the G1/G0 population due to the activation of cell cycle
arrest mechanisms. For a better understanding, the percentage differences were calculated
and summarized in Figure 7C.

The original graphics was obtained using Infinicyt programme, and they are shown in
Supplementary Material S5, Figure S11.

Free FOH at 300 µM destroyed all cells, and FOH at 150 µM increased the percentage
of cells in G0/G1 phase in both cell lines after 24 h, although it was higher in the case of
colorectal cancer cells. The complex with an FOH concentration at 150 µM showed no
effects, with just a slight increase after 48 h. However, when using FOH at 300 µM, the
complex increased the percentage of colon cancer cells by 16% after 24 h. After 48 h, this
percentage increase was maintained, while normal cells increased by 23%.
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Figure 7. Percentage of cells in G0/G1 phase after treatment of fibroblast and colorectal cancer cells for
24 and 48 h; (A) Concentration of treatments is FOH 150 µM and SBE-β-CD 300 µM; (B) Concentration
of treatments is FOH 300 µM and SBE-β-CD 600 µM. (C) Difference in the percentage of cells in
G0/G1 phase compared to the control.

4. Conclusions

According to the tests performed, temperature had no effects on the complexation
process or complexation kinetics. The obtained results presented no difference, and the
complexation process was instantaneous, obtaining a solution containing 1 mole of FOH
for every 2 moles of CD.

Regarding cell viability assays, FOH was selective, and it affected the viability of
colon and liver cancer cells more than breast cancer cells and fibroblasts. The IC50 values
obtained for free FOH were 71, 62, 101, and 113 µM, while the concentrations obtained
for the inclusion complex were 127, 152, 243, and 204 µM. When the free form of FOH at
150 µM was used, the cell viability was reduced up to 0%. However, cell viability was
reduced when the cells were treated using the complex form, reaching 50% in the case of
colon and liver, 60% in fibroblasts, and only 75% in breast cancer.
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In addition, both types of isomers obtained the same results, which indicates a potential
reduction in the cost of future cancer treatments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27092735/s1, Figure S1: Chemical structure of FOH isomers;
Figure S2: Cyclodextrin structure; Figure S3: Calculation of proportion ration FOH-CD; Figure S4:
Series of NMR spectra (stability); Figure S5: Series of NMR spectra at different temperatures; Figure S6:
UV-Vis spectrums of dilutions of different types of FOH; Figure S7: DLS and Z-potential; Figure S8:
Curve fitting for IC50 estimation; Figure S9: Effect of external addition of PC; Figure S10: variation of
cell viability (48 h) in presence of PC; Figure S11: ANOVA tables; Figure S12: cell phase results.
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