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Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes hallmark

debilitating polyarthralgia, fever, and rash in patients. T cell-mediated immunity, especially

CD4+ T cells, are known to participate in the pathogenic role of CHIKV immunopathology.

The other T cell subsets, notably CD8+, NKT, and gamma-delta (γδ) T cells, can also

contribute to protective immunity, but their effect is not actuated during the natural course

of infection. This review serves to consolidate and discuss the multifaceted roles of these

T cell subsets during acute and chronic phases of CHIKV infection, and highlight gaps in

the current literature. Importantly, the unique characteristics of skin-resident memory T

cells are outlined to propose novel prophylactic strategies that utilize their properties to

provide adequate, lasting protection.
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INTRODUCTION

Chikungunya virus (CHIKV) belongs to the Togaviridae family and is transmitted to humans by
arthropod vectors, primarily the Aedes aegypti and Ae. albopictus mosquitoes within an urban
cycle (1). This alphavirus was first isolated from a patient from Tanzania in 1952 (2), but it spread
only to few regions before mellowing down to sporadic outbreaks in the next 30 years (3–11). It
re-emerged in the last decade, starting from Kenya in 2004 (12, 13). Since then, it has broadened
its geographical range to different regions of Africa, the Réunion island, Asia, Europe, and the
Americas (4, 12, 14, 15).

CHIKV-infected patients develop chikungunya fever (CHIKF), a febrile illness characterized
with acute hallmark polyarthralgia, along with other disease manifestations like fever and
maculopapular rash (3, 16, 17). Symptoms usually manifest after 4–7 days of incubation period
(3). CHIKV infection has been shown by multiple studies to induce robust immune responses.
Specifically, the type-I interferon (IFN)-associated pathways (18–21), the recruitment of innate and
adaptive immune cells to the site of infection (22), and the development of protective antibodies
for virus resolution (23–29), has been shown to contribute significantly to the self-limiting nature
of CHIKF. Although CHIKV-induced symptoms usually resolve in patients within 2 weeks (16),
∼30–40% of these patients go on to develop chronic arthritis, which can be due to inefficient viral
clearance, or persistent immune response in patients (3, 16, 18).

Host innate and adaptive immunity have multifaceted roles in CHIKV infection. While innate
immunity in response to CHIKV infection has been well-studied (3, 17, 30), the functions of
adaptive components, such as T cells and their myriad associated roles remain less defined. Recent
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studies have started to show that CHIKV-specific T cells and
antibody response play significant roles in antiviral immunity,
immunomodulation and pathology in CHIKV infection (24,
28, 31, 32). A better comprehension of the roles each T cell
subset play during CHIKV infection may aid in understanding
how to control disease progression and immune-mediated
pathology. This review illustrates the significance of T cells in
the protection and immunopathogenesis of acute and chronic
arthritogenic disease. We also provide alternative perspectives
on the prophylactic and therapeutic potential of T cells
against CHIKV.

CD8+ T CELLS

CD8+ T cells have contrasting effects on alphavirus infection.
In humans, CD8+ T cells express CD69, CD107a, granzyme B,
and perforin during acute CHIKV infection (17, 33, 34), markers
associated with T cell activation. Studies have identified putative
CD8 epitopes within the CHIKV genome in mice and humans
(Figure 1) (35, 36). Among these antigenic determinants, the
non-structural proteins (nsP1-nsP4) contain a multitude of

epitopes that can induce a robust immunological response.

Only HLA-A24, B7, and B15 were predicted to express CD8
epitopes hidden within the capsid, E1 and E2 proteins (35).
Despite the apparent abundance, only three HLA-A∗0201 CD8

epitopes in CHIKV 6K protein were experimentally validated
to trigger CD8T cell response (37). The paucity of epitope
validation highlights the inaccuracy of in silico modeling
to predict epitope immunogenicity. Nevertheless, predicted
epitopes require further testing to validate the sequences that are
presented by different MHCs. Importantly, it remains unclear
whether the recognition of CHIKV epitopes by CD8+ T cells has

a role to play in eliminating virus-infected cells. This knowledge
gap is worth investigating and will open up avenues to employ

them as mediators in future CHIKV vaccines.

FIGURE 1 | The list of conserved CD8 epitopes in CHIKV that was identified in silico by others and published in the literature were arranged according to the positions

they occupy along the CHIKV proteome. The immunogenicity scores are determined through the Immune Epitope Database (IEDB) and plotted as shown. Of all the

CD8 epitopes, only the three epitopes in the 6K region are experimentally validated.

In mouse models, CD8+ T cell numbers in the joints
increased during acute CHIKV infection. However, they do not

protect against CHIKV-associated pathologies as mice deficient

in CD8+ T cells still developed joint inflammation (31). This

observation is in contrast to other findings whereby CD8T cells

play an active role in mediating viral clearance and disease

resolution in mouse models of Ross River virus (RRV) (38)

and Venezuela Equine Encephalomyelitis virus (VEEV) (39).

CHIKV RNA could be detected in the footpad of mice at up

to 16 weeks post-challenge, suggesting that chronic CHIKV

infection could persist in the footpad (40). Persistent infection

indicates that CHIKV epitopes could be continuously presented

by antigen-presenting cells (APCs) to CD8+ T cells, leading
to sustained activation of T cell receptor. This will eventually
cause CD8+ T cell exhaustion and render them incapable
of eliminating infected cells (41, 42), resulting in perpetual
CHIKV infection. Indeed, the lower levels of CD8+ T cells
and their decreased expression of activated marker CD69
suggest an exhausted phenotype in chronic CHIKV patients
(33). In chronic viral (e.g., LCMV and HIV) and parasitic
(e.g., malaria) diseases, persistent infection causes prolonged
activation of CD8+ T cells, which eventually drives them to
exhaustion and become unresponsive. This condition happens
through, mostly but not limited to, the programmed death-1
signaling axis (43–46). The shutdown of exhausted CD8+ T
cell function allows pathogens to remain established, cascading
into a vicious cycle of a further immune shutdown and more
persistent infection. Given that CHIKV infection is shown to
persist in infected mice and individuals (34, 40), the CHIKV-
specific CD8+ T cells may become exhausted and become
incapable of controlling the infection. Targeting this pathway to
reverse the exhaustion in CD8+ T cells has been demonstrated to
eliminate chronic malaria infection in a mouse model (47), thus
indicating that this is another potential avenue to treat chronic
CHIKV infection.
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CD4+ T CELLS

Activated CD4+ T cells have been well-documented to play
an essential role in the pathogenesis of CHIKV-induced joint
swelling (31, 34, 48). Our laboratory has comprehensively proven
this through multiple methods. Mice depleted of CD4+ T cells
do not develop joint pathology when challenged with CHIKV.
Concordantly, the use of fingolimod, which blocks lymphocytes
from exiting the lymphoid organs, also reduces joint pathology
in CHIKV infected mice. In addition, TCR−/− mice, which lack
T cells, do not develop joint swelling when challenged (32).
Independently, another group showed that the administration
of antibodies against CTLA-4, which binds to CTLA-4 receptors
found on the cell surface of activated CD4+ T cells, caused
elimination of the latter and thereby reduced joint swelling in
CHIKV-infected mice (49). Currently, there is no mouse model
that develops the chronic arthralgia and arthritis as seen in
chronic patients. Thus, it remains to be seen if the activated
CD4+ T cells are also responsible for the chronic phase of
CHIKV infection.

Pathogenic CHIKV-specific CD4+ T cells in CHIKV mouse
models express T-bet and secrete IFN-γ, markers that are
associated with Th1 phenotype (50). These findings concur
with another study, which shows higher levels of Th1-
associated cytokines in the sera of CHIKV-infected patients
(34). Although this drives IFN-γ production during infection,
the antiviral effects of IFN-γ are unable to block CHIKV
replication in virus-infected cells due to CHIKV interference
with downstream JAK-STAT signaling (51). These CD4+ T
cells, together with CD8+ T cells, is detected in the joints
of patients during the chronic phase of CHIKV infection
(34). Two CHIKV CD4+ epitopes have been identified in
mouse models thus far, with the cognate CD4+ T cells
expressing IFN-γ during CHIKV infection (32). Despite CD4+

T cells being a cause of the pathogenic swelling accompanying
CHIKV infection, they are also crucial in orchestrating the
formation of CHIKV-specific antibody response. Dominant
CHIKV-specific antibodies are of the isotype IgG2c (19, 28), and
their production was severely impaired when CD4T cells were
absent (28).

REGULATORY T CELLS

Among the heterogeneous CD4+ T cell population, regulatory
T cells (Tregs) can also contribute to the protection against
CHIKV. Tregs are able to interact with APCs in the peripheral
lymph nodes and bring about downregulation of costimulatory
molecules in the latter (52). Thus, when the APCs present
CHIKV epitopes to CD4+ T cells, they become anergic instead
and do not proliferate or migrate to the infected joints to cause
joint swelling. However, the viral load in virus-infected mice
was not affected by Tregs (52). Patients with acute and chronic
CHIKV infections were shown to have lower levels of Treg, while
recovered patients display Treg levels that are comparable to
healthy controls (53). This finding concurs with the data from
murine models, suggesting that Tregs prevent hyperactivation of
pathogenic CD4+ T cells, thereby controlling joint pathology.

NATURAL KILLER T CELLS

The impact of natural killer T (NKT) cells in CHIKV infection is
less well-understood. In patients, acute CHIKV infection resulted
in an increase of NKT cells in the blood (54). These NKT
cells were found to upregulate the expression of IFN-γ, but
not perforin. Although PBMCs from acute samples induced
cytotoxicity in K562 cells during co-culture, it remains unclear
if NKT cells account for the majority of the cytotoxicity effect
(54). In chronic patients, NKT cell levels were significantly lower
than healthy controls (55), although they still upregulated IFN-γ
expression. In contrast, the expression levels of IFN-γ and TNF-
α by NKT cells in convalescent patients are similar to that of
healthy controls (54, 55).

In mice, levels of IFN-γ-expressing NKT cell remain
unchanged in CHIKV-infected mice, as compared to healthy
controls (48). However, these cells accumulate in the spleens
of mice that are co-infected with CHIKV and malaria parasites
(48). This event is due to the increased expression of chemokines
CXCL9 and CXCL10 in the spleens, which attract and retain
lymphocytes that express cognate chemokine receptors. Since
mouse and human NKT cells express CXCR3 (which recognizes
CXCL9 and CXCL10), these cells are likely to be trapped in the
spleen, preventing them from migrating to the peripheral joints
(56–58). Although this strategy of lymphocyte sequestration
leads to decreased CHIKV immunopathology (32, 49), it is not
clear how much does NKT cells contribute to this amelioration.

GAMMA-DELTA (γδ) T CELLS

Gamma-delta T cells are reported to play a protective role against
CHIKV infection (59). These cells do not affect CHIKV virus
replication in the joints. Instead, their absence is associated

with increased joint swelling and tissue damage in the infected

mice. The absence of γδ T cells were also linked to increased
monocyte infiltration to the joints and increased levels of
pro-inflammatory mediators CCL2, CXCL9, and IFN-γ (59).
Hence, the resulting pro-inflammatory milleu leads to more
inflammatory cell infiltration and result in tissue damage that
is observed during CHIKV infection. However, there is no
information on the role of γδ T cells in CHIKV patients. Thus,
the extent of protection these cells offer in human settings
remains unclear.

MOBILIZING T CELLS AGAINST CHIKV IN
VACCINE DESIGN

The roles that each subset of T cells play in the joint swelling
during CHIKV infection is illustrated in Figure 2. Despite
their participation in CHIKV immunopathology, they have
the potential to be included as mediators of effective anti-
CHIKV vaccine strategies. Although researchers have been
investigating experimental vaccines against CHIKV, most of
these still rely on antibodies to neutralize the viruses (23,
28, 60–63). Furthermore, some of the CHIKV vaccines have
been demonstrated to protect against other alphaviruses, such
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FIGURE 2 | Summary of the roles each T cell subset play during acute CHIKV infection. (1) When CHIKV-infected mosquitoes transmit the virus to its human host (or

experimental infection in mice), CHIKV infects the surrounding cells and creates pro-inflammatory milleu in the joints. (2) This serves to attract monocytes and NKT

cells to the joints, which exacerbates the inflammation by secreting pro-inflammatory cytokines and chemokines, thereby potentiating the chemoattraction of other

immune cells to the infection site. (3) The APCs that engulfs CHIKV antigens travel to lymphoid organs, present CHIKV epitopes to CD4 and CD8T cells and activate

them. Activated CD4T cells then trigger CHIKV-specific B cells to develop antibodies that can neutralize the virus. Treg cells may also interact with APCs that

ultimately lead to anergy in CHIKV-specific CD4T cells. (4) Proliferating CD4 and CD8T cells migrate to the swollen joints and contribute to the inflammation through

IFN-γ secretion. Although not directly demonstrated, CHIKV-specific CD4 and CD8T cells may recognize infected endothelial cells at the site of infection, leading to

disruption of the barrier and worsens joint swelling.

as RRV (19) and O’nyong’nyong virus (ONNV) (23). In the
RRV challenge study, the lowest effective dose (0.1 µg virus)
that conferred complete protection (denoted as the absence of
viremia) did not increase the antibody response against CHIKV.
Full protection only happens when the authors increased the
dosage to 10 µg (19). This observation suggests that T cells
may be instrumental in conferring protection at the lower doses.
However, vaccination with recombinant baculovirus expressing

CHIKV envelope proteins caused aged mice (>18 months old)
to become more susceptible to CHIKV infection (62), which
was partly explained by the lower antibody titers in the aged
mice. Although antigenic variations among CHIKV isolates
are not prevalent currently, subtle changes in the CHIKV
proteome was demonstrated to affect the neutralizing effect
of pre-existing anti-CHIKV antibodies (26, 64, 65). Thus, any
mutation that results in reproductive-competent virus and yet
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abolishes antibody binding to CHIKV epitopes may result in
future pandemic outbreaks.

UTILIZING SKIN RESIDENT MEMORY T
CELLS TO CONFER PAN-ALPHAVIRUS
IMMUNITY

The notion of inducing CHIKV-specific memory T cells as
mediators of protection is attractive as T cell epitopes are
generally better conserved than B cell antigens, mitigating the
risk of immune escape through antigenic variations (66–69). Of
the memory T cells, tissue-resident memory T cells (TRMs) are a
unique subset of cells that is distinct from conventional memory
T cells, in that the former dwell at the peripheral organs (70–73).
The latter either reside in the lymphoid organs (central memory
T cells) or recirculate in the body (effector memory T cells)
(74, 75). Thus, TRMs could function as adaptive immune cells
that act as first-line responders at the site of infection (71, 73, 76).
Putative CHIKV-specific skin TRMs can be well-positioned to
react to CHIKV-infected cells at the feeding site by virus-infected
mosquitos during a blood meal.

Establishment of TRMs in the skin begins when clonally
expanded T cells migrate from lymphoid organs to the skin.
Some of these skin-homing T cells remain in place and develop
into skin TRMs (77, 78). Vaccination leads to the widespread
establishment of TRMs throughout the body, not only at the
vaccination site (78). Thus, it is highly plausible that one can
generate CHIKV-specific skin TRMs through vaccination at the
skin. Interestingly, effector T cells were reported to migrate to all
parts of the skin instead of accumulating only at the site of the
infection or vaccination (79, 80). This phenomenon occurs due
to the presence of E-selectin, ICAM-1 and other chemokines that
are expressed by post-capillary venules at low levels throughout
the skin (81). Hence, the resulting skin TRMs generated can
protect against CHIKV infection from anywhere, regardless of
where the virus-infected mosquitoes choose to probe and release
the virus into the host.

In the event where CHIKV penetrates the skin barrier and
infect the surrounding cells during blood feeding by mosquitoes,
CHIKV-specific skin resident memory T cells can recognize
virus-infected cells quickly. This identification leads to rapid
coordination of the anti-CHIKV immune responses and leads
to the elimination of virus-infected cells before the disease is
established (82, 83). Moreover, CHIKV exposure should further
boost pre-existing anti-CHIKV immune response and lead to the
accumulation of more CHIKV-specific skin resident memory T
cells (79, 80). Over time, repeated exposure of CHIKV should
lead to further CHIKV-specific skin TRM accumulation all over
the skin, with no establishment of CHIKV pathology.

The geographical range of mosquitoes that transmit the
alphaviruses is projected to increase in the future due to climate
change (84). Moreover, CHIKV shares some homology with
other alphaviruses with the potential to cause unprecedented
outbreaks (85–89). This shift may ultimately lead to the
spread of CHIKV and other alphaviruses and cause future
epidemics. However, as depicted by Roundy et al. (90) and
Powers et al. (91), the close homology between CHIKV and
other viruses within the family of alphaviruses suggest that
they may share conserved epitopes that can induce T cell
responses. Hence, some of the CHIKV-specific memory T
cells can have the potential to target other alphaviruses and
eliminate them. This knowledge may lead to the development
of pan-alphavirus vaccines that are effective in preventing
sudden alphavirus outbreaks, such as the spike in deaths
from Eastern Equine Encephalomyelitis Virus (EEEV) in the
United States in 2019, which is becoming endemic in the
United States (92).

CONCLUDING REMARKS

The re-emergence of CHIKV underscores the need for
effective vaccine strategies to prevent further global CHIKV
dissemination. In immunological naïve individuals, CHIKV
infection puts them at risk of having their immune system
manipulated toward CHIKV pathology and virus persistence.
An optimal vaccine against CHIKV invokes not only humoral
response, but more importantly, localized CHIKV-specific,
cell-mediated immunity at the skin, and yet avoids the induction
of CHIKV-mediated immunopathology that is associated
with pathogenic CD4T cells. By inducing anti-CHIKV TRMs
at the skin before infection strikes, they can rapidly clear
the virus before it disseminates and triggers the associated
immunopathology. Besides, anti-CHIKV TRMs have the
potential to react to more conserved CHIKV epitopes (which
may also be conserved in closely related alphaviruses) and
the immunity buildup increases with each natural infection,
providing a robust, potent immunity against CHIKV, and
possibly other alphaviruses.
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