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Abstract

Japanese encephalitis virus (JEV), a neurotropic mosquito-borne flavivirus, causes acute viral encephalitis and neurologic
disease with a high fatality rate in humans and a range of animals. Small interfering RNA (siRNA) is a powerful antiviral agent
able to inhibit JEV replication. However, the high rate of genetic variability between JEV strains (of four confirmed
genotypes, genotypes I, II, III and IV) hampers the broad-spectrum application of siRNAs, and mutations within the targeted
sequences could facilitate JEV escape from RNA interference (RNAi)-mediated antiviral therapy. To improve the broad-
spectrum application of siRNAs and prevent the generation of escape mutants, multiple siRNAs targeting conserved viral
sequences need to be combined. In this study, using a siRNA expression vector based on the miR-155 backbone and
promoted by RNA polymerase II, we initially identified nine siRNAs targeting highly conserved regions of seven JEV genes
among strains of the four genotypes of JEV to effectively block the replication of the JEV vaccine strain SA14-14-2. Then, we
constructed single microRNA-like polycistrons to simultaneously express these effective siRNAs under a single RNA
polymerase II promoter. Finally, these single siRNAs or multiple siRNAs from the microRNA-like polycistrons showed
effective anti-virus activity in genotype I and genotype III JEV wild type strains, which are the predominant genotypes of JEV
in mainland China. The anti-JEV effect of these microRNA-like polycistrons was also predicted in other genotypes of JEV
(genotypes II and IV), The inhibitory efficacy indicated that siRNAs69 could theoretically inhibit the replication of JEV
genotypes II and IV.
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Introduction

Japanese encephalitis virus (JEV), a neurotropic mosquito-borne

flavivirus mainly prevalent in Asia, is the most important causative

agent of acute viral encephalitis in humans [1]. It is estimated that

JEV is responsible for at least 50,000 cases of viral encephalitis

worldwide each year, resulting in 10,000–15,000 deaths and

15,000 cases with long-term, neuropsychiatric sequelae [2]. JEV is

also one of the main causes of infectious reproductive failure in

swine, resulting in significant economic losses in the pig industry.

This virus has a normal zoonotic transmission cycle between swine

or birds and mosquitoes. Swine are the main amplifier hosts, from

which infected mosquitoes transmit the virus to humans [3].

Currently, a live attenuated JEV vaccine, SA 14-14-2, with

excellent immunogenicity, is widely used in humans in China and

other countries in Asia [2,4]. Although great success has been

achieved with this vaccine, there is still no specific therapy

available for ongoing JEV infection in humans.

JEV is a member of the genus Flavivirus, part of the family

Flaviviridae. The JEV genome is a positive single-stranded RNA

molecule of about 11 kb in length. It contains a single open

reading frame encoding a polyprotein that is flanked by 59- and 39-

untranslated regions (UTRs). The polyprotein is co-translationally

and post-translationally cleaved by the virus-encoded serine

protease, NS2B/NS3, and by host-encoded proteases to produce

three structural proteins (C, prM and E) and seven nonstructural

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) [5,6,7].

Based on the nucleotide sequences of the C/PrM and E genes,

JEV isolates have been classified into four genotypes (genotypes I,

II, III and IV) and a postulated fifth genotype (Muar strain).

Genotypes I and III are associated with epidemic regions in China,

Korea, Japan, India, Thailand, the Philippines and other countries

in Asia, whereas, genotypes II and IV are associated with endemic

disease in Malaysia, Indonesia and northern Australia

[8,9,10,11,12]. Among these, genotype III has the widest

geographic distribution in Asia, and the vaccine strain, SA 14-

14-2, is derived from wild type strain SA14 of genotype III.

RNA interference (RNAi), a mechanism widely present in

eukaryotes, is an evolutionarily conserved process of sequence-

specific gene silence initiated by double-stranded RNAs (dsRNAs)
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or microRNAs (miRNAs) [13]. In the case of dsRNAs, the dsRNAs

are cleaved by Dicer (a host ribonuclease-III like enzyme) into 21–

25 nt small interfering RNAs (siRNAs). These siRNAs are

incorporated into a multi-protein complex known as ‘‘RNA-

induced silencing complex’’ (RISC) in the cytoplasm and direct

RISC to degrade homologous target mRNAs [14,15]. In the case of

miRNAs, the primary RNA transcripts (pri-miRNAs) are cleaved by

Drosha into 60–70 nt miRNA precursors (pre-miRNAs) in the

nucleus. Pre-miRNAs are transported into the cytoplasm by

Exportin-5 and then cleaved into ,22 nt miRNAs by Dicer. The

mature miRNAs are incorporated into RISC and direct RISC to

cleave mRNA or repress translation. Most pri-miRNA transcripts

encode clusters of distinct miRNAs under the control of a single

RNA polymerase II promoter [13,16]. In mammalian cells, an

RNAi effect can be induced by introducing either exogenous

synthetic 21–29 nt siRNAs or RNA polymerase III-driven short-

hairpin RNA (shRNA) vectors [17,18,19,20].

In the past decade, RNAi has been used successfully for clearing

mammalian cells of various viral infections [21,22,23,24]. For JEV,

a potent inhibitory effect has been reported with single siRNA or

shRNA [3,25,26,27]. However, because of the genetic variability of

JEV [10,11] and escape mutations in the targeted sequences [28],

the therapeutic application of single siRNA or shRNA is limited.

Therefore, multiple siRNAs targeting conserved viral sequences

need to be combined in this case. Recently, a new miRNA-like

siRNA expression platform based on miRNA principles has been

reported in many studies. These siRNAs are expressed from the pri-

miRNA backbone by constructing heterologous siRNAs into pri-

miRNA hairpin stems under the control of a RNA polymerase II.

Like most miRNAs that are transcribed from polycistronic pri-

miRNAs, multiple siRNAs can be synthesized from a single

polycistronic transcript using this strategy [22,29,30,31,32,33]. This

platform allows us to simultaneously transcribe to similar levels

multiple, effective siRNAs against JEV from a single promoter-

driven miRNA-like polycistronic construct.

In this study, we initially analyzed the molecular epidemiolog-

ical characteristics of JEV, and determined the highly conserved

sequences of eight JEV genes (PrM, NS1, NS2A, NS2B, NS3,

NS4A, NS4B and NS5) among the four genotypes. Thirteen

siRNAs against the selected conserved regions of these genes were

designed and constructed individually into a RNA polymerase II-

driven siRNA expression vector based on the miR-155 backbone.

Using a siRNA-to-target reporter assay system [34,35], nine

effective siRNAs out of the 13 tested were selected to investigate

their inhibitory effects on JEV replication in cultured cells. Then,

these nine siRNA cassettes were combined in different sequences

using the polycistronic nature of the miRNAs. The results showed

that either a single siRNA or multiple siRNAs of these nine

siRNAs could inhibit the replication of the genotype III strain, the

live attenuated vaccine strain SA14-14-2. Finally, three wild type

strains (SH53, SH101 and SA14) of genotypes I and III, which are

predominant in mainland China, were chosen to validate the anti-

JEV effect of these multiple siRNAs from miRNA-like polycis-

trons. The replication of the three wild type strains was inhibited

effectively by these miRNA-like polycistrons. Furthermore, the

anti-JEV effect of these miRNA-like polycistrons was predicted in

genotypes II and IV, and the effect of a few nucleotide mismatches

within the target regions was also estimated.

Results

Design and selection of siRNAs against JEV
Sixty-four JEV genome sequences of the four genotypes

available in GenBank (including 34 Chinese strains) were aligned

using the SeqMan program. siRNAs against the eight selected

genes were obtained using the miRNA design algorithm from

Invitrogen. Thirteen siRNAs whose targets showed $95%

conservation among the 34 Chinese strains and $80% conserva-

tion among the 64 strains (Figure 1 and Table 1) were selected and

cloned into pcDNA 6.2–GW/EmGFP-miR according to the

manufacturer’s recommendations (the sequences of hairpin siRNA

inserts were shown in Table S1). As genotypes I and III are the

predominant genotypes in the Chinese mainland [11], these 13

selected siRNA targets were highly conserved in genotypes I and

III and reasonably well conserved in genotypes II and IV. Thus

the 13 selected siRNAs were designed to be fully complementary

to the viral RNA of genotypes I and III, and somewhat imperfectly

complementary to the viral RNA of genotypes II and IV.

The siRNA-encoding pcDNA 6.2–GW/EmGFP-miR vectors

or the negative control (NC) were co-transfected together with the

corresponding siQuant vectors into Baby hamster kidney cell line

(BHK-21; ATCC, USA) cells. Using the Dual-Luciferase Reporter

Assay system, we selected nine out of 13 siRNAs that could

knockdown the expression of the corresponding targets by greater

than 80% compared with the mock control (transfected subcloned

siQuant vector without the siRNA-encoding pcDNA 6.2–GW/

EmGFP-miR vectors) and the NC (P,0.01) (Figure 2).

Comparison of the inhibitory effect on target expression
between single siRNAs and combinations of multiple
siRNAs from single miRNA-like polycistrons

Using the clone strategy described in the Materials and Methods

section, we obtained six miRNA-like polycistron constructs expressing

different combinations of siRNAs (Figure 3A). NS1-447, the most

effective siRNA, was multiplied to generate (NS1-447)63, (NS1-

447)66, and (NS1-447)69. siRNAs64 were constructed from four of

Figure 1. Schematic representations of the JEV RNA structure and the siRNA target sites. Thirteen target sites are indicated and labeled
with the name of the corresponding siRNA.
doi:10.1371/journal.pone.0026304.g001
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the nine siRNAs (PrM-54, NS1-447, NS1-630, and NS1-1207), and

siRNAs65 were formed from the other five siRNAs (NS2A-461,

NS2B-123, NS3-1112, NS4A-289, and NS4B-115). All nine of the

siRNAs were constructed into a chain to generate siRNAs69.

The miRNA-like polycistron vectors or the NC were co-

transfected together with the corresponding siQuant vectors into

BHK-21 cells. Using the Dual-Luciferase Reporter Assay system,

the inhibitory effects of miRNA-like polycistrons on the expression

of each target were compared with single siRNAs (Figure 3B, 3C).

Figure 3B showed that the expression of each target could also be

inhibited efficiently by miRNA-like polycistrons (siRNAs64,

siRNAs65, and siRNAs69). Although the inhibitory efficacy of

each siRNA fluctuated when chained as polycistrons, the efficacies

of most siRNAs could also maintain a high level, and the efficacies of

some siRNAs were even enhanced when chained in polycistrons. As

shown in Figure 3C, as the number of copies of NS1-447 increased

from 1 to 3 to 6 to 9, the expression of its target decreased from

7.1% to 4.3% to 4.0% to 4.2%, respectively, compared with the

mock control (P,0.01). The efficacy of NS1-447 expressed from

siRNAs64 and siRNAs69 was similar to that of the single copy of

NS1-447. As a negative control, siRNA65 could not inhibit the

expression of the target because it did not contain NS1-447.

Inhibitory effects on JEV strain SA 14-14-2 replication of
the transient transfection of single siRNAs or
combinations of multiple siRNAs from single miRNA-like
polycistrons

To test if the nine selected siRNAs or miRNA-like polycistrons

could inhibit efficiently the replication of JEV in infected cells, BHK-

21 cells were challenged with JEV strain SA 14-14-2 at a MOI of 0.1

after being transiently transfected with siRNA-encoding pcDNA

6.2–GW/EmGFP-miR vectors for 24 h. The inhibitory effects of

siRNAs on JEV replication were analyzed at the RNA and protein

levels by real-time RT-PCR and western blot analysis. Twenty-four

hours post-infection, viral RNA copies in cultured cells were

determined by real-time RT-PCR from each well. The copy

number of virus RNA from siRNA-transfected cells dropped to

55.5%–77.1% compared with the mock control (non-transfected

BHK-21 cells) (P,0.05) (Figure 4A). NS1-447 was the most effective

single siRNA, and siRNAs69 was the most effective miRNA-like

polycistron. Twenty-four hours post-infection, the E (envelope)

protein of JEV expressed in BHK-21 cells was detected by mouse

anti-JEV E-D3 monoclonal antibody, and actin protein was detected

as an internal control. E protein expression in siRNA-transfected

cells reduced to 29.2%–46.6% compared with the mock control

(Figure 4B). Similarly, NS1-447 was the most effective single siRNA,

and siRNAs69 was the most effective miRNA-like polycistron.

To analyze the transfection efficiency of the siRNA-encoding

pcDNA 6.2–GW/EmGFP-miR vector transiently transfected by

Lipofectamine 2000, the single siRNA-encoding pcDNA 6.2–GW/

EmGFP-miR transfected BHK-21 cells were assayed by flow

cytometry to calculate the percentage of EmGFP positive cells. As

shown in Figure S1, only 32.9% of the cells were EmGFP positive. This

Table 1. Target sequences of the siRNAs.

siRNA name Target sequence (all sequences are from 59 to 39)

PrM-54 CATTGCAGACGTTATCGTGAT

NS1-447 TTGGAACAGCATGCAAATCGA

NS1-473 TCGGCTTTGGCATCACATCAA

NS1-630 GAAACTTGAGAGGGCAGTCTT

NS1-1207 TACACTGATTTGGCGAGGTAT

NS2A-193 ATCCTGAATGCCGCCGCTATA

NS2A-461 GACTAATGGTCTGCAACCCAA

NS2B-123 GTCCTACGTGGTGTCAGGAAA

NS3-1112 AGATTGCAATGTGCCTCCAAA

NS3-1469 CAGAGGCAAAGATCATGTTAG

NS4A-289 GCAGAGGTTCCTGGAACCAAA

NS4B-115 ACTGATGTGCCTGAACTGGAA

NS5-741 AGTGTGGAGAGGGCCAAAGTA

NC GTTTCCGAGGCCATAAGTATT

doi:10.1371/journal.pone.0026304.t001

Figure 2. siRNA efficacy validation. BHK-21 cells were transfected with 400 ng of siRNA-encoding pcDNA 6.2–GW/EmGFP-miR vector, 170 ng of
the corresponding siQuant reporter vector and 17 ng of internal control vector pRL-TK. Cells were harvested 48 hours post-transfection, and the
luciferase activities were detected. Data represent the average values from triplicate experiments.
doi:10.1371/journal.pone.0026304.g002
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result indicated that the low siRNA transfection efficiencies reduced the

efficacy of our siRNA constructs, and that reasonable anti-JEV effects

could be obtained even at low siRNA transfection efficiencies.

Inhibitory effects on JEV strain SA 14-14-2 replication by
stable cell lines constitutively expressing siRNAs

To minimize the variables associated with transient transfec-

tion, we constructed four stable cell lines constitutively expressing

NS1-447, (NS1-447)66, siRNAs69, and the NC. NS1-447 was the
most effective single siRNA, (NS1-447)66 was the hexamer of NS1-
447 and siRNAs69 was the most effective polycistron of all nine
siRNAs.

The four stable cell lines or normal BHK-21 cells were seeded in

24-well or 96-well plates at equal cell numbers. When the cell layer

reached 90–100% confluence, the cells were infected with JEV

strain SA 14-14-2 at a MOI of 0.1. Twenty-four hours post-

infection, viral RNA copies in cultured cells were determined by

Figure 3. Comparison of the inhibitory effect on target expression between single siRNAs and miRNA-like polycistrons. (A) Schematic
representations of the pcDNA 6.2–GW/EmGFP-miR vectors expressing different combinations of siRNA cassettes. (B) 400 ng of siRNAs64, siRNAs65
or siRNAs69 was co-transfected into BHK-21 cells along with 170 ng of each of the corresponding siQuant reporters and 17 ng of the internal control
pRL-TK. Cells were harvested 48 hours post-transfection and the luciferase activities were detected. (C) 400 ng of NS1-447, (NS1-447)63, (NS1-447)66,
(NS1-447)69, siRNAs64, siRNAs65 or siRNAs69 was co-transfected into BHK-21 cells along with 170 ng of each of the corresponding siQuant
reporters and 17 ng of the internal control pRL-TK. Cells were harvested 48 hours post-transfection and the luciferase activities were detected. Data
represent the average values from triplicate experiments.
doi:10.1371/journal.pone.0026304.g003
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real-time RT-PCR from each well. The copy number of viral
RNA from stable lines constitutively expressing siRNAs69, (NS1-
447)66 and NS1-447 dropped significantly to 15.1%, 3.9% and
21.8%, respectively, compared with the mock control (infected
BHK-21 cells) (P,0.01) (Figure 5A). Thirty-six hours post-
infection, E protein expression was determined by western blot
analysis. E protein expression in stable cell lines constitutively
expressing siRNAs69, (NS1-447)66 and NS1-447 was signifi-
cantly reduced compared with the mock control and the NC
(Figure 5B). Forty-eight hours post-infection, viral titers in the
culture supernatants were examined for each well. Viral titers
from stable cell lines dropped significantly to 5–6.32 TCID50/
0.1 ml, compared with a viral titer in the mock control of 8.75
TCID50/0.1 ml (P,0.01) (Figure 5C). Ninety-six hours post-
infection, the morphological changes in the stable cell lines were
examined by phase-contrast microscopy, and cell viability assays
were performed to analyze the proliferation conditions of each
stable cell line. In the stable cell lines constitutively expressing
siRNAs69, (NS1-447)66 and NS1-447, most cells were alive
compared with the cell control (non-infected BHK-21 cells), and
approximately 95% of cells were killed in the mock control and
the NC (P,0.01) (Figure 5D and Figure S2). The results of viral
RNA and E protein analysis, and the results of viral titer and cell
viability assays, indicated that (NS1-447)66 and siRNAs69 were
the two most effective agents at inhibiting the replication of JEV
strain SA 14-14-2.

Comparison of the inhibitory effects of miRNA-like
polycistrons on genotypes I and III of JEV

To test if the miRNA-like polycistrons, (NS1-447)66 and

siRNAs69, that were shown to inhibit the live attenuated vaccine

strain SA14-14-2, could also inhibit the replication of the two major

epidemic genotypes of JEV (genotypes I and III), three wild type

strains (SH53, SH101 and SA14) of genotypes I and III, which are

predominant in the Chinese mainland, were used to infect cells

containing the two microRNA-like polycistrons. The nine selected

siRNAs were designed to be fully complementary to the viral RNA of

genotypes I and III because all target sequences of the nine selected

siRNAs were extremely conserved in genotypes I and III.

The four stable cell lines or normal BHK-21 cells were seeded in

24-well or 96-well plates. When the cell layer reached 90–100%

confluence, the cells were infected with JEV strains SA 14, SH53 or

SH101 at a MOI of 0.1. Thirty-six hours post-infection, E protein

expression was detected by western blot analysis. Compared with the

mock control and the NC, E protein expression from each of the

strains (SA14, SH53 and SH101) was significantly inhibited in the

stably trasfected cell lines constitutively expressing (NS1-447)66 and

siRNAs69 (Figure 6A, 6B, 6C). Forty-eight hours post-infection, viral

titers in the culture supernatants were examined. The viral titers of

SA14, SH53 and SH101 dropped drastically compared with the mock

control and the NC (Figure 6D). Ninety-six hours post-infection, cell

viability assays were performed to analyze the proliferation ability of

the stable cell lines. In the (NS1-447)66 and siRNAs69 stably-

expressing cell lines, most of the cells infected with SA14, SH53, and

SH101 were alive compared with the mock control and the NC, in

which over 80% of cells were killed (Figure 6E). The results of viral E

protein analysis, viral titers and cell viability assays indicated that

(NS1-447)66 and siRNAs69 were also effective against the two major

epidemic genotypes of JEV, genotypes I and III.

Prediction of the inhibitory efficacy of miRNA-like
polycistrons on genotype II and genotype IV of JEV

To confirm that siRNAs69 that inhibited the replication of JEV

genotypes I and III could also inhibit the replication of the two

endemic genotypes of JEV (genotypes II and IV), the target

Figure 4. Inhibitory effects on JEV strain SA 14-14-2 replication by transient transfection of siRNA-encoding vectors. Cells seeded in
24-well plates were transfected with 800 ng of single siRNAs or miRNA-like polycistrons. Twenty-four hours post-transfection, the cells were infected
with JEV strain SA 14-14-2 at a MOI of 0.1. (A) Comparison of the number of viral RNA copies at 24 h post-infection among the transfected cells. Data
represent the average values from triplicate experiments. (B) Western blot analysis of gene suppression at the protein level at 24 h post-infection. E
protein was detected as the target and Actin was detected as the internal control. The relative quantities of E protein compared with the mock
control from lane PrM-54 to lane siRNAs69 were 38.7%, 29.2%, 45.2%, 43.8%, 44.1%, 46.6%, 42.4%, 37.5%, 39.0%, 32.9%, 33.7% and 31.9%.
doi:10.1371/journal.pone.0026304.g004
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sequences of the latter genotypes, containing some nucleotide

mismatches with their cognate siRNAs, were synthesized and

cloned into the siQuant vector (Table 2), using the Dual-Luciferase

siRNA-to-target reporter assay system. Then, the inhibitory

efficacy of siRNAs69 on the mutated target sequences was

examined. Compared with the inhibitory efficacy of siRNAs69 on

perfectly complementary target sequences shown in Table 2, the

inhibitory efficacy of siRNAs69 on mutated target sequences was

attenuated to various degrees, depending on the nucleotide

mismatches within the target regions. The inhibitory efficacy

was governed by the position and the quantity of the mismatched

base pairs. When single nucleotide mismatches occurred near the

59 or 39 ends of the target sequences, siRNAs69 could also inhibit

the expression of the target. However, when the nucleotide

mismatches occurred in the middle of the target sequences or

multiple nucleotide mismatches occurred simultaneously, the

inhibitory effect of siRNAs69 was significantly reduced or even

eliminated (Table 2). In general, the inhibitory efficacy shown for

the mutated target sequences of genotypes II and IV indicated that

siRNAs69 could theoretically inhibit the replication of JEV

genotypes II and IV.

Discussion

JEV is classified into four genotypes depending on the

nucleotide sequence of its genomic RNA, with a fifth genotype

being postulated. Genotype III was the first genotype to be

described, and is the most widely distributed [10], followed by

genotype I, which is also an epidemic genotype of JEV. Genotypes

I and III are the predominant genotypes in the mainland of China

[11]. Genotypes II and IV are endemic genotypes. Strain Muar,

isolated in 1952, may represent the fifth genotype [10]. Previous

anti-JEV studies focused on genotype III of JEV and showed that

siRNA-induced gene silence could inhibit efficiently the replication

of one JEV strain of genotype III (Nakayama strain, or SA 14-14-2

strain) in cultured cells [3,25,27]. However, these effective siRNAs

have only been confirmed in one strain of genotype III and may

not be suitable for other strains because of the nucleotide sequence

Figure 5. Inhibitory effects on JEV strain SA 14-14-2 replication by stable cell lines constitutively expressing siRNAs. Stable cell lines
were seeded in 24-well or 96-well plates and were infected with JEV strain SA 14-14-2 at a MOI of 0.1 when the cell monolayer reached 90–100%
confluence. (A) Comparison of the number of viral RNA copies at 24 h post-infection. (B) Western blot analysis of gene suppression at the protein
level at 36 h post-infection, E protein was detected as the target and Actin was detected as the internal control. (C) Comparison of the viral titers in
culture supernatants at 48 h post-infection. (D) Comparison of cell viability using the MTS assay at 96 h post-infection.
doi:10.1371/journal.pone.0026304.g005
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divergence among genotype III strains. Furthermore, these

siRNAs confirmed in genotype III could not provide sufficient

protection from infection by other JEV genotypes because of the

higher genetic variability between the four (or possibly five)

genotypes of JEV [1,4,8,9,10,11]. In addition, one or two siRNAs

are not sufficient to prevent RNAi-resistant escape mutants of this

virus [28,36].

Previous studies showed that using siRNA expression vectors

based on miR-30, miR-155, miR-106b or miR-17-92, could

achieve RNA interference of multiple genes [22,29,30,31,32,33].

In these studies, the regions of pri-miRNAs corresponding to

mature miRNAs were replaced with heterologous stems to express

siRNAs without compromising their silencing activity. Just like

most miRNAs that are transcribed from polycistronic pri-

miRNAs, a reconstructed vector could also express two or more

different siRNAs from a single transcript for effective inhibition of

two or more different target mRNAs. This platform has been

applied successfully in anti-HIV research to prevent the escape

mutants of persistent HIV infection [22,29].

In this study, considering the molecular epidemiological

characteristics and the geographic distribution of the four

genotypes of JEV, the 13 selected siRNA targets were highly

conserved in genotypes I and III and reasonably well conserved in

genotypes II and IV. In theory, these siRNAs would be effective

against all four genotypes of JEV. These 13 siRNAs were

constructed into the pcDNA 6.2–GW/EmGFP-miR vector based

on the miR-155 backbone. The nine siRNAs found to inhibit the

expression of their corresponding targets by greater than 80% in

the Dual-Luciferase assay system, were selected, and their

inhibitory effects on JEV replication were tested. The inhibitory

effects of various combinations of multiple siRNAs from single

polycistrons were also tested. Our miRNA-like polycistron

constructs containing four, five or nine different siRNAs showed

good inhibitory effects on the expression of each target, and the

efficacy of some siRNAs were even increased when chained into

polycistrons, compared with the vectors expressing single siRNAs.

This is the first study to describe the application of long chain

miRNA-like polycistrons (with up to nine different siRNAs)

without significantly compromising silencing activity. miRNA-like

polycistron constructs containing three, six and nine copies of the

same siRNA cassette showed no significant changes in silencing

activity. As the number of copies of NS1-447 increased from 1 to

3, 6 and 9, the expression of its target decreased from 7.1% to

4.3%, 4.0% and 4.2%, respectively. This indicated that the

appropriate number of siRNA copies would provide maximum

silencing activity, and that there is no need to increase persistently

the copy number of siRNAs. This finding differed from that of a

previous study in which, using the miR-155 backbone, inhibition

of the reporter increased along with the number of siRNA copies,

from 2 to 4 to 8 [30]. Another related study showed that, although

each addition of siRNA to the transcript resulted in an increase of

the total amount of mature siRNA generated, the addition of

siRNA copies did not increase significantly the inhibitory efficacy

[37]. These differences may be the result of the different lengths of

the vectors, the different types of processing of each siRNA and the

different saturated concentrations of siRNAs.

Because of the importance of genotype III in China, and in Asia

as a whole, JEV genotype III strain SA 14-14-2 was used first to

test the inhibitory effects of siRNAs. Judging by the inhibitory

effect of the viral RNA and E protein 24 h post-infection, the

transient transfection of each siRNA-encoding vector and

miRNA-like polycistron construct could inhibit the replication of

strain SA 14-14-2 to a certain extent. Low transfection efficiency

may greatly limit the anti-JEV effects of siRNAs. To minimize the

negative impact of low transfection efficiency, we constructed four

stable cell lines constructively expressing three representative

Figure 6. Comparison of the inhibitory effects of miRNA-like polycistrons on JEV genotype I and III strains. Stable cell lines or normal
BHK-21 cells seeded in 24-well or 96-well plates were infected with JEV strain SA14, SH53 or SH101 at a MOI of 0.1. (A) Western blot analysis of E
protein expression of strain SA14 at 36 h post-infection. (B) Western blot analysis of E protein expression of strain SH53 at 36 h post-infection. (C)
Western blot analysis of E protein expression of strain SH101 at 36 h post-infection. (D) Comparison of viral titers in the culture supernatants at 48 h
post-infection. (E) Comparison of cell viability using the MTS assay at 96 h post-infection.
doi:10.1371/journal.pone.0026304.g006
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siRNA transcripts and the NC to further validate the inhibitory

effects. From the results of viral RNA and E protein analyses, viral

titers and cell viability assays, we confirmed that the selected

siRNAs could effectively inhibit the replication of strain SA 14-14-

2. A single siRNA, NS1-447, provided effective inhibition.

Multimerization of NS1-447 up to six copies maximized the

inhibitory effect. siRNAs69 was less effective than (NS1-447)66,

because all other eight siRNAs were less effective than NS1-447.

Although less effective than (NS1-447)66, multimerization of nine

different siRNAs in a single transcript also increased significantly

the inhibitory effect compared with a single copy of NS1-447.

These results indicated that the single siRNA-encoding vectors

and miRNA-like polycistron constructs selected in the Dual-

Luciferase siRNA-to-target reporter assay system could inhibit

significantly the replication of JEV strain SA 14-14-2, provided the

delivery efficiency of siRNA-encoding vectors was sufficiently high.

Indeed, delivery of siRNA is one of the most challenging problems

in the application of RNAi in modern medicine. Many local and

systemic delivery methods for siRNAs or siRNA-encoding

plasmids, such as lipid-based delivery, viral vector-based delivery,

cell-penetrating peptide-based delivery, and poly (lactic-co-glycolic

acid) (PLGA) nanoparticle-based delivery have been reported in

the past few years [26,38,39,40,41], but there is no generalized

delivery approach for RNAi, with different disease targets

requiring different delivery strategies. For JEV, a rabies virus

glycoprotein (RVG) has been used successfully to specifically

deliver anti-JEV siRNAs into neuronal cells across the blood-brain

barrier [26]. Despite various efforts, further work should be

conducted in vivo to investigate the most appropriate siRNA

delivery strategies.

The applicability of (NS1-447)66 and siRNAs69 in the

inhibition of JEV genotypes I and III was validated by testing

three wild type strains of genotypes I and III, SH53, SH101, and

SA14. Both of the miRNA-like polycistron constructs could

significantly inhibit the replication of the three JEV strains, with

(NS1-447)66 being slightly more effective than siRNAs69. This

result indicated that (NS1-447)66 and siRNAs69 have potential

applicability in treating acute viral encephalitis caused by

genotypes I and III of JEV. Divergence and genetic variability

within the two genotypes could be tolerated by the two miRNA-

like polycistrons. Considering the fact that RNAi-resistant escape

mutants within target regions may be generated following siRNA

treatment [36], (NS1-447)66 may be less effective than

siRNAs69, since it only has a single target. siRNAs69 may

therefore be more suitable for broad-spectrum therapy, alleviating

the negative impact of escape mutants.

Table 2. Schematic representations of the nucleotide differences in the target sequences between genotypes II and IV and the
targets we selected.

Target types Target sequences (all sequence from 59 to 39) Remaining reporter activities (compared with the mock control)

PrM-54 target CATTGCAGACGTTATCGTGAT 16.8%

Genotype II ---C--G-----C--A--T-- 97.8%

Genotype IV ---C--G--T--C-------- 96.3%

NS1-447 target TTGGAACAGCATGCAAATCGA 8.3%

Genotype II C-------------------- 19.7%

Genotype IV C--------T--------T-- 95.2%

NS1-630 target GAAACTTGAGAGGGCAGTCTT 28.3%

Genotype II ---------------T--T-- 72.0%

Genotype IV ---G-----------C----- 90.8%

NS1-1207 target TACACTGATTTGGCGAGGTAT 59.3%

Genotype II -----------------A--- 68.0%

Genotype IV ---------C----------C 98.8%

NS2A-461 target GACTAATGGTCTGCAACCCAA 4.7%

Genotype II ---------C---------G- 88.6%

Genotype IV ----C---------------- 38.6%

NS2B-123 target GTCCTACGTGGTGTCAGGAAA 5.1%

Genotype II ---T----------------- 37.9%

Genotype IV ---T----------------- 37.9%

NS3-1112 target AGATTGCAATGTGCCTCCAAA 34.5%

Genotype II -------------------G- 79.5%

Genotype IV -A-----TG-T--------G- 100.0%

NS4A-289 target GCAGAGGTTCCTGGAACCAAA 11.0%

Genotype II -----------C-----T--- 100.0%

Genotype IV -----A--GT-A--------G 91.2%

NS4B-115 target ACTGATGTGCCTGAACTGGAA 11.3%

Genotype II -----------A--------- 98.6%

Genotype IV --------------------- 11.3%

The inhibitory efficacies of siRNAs69 on each target were estimated using the Dual-Luciferase siRNA-to-target reporter assay system.
doi:10.1371/journal.pone.0026304.t002
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Unfortunately, JEV strains of genotypes II and IV were

unavailable to validate the applicability of the two miRNA-like

polycistrons in this study, because these two genotypes are rare in

mainland China. However, we designed an alternative method to

validate the inhibitory effects of the two miRNA-like polycis-

trons on genotype II and IV strains. After analyzing the genome

sequences of genotypes II and IV available in the GenBank

database, the target sequences of genotypes II and IV which

contain mutations were synthesized and cloned into the reporter

plasmid, siQuant. The inhibitory effects of siRNAs69 on each

mutated target were then estimated (Table 2), and the inhibitory

effect of (NS1-447)66 on the mutated targets of NS1-447 were

estimated (data not shown). In agreement with previous studies

[42,43], we found that perfect matches in the central region of the

target is critical for the effective inhibition of RNAi, and single

mismatches occurring in the central region could eliminate

the inhibitory effect of RNAi. In addition, multiple nucleotide

mismatches in one target could eliminate the inhibitory effect of

siRNA. Conversely, single mismatches occurring near the 59 or 39

ends of the target sequence could be well tolerated. In summary,

the position and quantity of mismatches between the target

sequence and the cognate siRNA affect the efficiency of inhibition.

Although mutated nucleotides could attenuate the inhibitory effect

of siRNAs69 to varying degrees, the effect of extending the siRNA

chain to siRNAs69 could be complementary in preventing the

inefficacy of two or three pre-designed siRNAs. Furthermore, the

copy number (or proportion) of each siRNA in the chain could be

adjusted according to the genotype of target JEV strain to achieve

maximal inhibitory effect. This reporter system demonstrated, in

theory, the inhibitory effect of siRNAs69 on genotype II and IV

strains of JEV. (NS1-447)66 would also be effective at inhibiting

genotype II strains because single mutated nucleotides at the 59

end of the target would not affect the efficiency of RNAi.

In contrast, (NS1-447)66 would not be suitable for inhibiting

genotype IV strains, because single mutated nucleotides in the

centre of the target would completely eliminate silencing activity.

In conclusion, the results of this study offer the possibility of

inhibiting the replication of JEV strains of the four genotypes using

a single miRNA polycistron containing multiple siRNAs. The

strong, broad-spectrum, anti-JEV activity of the miRNA poly-

cistron could be applied to the development of effective antiviral

gene therapies.

Materials and Methods

Cell cultures and virus assays
Baby hamster kidney cell line (BHK-21; ATCC, USA) cells were

propagated and maintained in Dulbecco’s modified Eagle’s medium

(DMEM; Gibco, Invitrogen, USA) supplemented with 10% fetal

bovine serum (FBS; Gibco, Invitrogen, USA) at 37uC with 5% CO2.

The JEV strains SA 14-14-2, SA 14, SH101 and SH53 were

provided by Dr. Yongxin Yu, Department of First Viral Vaccine,

National Institute for the Control of Pharmaceutical and

Biological Products. Strains SA 14-14-2 and SA 14 belong to

genotype III. Strains SH101 and SH53 belong to genotype I. All

viruses were propagated in BHK-21 cells. The 50% tissue culture

infective dose (TCID50) was calculated in BHK-21 cells using 96-

well plates and the Reed-Muench formula [44].

Plasmid construction
For siRNA-encoding plasmids, the highly conserved regions of

eight genes (PrM, NS1, NS2A, NS2B, NS3, NS4A, NS4B and

NS5) among the four genotypes of JEV were determined by

sequence alignment using the SeqMan program available within

the Lasergene 7 package (DNAStar, USA). Thirteen siRNAs

based on these conserved regions (Figure 1 and Table 1) were

designed using the miRNA design algorithm (http://rnaidesigner.

invitrogen.com/rnaiexpress/setOption.do?designOption=mirna&

pid=509133211138749536). These 13 siRNAs were individually

cloned into pcDNA 6.2–GW/EmGFP-miR (Invitrogen, USA), a

RNA polymerase II-driven siRNA expression vector based on the

miR-155 backbone, according to the manufacturer’s recommen-

dations (the sequences of hairpin siRNA inserts were shown in

Table S1). Combination of multiple siRNAs cassettes from a single

miRNA-like polycistron construct was performed by digesting a

single siRNA hairpin unit with BamHI and XhoI and inserting the

digested fragment into the BglII/XhoI sites of pcDNA 6.2–GW/

EmGFP-miR. We obtained different combinations of multiple

siRNAs by repeating this procedure. We simultaneously designed a

negative control (NC), which comprised scrambled siRNA

containing the same nucleotide component as PrM-54. Every

clone was verified by PCR and sequencing.

To construct the reporter vector, the target sequences of these

13 siRNAs (Table 1) were cloned into the BglII/ApaI sites of the

siQuant vector (Genordia AB, Sweden), as described previously, to

fuse the target sequences to the firefly luciferase gene [45].

siRNA efficacy validation
BHK-21 cells were plated in 24-well plates (0.5 ml medium/

well) and cultured at 37uC with 5% CO2 for 24 h. When the cell

layer reached 60–70% confluence, siRNA-encoding pcDNA 6.2–

GW/EmGFP-miR vectors (400 ng), as well as the reporter

plasmids (170 ng of target-encoding siQuant vectors and 17 ng

of pRL-TK as an internal control) were co-transfected using

Lipofectamine 2000 (Invitrogen, USA) according to the manufac-

turer’s recommendations. Forty-eight hours post-transfection, cells

were harvested and the firefly luciferase and Renilla luciferase

activities were measured on SpectraMax M5 (Molecular Devices,

USA) using the Dual-Luciferase Reporter Assay System (Promega,

USA). The inhibitory effects generated by the siRNA-eocoding

pcDNA 6.2–GW/EmGFP-miR vectors were expressed as nor-

malized ratios between the reporter and control luciferase

activities [31,42,45].

Transfection and virus infection
BHK-21 cells were seeded in 24-well plates. When the cell layer

reached 60–70% confluence, each siRNA-encoding pcDNA 6.2–

GW/EmGFP-miR vector (800 ng) was transiently transfected into

the cells. Twenty-four hours post-transfection, the cells were

infected with JEV strain SA 14-14-2 at a multiplicity of infection

(MOI) of 0.1. After 1–2 h adsorption, the inocula were removed

and cells were incubated in DMEM supplemented with 10% FBS.

Real-time reverse transcription (RT)-PCR
The following primers: forward, 59-CCTCCGTCACCATGC-

CAGTCTTAG-39 and reverse, 59-TTCGCCATGGTCTTT-

TTCCTCTCG-39, were used to amplify the region spanning nt

3976–4108 in the genome of JEV strain SA 14-14-2. This region

was then cloned into the pGEM-T Easy Vector (Promega, USA)

to construct the standard plasmid. Using the standard plasmid we

obtained a standard curve.

The RNAeasy Mini kit (Qiagen, Germany) was used for RNA

extraction from every well 24 h post-infection according to the

manufacturer’s instructions. A reverse transcription (RT) reaction

was carried out using Superscript III Reverse Transcriptase

(Invitrogen, USA) in a 20 ml reaction mixture with 1.2 mg of total

RNA. Real-time PCR was conducted using an ABI Prism 7000

Real-time PCR system (Applied Biosystems, USA). Reactions were
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performed in a 50 ml volume that contained 2 ml of cDNA, 1 ml of

each primer and 25 ml of Power SYBR Green PCR Master Mix

(Applied Biosystems, USA). Viral RNA was quantified using the

standard curve.

SDS-PAGE and Western blot analysis
BHK-21 cells at 24 h or 36 h post-infection were washed twice

with PBS and lysed with 100 ml M-PER mammalian protein

extraction reagent (Pierce, USA). Then, 20 ml lysates were boiled

for 5–10 min after mixed with 56loading buffer. Proteins were

separated by 12% sodium dodecylsulfate polyacrylamide gel

electropheresis (SDS-PAGE) and transferred to nitrocellulose

membrane (Bio-Rad, USA) using a semi-dry electrophoretic cell

(Bio-Rad, USA). For immunoblotting, membranes were first

incubated with mouse anti-JEV E-D3 monoclonal antibody

(Beijing Protein Innovation, China) at a dilution of 1:2000 or

mouse anti-actin monoclonal antibody (Sigma, USA) at a dilution

of 1:5000. Membranes were then incubated with IRDye 680

conjugated goat anti-mouse secondary antibody (Li-Cor Biosci-

ences, USA) at a dilution of 1:5000 or 1:15000. Protein bands

were detected and quantified using the Li-Cor Odyssey system

and the Odyssey infrared imaging software (Li-Cor Biosciences,

USA).

Flow cytometry assay
At 48 h post-transfection, the siRNA-encoding pcDNA 6.2–

GW/EmGFP-miR transfected cells and the control cells were

washed twice with PBS, trypsinized and resuspended in PBS.

EmGFP positive cells were evaluated by flow cytometry using a

FACSCanto II flow cytometer (BD Bioscience, USA).

Establishment of stable cell lines constitutively
expressing siRNAs

BHK-21 cells were seeded in 24-well plates. When the cell layer

reached 50% confluence, the selected siRNA-encoding pcDNA

6.2–GW/EmGFP-miR vector (400 ng) was transiently transfected

into cells. Twenty-four hours post-transfection, cells cultured in

DMEM containing 4 mg/ml blasticidin were trypsinized and

replated into 10 cm tissue culture plates. The medium was

replaced with fresh DMEM containing blasticidin (4 mg/ml) every

3–4 days until blasticidin-resistant colonies were obtained.

Individual colonies were obtained by serial dilution and were

screened by cell viability assays following JEV infection.

Established clones that could maximally inhibit the propagation

of virus were propagated and maintained in DMEM containing

2 mg/ml blasticidin.

Cell viability assay
BHK-21 cells constitutively expressing siRNAs or control cells

were seeded in 96-well plates for 24 h and then infected with JEV

at a MOI of 0.1. Ninety-six hours post-infection, 20 ml MTS/PMS

(Promega, USA) was added to each well and the absorbance at

490 nm was measured according to the manufacturer’s recom-

mendations.

Statistical analysis
All experiments were repeated at least thrice, and standard

deviation of the mean was determined. Statistical analyses were

performed by paired t-test using Statistical Product and Service

Solutions (SPSS, USA).

Supporting Information

Figure S1 Flow cytometryanalysis of the transfectionef-
ficiency of the siRNA-encoding vector. Cells seeded in 24-

well plates were transfectedwith 800 ngof single siRNAs. Twenty-

four hours post-transfection, the cells were infected with JEV

strain SA 14-14-2 at a MOI of 0.1. At 48 h post-transfection,

EmGFPpositive cells were evaluated by flow cytometry. Control-

P1, non-transfectedBHK-21 cells; Sample-P1, single siRNA-

encoding pcDNA6.2–GW/EmGFP-miRtransfectedBHK-21 cells.

(TIF)

Figure S2 Inhibitory effects on JEV strain SA 14-14-2
replication by stable cell lines constitutively expressing
siRNAs. Stable cell lines were seeded in 24-well or 96-well plates

and were infected with JEV strain SA 14-14-2 at a MOI of 0.1

when the cell layer reached 90–100% confluence. Morphological

changes in the stable cell lines or normal BHK-21 cells at 96 h

post-infection.

(TIF)

Table S1 The sequences of hairpin siRNA inserts of
pcDNA 6.2–GW/EmGFP-miR.
(DOC)
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