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Graphical Abstract

Summary
Dairy cows under negative energy balance mobilize body fat reserves. Plasma nonesterified fatty acid (NEFA) 
concentration is commonly used as a biomarker to indicate heightened illness risk. This study aimed to identify 
cows with NEFA levels greater than 0.60 mEq/L using near-infrared spectra analysis of plasma. Cows with NEFA 
≥0.60 mEq/L were detected with a 79.8% F1 score. 

Highlights
• Spectral preprocessing techniques increase the F1 score of the prediction results.
• Spectral analysis detects NEFA 0.60 mEq/L with 80.8% sensitivity.
• Spectral analysis detects NEFA 0.70 mEq/L with 80.8% sensitivity.
• Blood spectral data are associated with a negative energy balance of dairy cows.
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Abstract: During the transition period, dairy cows are often exposed to negative energy balance (NEB), leading to lipid mobilization 
from adipose tissue into nonesterified fatty acids (NEFA), a common indicator of heightened illness risk. This study aimed to use blood 
near-infrared (NIR) spectra data to classify NEB into high or low categories, based on early-lactation cow NEFA thresholds. We col-
lected a total of 186 plasma samples from 100 Holstein cows. The samples were categorized into critical thresholds, based on previous 
literature, of ≥0.60 and ≥0.70 mEq/L for identifying high NEB. Spectral data were preprocessed before the development of the predictive 
modes, which included the implementation of multiplicative scatter correction, standard normal variate (SNV), and first and second 
derivatives. The classification was performed using partial least square discriminant analyses (PLS-DA), and predictive performance was 
assessed using leave-one-out cross-validation. Predictive quality for each class was evaluated through specificity, precision, sensitivity, 
and F1 score. The study showed promising results, with the SNV technique achieving higher F1 scores. The model found 72.7% specific-
ity, 78.9% precision, 80.8% sensitivity, and 79.8% F1 score to classify animals with NEFA levels of ≥0.60 mEq/L, and 82.1% specificity, 
78.7% precision, 80.8% sensitivity, and 79.7% F1 score to classify animals with NEFA levels ≥0.70 mEq/L. These results indicate that 
NIR spectroscopy could serve as a tool for detecting cows under severe NEB, also showing potential for broader application across the 
entire transition period, as the spectral signal carried relevant information regarding cow metabolism. Furthermore, the combination of 
predictors derived from plasma spectra and other cow-level information can lead to more accurate disease alerts, given their relationship 
with the NEB.

Most of the health problems in dairy cows occur during the tran-
sition period, which is a time marked by significant changes 

in their body functions, metabolism, and inflammation responses 
(Horst et al., 2021). It is commonplace during this period, often 
due to an energy deficit, for fat mobilization to occur, which leads 
to the production of nonesterified fatty acids (NEFA; LeBlanc et 
al., 2005; Fiore et al., 2020; Lisuzzo et al., 2022). Higher concen-
trations of this metabolite during the pre- and postpartum phases 
are associated with various diseases such as hyperketonemia, 
metritis, abomasal displacement, and mastitis. These conditions 
could, consequently, escalate involuntary culling rates within the 
farm (LeBlanc et al., 2005; Nicola et al., 2022) and reduce herd 
productivity.

To avoid this problem, critical thresholds have been proposed 
using NEFA concentrations as an indicator of negative energy bal-
ance (NEB). During the postpartum period, concentrations exceed-
ing 0.6 mEq/L have been associated with an increased risk of de-
veloping clinical ketosis and subsequent culling (Seifi et al., 2011). 
Similarly, Ospina et al. (2010) identified NEFA concentrations 
above 0.6 and 0.7 mEq/L postpartum as a critical threshold due 
to the heightened risk of developing clinical ketosis and displaced 
abomasum, respectively. Additionally, high NEFA levels are also 
often related to fatty acid mobilization and hepatic lipidosis (Fiore 
et al., 2018). Despite their usefulness as health indicators, classical 
NEFA analyses using blood samples conducted in laboratories can 

be time consuming and expensive. This can limit their applicabil-
ity on commercial farms (Benedet et al., 2019). In this context, 
several studies have been performed using mid-infrared spectra 
of milk (Grelet et al., 2019; Aernouts et al., 2020) because of its 
ease of collection, cost effectiveness, and scalability. Although this 
method presents substantial advantages in animal health monitor-
ing, it is limited to lactating cows.

Thresholds for NEFA concentration before calving offer a 
chance to examine these markers before lactation (LeBlanc et al., 
2005). Such an early examination can support more accurate deci-
sions with fewer production losses (Macmillan et al., 2020; Nicola 
et al., 2022). Therefore, monitoring NEFA concentrations both be-
fore and after calving could be essential for evaluating disease risk 
and enhancing cow health during the transition period. To monitor 
NEFA concentration during the transition period without extensive 
resource allocation toward conventional laboratory analyses, the 
use of NIR spectra of plasma could be a useful tool for identifying 
NEFA concentrations. These samples are easy to collect during 
routine procedures, inexpensive, and could be used to monitor both 
nonlactating and lactating cows throughout the transition period. In 
this study, the aim was to investigate the utilization of NIR spec-
troscopy with plasma spectra from early-lactation cows to classify 
NEFA levels as high or low based on defined alarm thresholds. 
This approach holds promise as a potential tool for monitoring 
NEFA throughout the entire transition period.
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All experimental procedures in this study received ethical ap-
proval from the Institutional Animal Care and Use Committee 
at the University of Wisconsin–Madison. A total of 186 samples 
were collected from 100 cows during the early-lactation period (7 
and 14 DIM) at the Emmons Blaine Dairy Cattle Research Center 
(Arlington, WI). The cows, diets, and sampling were described in 
detail previously (Holdorf et al., 2023). The cows were fed a TMR 
once daily at 0700 h, and the feed bunk was adjusted as needed 
to ensure it remained full. Before morning feeding, approximately 
6-mL blood samples were collected from a tail vessel in tubes 
containing sodium fluoride and potassium oxalate, centrifuged at 
2,000 × g for 15 min at 4°C, and isolated plasma was stored at 
−20°C until analysis.

Quantification of NEFA was performed using Catachem re-
agents (V514–0B) with a modified protocol utilizing a NEFA stan-
dard (276–76491) from Fujifilm Wako Chemicals USA based on 
the methodology described by Martin et al. (2021). The protocol 
used 12 µL of fluid plasma per replicate. For NIR analysis, 0.5 
mL of fluid plasma from the same sample used for NEFA quanti-
fication was dispensed into a slurry cup equipped with a 0.5-mm 
gold reflector. All samples were subjected to analysis using FOSS 
DS2500 spectrometers (Foss, Hillerod, Denmark), resulting in the 
generation of a single spectrum for each plasma sample. The Foss 
NIR spectrum comprises 4,200 data points, which reflect the ab-
sorption of infrared light across a wavelength range of 400 to 2,500 
nm within the plasma sample.

The raw dataset was preprocessed using scatter-correlation 
methods and spectral derivatives. Scatter-correlation analysis in-
volved the use of multiplicative scatter correction (MSC) and stan-
dard normal variate (SNV) techniques. Spectral derivatives were 
also analyzed, specifically the first and second derivatives. All 
transformations were carried out using the software Spectragryph 
1.2. All datasets, including the raw data, were used for predictions, 

and the preprocessing method that yielded the highest F1 score was 
chosen to classify NEFA at alarm levels.

A partial least square discriminant analysis (PLS-DA) was used to 
classify NEFA concentrations in plasma samples categorized based 
on critical thresholds (≥0.60 and ≥0.70 mEq/L) to identify cows with 
high NEFA levels, as described by Ospina et al. (2010). The PLS-DA 
algorithm extracts latent variables, known as factors, which capture 
the underlying structure and linear relationship between the predic-
tors and the response variable (e.g., NEFA). To address the imbal-
anced data, which included 36 high and 150 low NEFA samples for 
the ≥0.60 mEq/L threshold, and 26 high and 160 low NEFA samples 
for the ≥0.70 mEq/L, a random selection process was employed to 
choose 20% of the low NEFA concentration samples for training and 
validation of the NEFA classification. The down-sampling process, 
which is a common technique to balance datasets (Japkowicz, 2000; 
Mountassir et al., 2012), was repeated 10 times.

A leave-one-out cross-validation (LOOCV) approach was used 
for data analysis. In this approach, all samples from a specific cow 
were set aside for validation, whereas the remaining samples were 
used to develop the PLS-DA classification model. The number of 
factors used to build the model using remaining samples was deter-
mined through a 10-fold cross-validation, resulting in the selection 
of a classification model with high accuracy. During this process, 
a maximum of 30 components was defined. The cross-validation 
process yielded multiple iterations with varying numbers of com-
ponents, as depicted in Figure 1. The variable importance was 
determined using a LOOCV approach (Figure 2). The numbers of 
components and variable importance represented in Figures 1 and 
2 indicate the results obtained from the dataset using the chosen 
preprocessing technique with lower F1 score.

To evaluate the predictive quality of PLS-DA for classification, 
specificity [1], precision [2], sensitivity [3], and F1 score [4] were 
calculated after the 10 rounds, using the following equations:
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Figure 1. Number of components used in partial least square discriminant analysis for classification using the leave-one-out cross-validation approach. SNV 
= standard normal variate.
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where TP = true positives; TN = true negatives; FP = false posi-
tives; and FN = false negatives. All analyses were conducted using 
the statistical software R (R Core Team, 2019).

Our study aimed to explore the usefulness of NIR spectra as 
an affordable and cost-effective method for categorizing cows 

with elevated critical NEFA thresholds. This method could serve 
as a simple diagnostic tool for monitoring health status and the 
results indicated promising classification results. All preprocess-
ing methods exhibited similar results. However, the preprocessing 
technique using SNV resulted in a slight increase in sensitivity and 
F1 score of the prediction results (Table 1). This improvement in 
sensitivity and F1 score may be attributed to noise mitigation. With 
SNV, each spectrum is individually adjusted to have a mean of 0 
and a standard deviation of 1, as described by Rinnan et al. (2009). 
The normalization process helps reduce the influence of variations 
in signal intensity among spectra, which may result in improved 
predictive performance.

When the threshold for high NEFA was set at 0.6 mEq/L, the 
model demonstrated specificity, precision, sensitivity, and F1 score 
values of 72.7%, 78.9%, 80.8%, and 79.8%, respectively. When 
the NEFA levels were set at 0.7 mEq/L, the specificity, precision, 
sensitivity, and F1 score were 82.1%, 78.7%, 80.8%, and 79.7%, 
respectively. Aernouts et al. (2020) reported similar results for 
specificity (80.0%) and sensitivity (83.1%) using milk mid-infrared 
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Figure 2. Absorbance and wavenumbers (nm) were obtained from plasma samples using near-infrared (NIR) spectroscopy (n = 186). The variable importance 
(VI) is represented on a color scale ranging from light (blue), indicating lower importance, to dark (red), indicating higher importance. The pair of graphs 
illustrates the VI based on the standard normal variate (SNV). The graphs in the first and second columns use ≥0.60 and 0.70 mEq/L as thresholds, respectively.

Table 1. Specificity, precision, sensitivity, and F1 scores of plasmas near-infrared spectroscopy in predicting nonesterified 
fatty acid (NEFA) concentrations1

Data Threshold (mEq/L) Specificity (%) Precision (%) Sensitivity (%) F1 score (%)

SNV 0.6 72.7 78.9 80.8 79.8
0.7 82.1 78.7 80.8 79.7

Raw data 0.6 74.5 78.8 75.6 77.2
0.7 84.0 79.7 76.9 78.3

First derivative 0.6 74.4 79.5 77.7 78.6
0.7 83.0 81.4 82.3 81.8

Second derivative 0.6 71.7 76.5 73.3 74.9
0.7 81.2 76.2 73.9 75.0

MSC 0.6 72.7 78.8 80.5 79.7
0.7 80.9 77.4 80.8 79.1

1High classifications were evaluated using NEFA thresholds of 0.6 or 0.7 mEq/L; SNV = standard normal variate; MSC = 
multiplicative scatter correction.



JDS Communications 2024; 5: 195–199

technology to classify NEFA levels >0.6 mmol/L. These findings 
demonstrate the possibility of accurately identifying animals with 
elevated NEFA levels through routine blood sample analysis.

Creating alerts based on health thresholds before clinical illness 
on dairy farms is crucial, primarily due to the significant costs as-
sociated with treatment and potential productivity losses. McArt 
et al. (2015) estimated that the average losses associated with 
hyperketonemia, displaced abomasum, and metritis amounted to 
$289, $707, and $396, respectively. This study also revealed that 
during early lactation, the incidence of hyperketonemia in dairy 
cows was 32%. Among cows with displaced abomasum, 88% of 
cases showed hyperketonemia, and among cows with metritis, 
70% of cases presented hyperketonemia. In the present study, 
other factors not considered in the model, such as body condition, 
changes in body composition score during the transition period, 
number of lactations, and milk production (Rathbun et al., 2017), 
could improve the predictive accuracy in classifying alarm levels 
for NEFA samples ≥0.60 mEq/L. In this context, the use of NIR 
spectroscopy can serve as a potential tool to identify animals at 
high risk of developing diseases, which can reduce financial losses 
in dairy farms.

The present results suggest a potential association between 
certain components found in plasma spectra and NEB. This may 
allow direct prediction of diseases such as hyperketonemia, me-
tritis, abomasal displacement, and mastitis. Recently, this indirect 
prediction approach has been used to address challenges in predict-
ing individual DMI at the herd level, using mid-infrared data ob-
tained from raw milk. In such approach, the spectral data are used 
as a predictor of phenotypes not necessarily present in the sample 
(e.g., milk fat), but indirectly related such as feed intake and milk 
spectra. Models incorporating spectra have shown improvements 
in predicting DMI, with R2 values of 0.70 and 0.81 and root mean 
square errors of prediction of 2.15 and 1.52 kg/d (Dórea et al., 
2018; Lahart et al., 2019).

The improvement observed in these cases may be attributed to 
the presence of specific milk compounds that are associated with 
the phenotype of interest, such as fatty acids, proteins, and lactose. 
These components have been associated with both the quantity 
and quality of ingested forage and the forage-to-concentrate ratio 
(Aguerre et al., 2011; Elgersma, 2015). The quality and quantity 
of forage, as well as the concentrate ratio, directly affect DMI, 
considering fill limitations (Mertens and Grant, 2020). Therefore, 
due to the relationship found between plasma spectra and NEB, 
the combination of predictors derived from plasma spectra with 
other cow-level information can potentially improve the predictive 
quality of severe cases of NEB, thereby enabling more accurate 
generation of disease alerts.

In future applications, as the blood centrifugation process for 
plasma separation can be used on farms, the monitoring process 
can be facilitated with the use of portable spectrometers. This tech-
nology has already been employed in various applications such as 
feed and nutrition evaluation, milk analysis, and the assessment of 
manure’s chemical composition (Malley et al., 2005; Santos et al., 
2013; Bell et al., 2018). Although the present study used a bench-
top NIR instrument to extract the spectral signal, the features with 
the greatest variable importance are concentrated at approximately 
600 nm of wavenumbers (Figure 2). This indicates possibilities for 
applications using portable spectrophotometers developed with 
silicon-based detectors (∼400 to ∼1,050 nm) that are very cost 

effective and can potentially be integrated into smartphones and 
cameras (Crocombe, 2018). However, the data presented in this 
study do not allow for the exploration of portable NIRS use, and 
suggest future studies for the application of portable NIRS.

Our findings suggest that NIR spectroscopy has the potential 
to be a valuable alternative for identifying cows in early lactation 
with high NEFA thresholds, offering significant advantages for 
dairy farms by efficiently identifying cows at risk of diseases such 
as hyperketonemia, lipomobilization, hepatic lipidosis, displaced 
abomasum, and metritis. This could lead to reduced financial 
losses and improved animal welfare. Future studies should evalu-
ate the effectiveness of this technique in a large number of animals 
and herds, as well as in dry cows during the transition period. As 
suggested by Nicola et al. (2022), the threshold value of ≥0.26 
could be used as a risk factor for the development of diseases in 
prepartum. This evaluation may also extend to other metabolites, 
such as BHB.

Although future datasets should include samples from cows fed 
varied diets, taken at different times of day, and during different 
physiological states and energy balances, it is crucial to note that 
factors influencing plasma NEFA concentrations would likely be 
mirrored in the spectral data. Using the same samples for NIR 
scanning and NEFA analysis to calibrate the models can increase 
the consistency of results across different scenarios. Additionally, 
given the relationship found between plasma spectra and NEB, the 
combination of predictors derived from plasma spectra with other 
cow-level information can potentially improve the predictive qual-
ity of severe cases of NEB, enabling more accurate generation of 
disease alerts.
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