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Abstract 

Background: Intensive Care Resources are heavily utilized during the COVID‑19 pandemic. However, risk stratifica‑
tion and prediction of SARS‑CoV‑2 patient clinical outcomes upon ICU admission remain inadequate. This study 
aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk 
and predict ICU survival and outcomes.

Methods: A Germany‑wide electronic registry was established to pseudonymously collect admission, therapeu‑
tic and discharge information of SARS‑CoV‑2 ICU patients retrospectively and prospectively. Machine learning 
approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine 
approach was selected as the most suitable method. Individual, non‑linear shape functions for predictive parameters 
and parameter interactions are reported.

Results: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively col‑
lected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to 
be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admis‑
sion were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external 
institution were predictors for ECMO therapy. The interaction of patient age with D‑dimer levels on admission and 
creatinine levels with SOFA score without GCS were predictors for renal replacement therapy.

Conclusions: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and 
identified novel predictors for outcome in critically ill COVID‑19 patients. Using this strategy, predictive modeling of 
COVID‑19 ICU patient outcomes can be performed overcoming the limitations of linear regression models.
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Background
The COVID-19 pandemic hit Germany in spring 2020 
and since then intensive care resources were heav-
ily utilized up to now [1]. Although large numbers of 
SARS-CoV-2 patients required intensive care unit (ICU) 
admission, ICU capacity in Germany was not exceeded. 
However, risk stratification and prediction of outcomes 
continues to be challenging. Several investigators have 
reported their ICU COVID-19 experience during this 
time period, yet these data show great variability in the 
number of cases and outcomes reported [2–16].

Few of these reports attempted to identify risk fac-
tors predicting morbidity, mortality and overall clinical 
outcome. This may be the result of the reporting of (1) 
incomplete data sets earlier in the pandemic as many 
patient were still undergoing ICU care for SARS-CoV-2 
infection [10, 13, 15, 16], and/or (2) data sets biased by 
the need to triage ICU care to patients in the face of the 
exhaustion of local/regional ICU capacity [7, 10, 14, 15]. 
Nonetheless, there was consensus that SARS-CoV-2 
ICU patients experienced lengthy ICU stays with ICU 
mortality in the range of 25 to 41% [14, 17]. Classical 
statistical analysis identified risk factors in these patient 
populations including age, renal function, the degree of 
pulmonary compromise and severity of acute respiratory 
distress syndrome (ARDS). But standard statistical tech-
niques are limited in their ability to integrate diverse data 
types such as past medical history, therapeutic ICU inter-
ventions and many more in relation to clinical outcome 
variables [18].

To overcome these limitations, we employed machine 
learning methods to optimize risk stratification and pre-
diction of overall outcomes for individual COVID-19 
ICU patients. It has been recently shown that machine 
learning (ML) algorithms in combination with numerous, 
multidimensional variables with non-linear relationships 
may have advantages in clinical outcome prediction. 
Machine learning strategies were found to be superior to 
classical methods of outcome prediction typically used in 
cardiovascular pathologies [18, 19]. To take advantage of 
this superior technique for outcome prediction, we inves-
tigated 1186 PCR-confirmed COVID-19 patients receiv-
ing ICU care at 27 German hospitals that were enrolled 
retrospectively and prospectively. The aim of this study 
is to investigate whether ML can provide additional 
and interpretable insights for outcome prediction and 
weigh the identified outcome factors in COVID-19 ICU 
patients.

Methods
Study design, setting and participants
This multi-center retrospective—prospective cohort 
study was performed with 27 participating German hos-
pitals (Additional file  1: Table  E1 and Fig.  1). An ethics 
approval was obtained from the participating hospitals’ 
Institutional Review Boards. The study was registered in 
“ClinicalTrials” (clinicaltrials.gov) under NCT04455451. 
COVID-19 patients 18  years and older requiring ICU 
admission between 1st January 2020 and 4th May 2021 
at a participating center were recruited for this study. 
Patients were recruited either retrospectively (1st Janu-
ary 2020 to 31st July 2020) or prospectively (29th Sep-
tember 2020 to 4th May 2021). Inclusion criteria were 
the requirement for ICU treatment due to COVID-19 
confirmed by a positive SARS-CoV-2 PCR test. The local 
investigator confirmed the accuracy and completeness of 
all entered data. A secure electronic research data cap-
ture system (REDCap) was used to collect and manage 
study data in a pseudonymous fashion [20, 21].

Variables and measurements
During the data collection process demographic data, 
past medical history, previous medications, current ill-
ness data, laboratory values as well as outcome data were 
collected. A total of 49 variables were used for the ML 
models (Additional file 1: Table E8).

To allow comparability of intubated and spontaneously 
breathing patients the Sequential Organ Failure Assess-
ment (SOFA) score was calculated without the Glasgow 
Coma Scale (GCS) [22]. Murray Lung injury score was 
calculated as previously published [23]. Static compli-
ance and driving pressure were calculated as previously 
described [24]. Laboratory values were converted to a 
common unit to permit analysis. Oxygen supply in spon-
taneously breathing patients was converted to an esti-
mated  FiO2 (Additional file 1: Table E2).

Bias management
Discontinuation of ICU care
107 (8.3%) patients, or their legal representative 
requested that ICU level care be discontinued during the 
ICU stay. The majority of these patients died during the 
ICU stay (n = 95, 88.8%). To avoid bias in predictor analy-
ses this patient group was excluded from further analyses 
(for patient characteristics please see Additional file  1: 
Table  E5). For three patients these data were not avail-
able, they were excluded from the analyses.

Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.

Keywords: COVID‑19, Critical care, ARDS, Outcome, Prognostic models
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Table 1 Clinical characteristics of N = 1186 patients included in the study; clinical and laboratory parameters

Parameter Total N Missing N Non-survival Survival Total

Total N (%) 403 (34.0) 783 (66.0) 1186

Age (years) 1186 0 66.0 (58.0 to 75.5) 62.0 (53.0 to 72.0) 63.0 (54.0 to 73.0)

Age groups 1186 0

18–29 years 2 (0.5) 26 (3.3) 28 (2.4)

30–39 years 8 (2.0) 37 (4.7) 45 (3.8)

40–49 years 32 (7.9) 75 (9.6) 107 (9.0)

50–59 years 75 (18.6) 196 (25.0) 271 (22.8)

60–69 years 130 (32.3) 202 (25.8) 332 (28.0)

70–79 years 105 (26.1) 187 (23.9) 292 (24.6)

80–89 years 48 (11.9) 57 (7.3) 105 (8.9)

 > 90 years 3 (0.7) 3 (0.4) 6 (0.5)

Sex 1186 0

Female 92 (22.8) 241 (30.8) 333 (28.1)

Male 311 (77.2) 542 (69.2) 853 (71.9)

BMI (kg/m2) 1120 66 28.1 (25.1 to 33.1) 28.4 (25.2 to 32.7) 28.3 (25.2 to 32.8)

BMI groups 1120 66

Below 20 kg/m2 8 (2.1) 16 (2.2) 24 (2.1)

20–25 kg/m2 88 (22.8) 164 (22.3) 252 (22.5)

25–30 kg/m2 141 (36.5) 267 (36.4) 408 (36.4)

Above 30 kg/m2 149 (38.6) 287 (39.1) 436 (38.9)

Bloodgroup 755 431

0 121 (40.2) 158 (34.8) 279 (37.0)

A 124 (41.2) 213 (46.9) 337 (44.6)

AB 10 (3.3) 24 (5.3) 34 (4.5)

B 46 (15.3) 59 (13.0) 105 (13.9)

Past medical history and chronic medications

Arterial hypertension 1186 0 255 (63.3) 479 (61.2) 734 (61.9)

Cardiovascular disease 1186 0 124 (30.8) 187 (23.9) 311 (26.2)

Chronic arrhythmia 1186 0 61 (15.1) 84 (10.7) 145 (12.2)

COPD 1186 0 38 (9.4) 69 (8.8) 107 (9.0)

Other lung disease 1186 0 44 (10.9) 80 (10.2) 124 (10.5)

Nicotine abuse 1186 0 36 (8.9) 78 (10.0) 114 (9.6)

History of solid organ transplant 1186 0 9 (2.2) 14 (1.8) 23 (1.9)

History of bone marrow transplant 1186 0 3 (0.7) 5 (0.6) 8 (0.7)

Alcoholism 1186 0 13 (3.2) 23 (2.9) 36 (3.0)

Chronic kidney failure 1186 0 53 (13.2) 92 (11.7) 145 (12.2)

Diabetes mellitus 1186 0 126 (31.3) 218 (27.8) 344 (29.0)

NIDDM 1186 0 88 (21.8) 132 (16.9) 220 (18.5)

Prior thrombotic  eventsa 1186 0 24 (6.0) 35 (4.5) 59 (5.0)

ACE inhibitors 1186 0 95 (23.6) 172 (22.0) 267 (22.5)

AT2 receptor blocker 1186 0 47 (11.7) 117 (14.9) 164 (13.8)

Beta blockers 1186 0 116 (28.8) 227 (29.0) 343 (28.9)

Anti‑platelet medication 1186 0 95 (23.6) 165 (21.1) 260 (21.9)

NOAC 1186 0 29 (7.2) 56 (7.2) 85 (7.2)

Corticosteroids 1186 0 44 (10.9) 63 (8.0) 107 (9.0)

Immunosuppressive drugs 1186 0 21 (5.2) 31 (4.0) 52 (4.4)

Opioids 1186 0 19 (4.7) 38 (4.9) 57 (4.8)

Status at ICU admission

Admission/Transfer status 1186 0
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Table 1 (continued)

Parameter Total N Missing N Non-survival Survival Total

External transfer 206 (51.1) 336 (42.9) 542 (45.7)

Internal or direct admission 197 (48.9) 447 (57.1) 644 (54.3)

Ventilatory status at admission 1186 0

Intubated 217 (53.8) 278 (35.5) 495 (41.7)

Non‑invasive assisted ventilation 40 (9.9) 91 (11.6) 131 (11.0)

Spontaneous breathing 146 (36.2) 414 (52.9) 560 (47.2)

Prior days of non‑invasive ventilation 1016 170 0.0 (0.0 to 1.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0)

Days prior invasive ventilation 1099 87 0.0 (0.0 to 3.0) 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0)

RASS 1100 86 ‑2 (‑5 to 0) 0 (‑4 to 0) 0 (‑4 to 0)

SOFA (w/o GCS) 1186 0 7 (4 to 9) 5 (3 to 7) 5 (3 to 8)

Murray Lung Injury Score 1156 30 3.2 (2.5 to 3.5) 3.0 (2.2 to 3.5) 3.0 (2.5 to 3.5)

ARDS grading according to PaO2/FiO2 quotient 1154 32

Mild (PaO2/FiO2 201 to 300) 45 (11.3) 147 (19.4) 192 (16.6)

Moderate (PaO2/FiO2 101 to 200) 189 (47.6) 357 (47.2) 546 (47.3)

Severe (PaO2/FiO2 <  = 100) 142 (35.8) 186 (24.6) 328 (28.4)

No ARDS 21 (5.3) 67 (8.9) 88 (7.6)

Static compliance (ml/mbar)b 612 574 34.6 (24.7 to 44.4) 37.9 (29.3 to 49.4) 36.7 (27.5 to 47.3)

Driving pressure (mbar)b 636 550 13.0 (10.0 to 16.0) 12.0 (10.0 to 15.0) 12.0 (10.0 to 15.0)

Hemoglobin (g/dl) 1179 7 11.0 (9.5 to 12.9) 11.9 (10.1 to 13.3) 11.6 (9.9 to 13.2)

Platelets  (x103µl‑1) 1178 8 203.0 (146.0 to 282.0) 232.0 (177.0 to 316.0) 223.0 (164.0 to 304.0)

Leucocytes (n/nl) 1177 9 10.7 (7.1 to 14.5) 8.8 (6.1 to 12.1) 9.4 (6.3 to 12.9)

Lymphocytes (n/nl) 971 215 0.7 (0.4 to 1.1) 0.8 (0.6 to 1.2) 0.8 (0.5 to 1.2)

Neutrophiles (n/nl) 886 300 8.7 (5.6 to 12.7) 6.8 (4.7 to 9.4) 7.3 (4.9 to 10.5)

Platelet/neutrophile ratio 882 304 23.3 (15.5 to 36.0) 34.6 (24.9 to 53.2) 31.4 (21.2 to 47.5)

Platelet/lymphocyte ratio 965 221 278.1 (158.3 to 473.9) 280.4 (181.8 to 425.7) 280.3 (174.1 to 436.6)

C‑reactive protein (mg/dl) 1141 45 17.5 (9.6 to 27.9) 14.1 (7.6 to 22.5) 14.8 (8.4 to 24.3)

Procalcitonin (ng/ml) 1153 33 0.7 (0.3 to 2.4) 0.3 (0.1 to 0.9) 0.4 (0.1 to 1.4)

Interleukin‑6 (pg/ml) 851 335 161.0 (63.0 to 429.5) 89.4 (39.8 to 189.5) 104.0 (43.2 to 268.9)

Ferritin (µg/dl) 623 563 154.0 (88.3 to 272.8) 114.2 (59.2 to 195.5) 126.3 (68.8 to 210.8)

D‑Dimer (µg/ml) 905 281 4.2 (1.7 to 14.9) 2.2 (1.1 to 5.0) 2.8 (1.2 to 8.0)

Total bilirubin (mg/dl) 1160 26 0.7 (0.4 to 1.1) 0.6 (0.4 to 0.8) 0.6 (0.4 to 0.9)

Creatinine (mg/dl) 1172 14 1.2 (0.8 to 2.1) 0.9 (0.7 to 1.4) 1.0 (0.8 to 1.6)

ICU outcomes

Mortality n/% 403 (34.0)

LOS ICU (days) 1186 0 14.0 (8.0 to 24.0) 16.0 (6.0 to 34.0) 15.0 (7.0 to 30.0)

Transfer destination 1180 6

Intermediate care n/a 51 (6.6) n/a

Normal ward n/a 489 (62.9) n/a

Other ICU n/a 125 (16.1) n/a

REHAB n/a 112 (14.4) n/a

All values are reported as absolute numbers and percentages for categorical variables, and as median and interquartile ranges (IQR) if not distributed normally for 
continuous variables

BMI, body-mass-index (kg/m2); COPD, chronic-obstructive pulmonary disease; ICU, intensive care unit; LOS, length-of-stay; NIDDM, Non-insulin dependent diabetes 
mellitus; NOAC, novel oral anticoagulants; RASS, Richmond agitation sedation scale; SOFA score without GCS, sequential organ failure assessment score without 
Glasgow coma scale (GCS); n/a not available
a Prior thrombotic events: e.g. deep vein thrombosis, pulmonary embolism
b At ICU admission or first value after intubation at day of ICU admission
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Dataset used for ML
Out of the 1186 patients included in the final study 
(Table  1), 147 were transferred to another ICU. Due to 
study design the ultimate ICU outcome of this subset of 
patients is unknown. To avoid bias in survival predic-
tion these patients were excluded, thus ML models were 

trained on 1039 (complete cohort), 596 (retrospective 
cohort) and 443 (prospective cohort) patients.

Statistical analyses
Observed parameters were assessed for their distribu-
tion. Outliers were excluded by visual assessment of 

Fig. 1 Descriptive data of patients included into the study population. (n = 596 retrospective cohort and n = 443 prospective cohort). A 
Distribution Age B Horovitz quotient at admission C Murray lung injury score and SOFA score without GCS at admission D Survival rates E 
Interaction of Murray long injury score and admission status F Laboratory values. Grey indicates patients that did not survive ICU therapy, orange 
indicates patients that did survive ICU therapy

Table 2 Overall performance of the machine learning models for ICU outcome prediction

EBM, explainable boosting machine; ICU, intensive care unit; ML, machine learning; RF, random forest classifier; SVC, support vector classifier

Prediction variable ICU survival
N = 1053

ECMO therapy
N = 1053

Renal Replacement Therapy
N = 1000

Balanced accuracy PR-AUC Balanced accuracy PR-AUC Balanced accuracy PR-AUC 

ML model

RF 0.65 0.84 0.72 0.75 0.69 0.66

SVC 0.65 0.81 0.79 0.53 0.7 0.64

EBM 0.61 0.72 0.68

EBM (10 interactions) 0.64 0.81 0.73 0.69 0.7 0.69
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clinical validity based on the distribution plots (excluded 
data points are provided in Additional file  1: Table  E3). 
Baseline characteristics of all patients were evaluated. 
Continuous variables are reported as either means and 
standard deviation (SD) if normally distributed or as 
median and interquartile ranges (IQR) if not normally 
distributed. Shapiro–Wilk-Test was used prior to Stu-
dent’s t test or Wilcoxon rank sum test. Kaplan–Meier 
estimators were compared using Log-Rank-Test. Cat-
egorical variables were compared using the Fisher’s Exact 
Test. A sample size calculation was not performed. Study 
size is defined by the available datasets in the recruitment 
period. All statistical analyses were performed in R (ver-
sion 4.0.3) and JMP (version 15.2.0, SAS Institute, Cary, 
USA).

Description of machine learning process
Variables are referred to as features in machine learning 
(ML) but for consistency we will refer to them as vari-
ables. For a detailed description of the machine learning 
process please see Additional file 1: Table E7. We trained 
Support Vector Classifier (SVC), Random Forest Classi-
fier (RF), and EBM with a fivefold stratified Cross Valida-
tion (CV) by using 80% of the data for training and 20% 
of the data for testing. We excluded variables with more 
than 30% of data missing (see Additional file 1: Table E7). 
For all ML-methods, we applied one-hot encoding for 
categorical data, i.e. creating indicator columns for 
each category (including missing values). We converted 
Boolean data to numerical values zero and one. We per-
formed a hyper-parameter optimization across all ML-
algorithms with nested CV techniques [25]. Performance 
of the models was evaluated as the average of balanced 
accuracy and the area under precision-recall curve (PR-
AUC) per fold of CV. A regular accuracy or AUC would 
be biased towards the overrepresented class (“survival”). 
In order to verify the robustness of our results in light 
of the imbalanced outcome variable, we used both over-
sampling and under-sampling for the outcome “survival”. 
For over-sampling, the observations from the under-
represented class (here: “non-survival”) were added at 
random to the data set. For under-sampling, the over-
represented class (here”survival”) was reduced at random 
to the same size as the underrepresented class. We com-
pared the ranking of variable importance and the shape 

function with the results from each of the fivefold strati-
fied CV runs on the retrospective dataset. The results of 
each run were the same (data not shown). We further val-
idated the results by training the ML-models with a five-
fold CV for hyper-parameter optimization (RF and SVC) 
on the retrospective data and predicting the outcome on 
the prospective data (see Table 2).

For the results presented in this paper, we trained 
the EBM on the entire dataset (retrospective and 
prospective).

Rationale for the use of the explainable boosting machines 
model
EBMs are built on a generalized additive model (GAM) 
of the form

where g is the link function and fi(xi) the shape function 
for variable xi and ̟i is the weight for variable x1 , with 
which each variable influences the model. In a classifi-
cation problem, the link function g is a logistic function 
[26]. As the model is additive, each variable contributes 
in a modular way. This allows for an easy interpretation 
about the influence of a variable to the prediction (see 
Fig. 2A). The idea of using shape functions for each vari-
able allows for complex relationships (even non-linear) 
between the variable and the outcome prediction (see 
Fig.  2B). Therefore, GAMs can be significantly more 
accurate than simple linear models [27]. We use EBMs as 
they additionally employ modern machine learning tech-
niques such as bagging and boosting and have a com-
parable performance to state-of-the art ML techniques 
such as RF [27, 28]. Overall performance of the ML 
models was assessed by balanced accuracy and PR-AUC 
(Table 2).

Results
Participating centers and level of care
27 ICUs participated in this observational study includ-
ing 24 ICUs from university hospitals and three ICUs 
from regional primary and secondary care hospitals 
(Additional file  1: Table  E1, Figure  E1). All patients 
requiring ICU treatment could receive the full treatment 
possibilities including ventilation, renal replacement 

g
(

y
)

= ̟1f1(x1)+̟2f2(x2)+ ::: +̟pfp
(

xp
)

,

(See figure on next page.)
Fig. 2 EBM prediction model showing importance of risk factors predicting “survival” in COVID‑19 ICU patients including admission data. Top A 
significant risk factors for outcome after analysis of admission data and weighed according to their importance for outcome. bottom) B importance 
of age for outcome and distribution of age data C platelet/neutrophil ratio and distribution of data on admission D initial D‑dimer serum values 
and distribution of data determined on admission E importance of Horovitz quotient  (PaO2/FiO2) for outcome and distribution of data on admission 
F initial hemoglobin values and distribution of data on admission G initial procalcitonin (PCT) serum values and distribution of data on admission. 
Grey indicates patients that did not survive ICU therapy, orange indicates patients that did survive ICU therapy
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Fig. 2 (See legend on previous page.)



Page 8 of 14Magunia et al. Crit Care          (2021) 25:295 

therapy (RRT), and extracorporeal membrane oxygena-
tion (ECMO).

Patient characteristics and status at ICU admission
1186 patients were recruited into the study (patient selec-
tion chart, Additional file 1: Figure E2) with 713 patients 
in the retrospective and 473 patients in the prospective 
cohort. Overall patient characteristics, severity of the 
disease, and organ failure are given in Table 1 and Addi-
tional file 1: Table E4. Twice as many males (71.9%) than 
females (28.1%) were treated at the participating ICUs. 
The median age was 63 (IQR 54 to 73), 180 patients 
(15.2%) had an age below 50 years, and 6 patients (0.5%) 
had an age above 90 years. For age distribution and base-
line parameters please see Fig.  1. Kaplan Meier Curves 
for probability of ICU survival according to patient age 
are provided in Additional file  1: Figure  E3a. At ICU 
admission spontaneous breathing via oxygen mask, 
non-invasive assisted ventilation or invasive ventilation 
were present in 47.2%, 11%, 41.7% patients, respectively. 
Data for the grading of the ARDS severity were avail-
able for 1154 patients (97.3%). According to the Berlin 
definition ARDS was graded using the  PaO2/FiO2 index 
as mild (16.6%), moderate (47.3%), or severe (28.4%) 
[29]. Additional file  1: Figure  E3b provides the Kaplan 
Meier Curves for probability of ICU survival according to 
ARDS severity.

Patient outcome
Overall ICU mortality was 34% for all recruited patients. 
Median length of ICU stay was 15 days (IQR 7 to 30 days). 
Mortality was significantly lower in female patients 
(27.6%) than in male patients (36.5%) (p = 0.0041). Mor-
tality was highest in octogenarians with an observed 
mortality of 45.7% (Additional file  1: Figure  E3a). 22% 
patients received ECMO therapy (21% in the retrospec-
tive cohort and 23.5% in the prospective cohort) with a 
median duration of 16 days (IQR 9 to 26). 95% of patients 
received veno-venous ECMO, 2% of patients received a 
veno-arterial ECMO and 3% received a transition from 
veno-venous to veno-arterial ECMO. Patients receiving 
ECMO therapy were significantly younger than those 

not receiving ECMO (57 (IQR 49 to 65) years vs. 66 (IQR 
56 to 76) years; p < 0.0001). 39.3% patients, not receiving 
chronic dialysis prior to ICU admission, received RRT/
dialysis therapy during their ICU stay (41.7% in the ret-
rospective cohort and 35.8% in the prospective cohort).

Prediction of ICU survival by EBM models
Overall performance of the different ML models includ-
ing results for balanced accuracies and precision recall 
area under the curve (PR-AUC) are given in Table 2. The 
EBM model based on variables reflecting status at ICU 
admission (Additional file 1: Table E8), resulted in a high 
precision recall area under the curve (PR-AUC) of 0.81 
and a moderate balanced accuracy of 0.64 (Additional 
file  1: Figure E4a). The ten most important predictive 
variables in the admission model were according to their 
predictive importance: age, platelet/neutrophil ratio, 
D-dimer, Horowitz quotient, hemoglobin, procalcitonin, 
Murray lung injury score, platelet count, interaction of 
c-reactive protein and interleukin-6 and absolute lym-
phocyte count (Fig.  2). Patients’ comorbidities were not 
under the fifteen most important variables. As shown in 
the shape function for the variable age, there is a transi-
tion from improved survival to worsened survival at the 
age of 61 years (confidence interval (CI) 60 to 62) with a 
first worsening at the age of 34.7 (CI 31 to 35) years. The 
platelet/neutrophil ratio was the second most important 
parameter showing a worsened outcome above a ratio of 
43.7 (CI 19.6 to 44.1). Elevated D-Dimers, for instance, 
affect ICU survival negatively at levels above 4.06 µg/ml 
(CI 3.78 to 4.07). Low Horovitz quotients demonstrated 
a negative impact on ICU survival with transitions for the 
worst impact at  PaO2/FiO2 quotients below 85 (CI 84 to 
86) and improved survival above 163 to 172. Overall per-
formance and results of the EBM model was similar for 
the different datasets (complete, prospective and retro-
spective) (Additional file 1: Table E9, Figure E5a).

Predicting the need for ECMO therapy by EBM models
EBM models for the prediction of ECMO therapy 
resulted in a good PR-AUC of 0.69 and a good balanced 
accuracy of 0.73. The five most important parameters 

Fig. 3 EBM prediction model showing importance of risk factors predicting need for ECMO or RRT in COVID‑19 ICU patients including admission 
data. (a) ECMO therapy left) A significant risk factors for outcome after analysis of admission data and weighed according to their importance for 
outcome. Right B importance of age for outcome and distribution of age data C importance of status “intubated” on ICU admission and distribution 
of status D) importance of status “external transfer” on ICU admission and distribution of status E importance of Murray lung injury score and 
distribution of MLIS data. Green indicates patients that did not receive ECMO therapy, orange indicates patients that did receive ECMO therapy. 
(b) Renal Replacement Therapy (RRT). Left A significant risk factors for outcome after analysis of admission data and weighed according to their 
importance for outcome. Right B importance of the interaction of age and D‑dimer level for outcome and distribution of data C initial creatinine 
values and distribution of data determined on admission D initial SOFA score w/o GCS and distribution of data determined on ICU admission. Blue 
indicates patients that did not receive RRT, red indicates patients that did receive RRT 

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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associated with ECMO therapy according to their predic-
tive importance were: age, ventilatory status “intubated” 
at ICU admission, admission by external transfer, Mur-
ray lung injury score, and admission by internal transfer 
(reduced risk) (Fig.  3a). The shape function for the fac-
tor age showed a higher risk for ECMO therapy below 
the age of 70 (CI 69 to 75) years. A Murray Lung injury 
score above a level of 2.8 (no CI) resulted in a higher risk 
for ECMO therapy. Patients admitted by external trans-
fer had a higher risk to receive ECMO therapy. Compari-
son of the EBM models and selected shape functions of 
important variables revealed similar results (Additional 
file 1: Table E9 and Figure E5b).

Prediction of renal replacement therapy by EBM models
Patients on chronic dialysis were excluded prior to EBM 
model generation. The EBM model on the complete data-
set resulted in a good PR-AUC (Additional file 1: Figure 
E4c). The five most important parameters according to 
their predictive importance were: interaction of age with 
D-dimer level, creatinine level, SOFA score w/o GCS, 
interaction of BMI with creatinine, and platelet/neutro-
phile ratio (Fig. 3b). Patients with an age below approxi-
mately 65 years combined with elevated D-dimers had a 
higher risk for the need of RRT (see heatmap of interac-
tion of age and D-dimers in Fig. 3b). An elevated creati-
nine level above 1.3 mg/dl (no CI) at ICU admission, as 
well as a SOFA score w/o GCS above 5 (no CI) resulted in 
a higher risk to receive RRT during ICU stay. Throughout 
all EBM models, creatinine and bilirubin levels showed a 
reverse correlation relationship.

Discussion
In this multi-center retrospective—prospective cohort 
study we identified and weighed possible predictive fac-
tors on COVID-19 outcome using a machine learn-
ing approach on 49 variables. Using the present ML 
approach, we confirmed previously reported factors and 
extend knowledge to novel factors and factor combina-
tions likely predicting outcome in COVID-19 patients. 
Shape functions for each of these variables show the indi-
vidual influence of the variable for the prediction of the 
outcome. For ICU survival these include age, platelet/
neutrophil ratio, D-dimers, and ARDS severity. The most 
important factors for the prediction of RRT need include 
the combination of Age and D-Dimers, Creatinine levels 
and SOFA score without GCS.

Previous studies have shown that older age, obesity, 
diabetes, being immunocompromised, lower  PaO2/FiO2, 
higher hemodynamic and renal SOFA score at ICU 
admission were independently associated with 90-day 
mortality in COVID-19 [14]. This has also been reported 
by other investigators, yet they did not show individual 

cutoff values nor weigh the individual importance for the 
identified factors [30, 31]. To exclude an early effect or a 
late effect as seen when logistic regression is performed, 
we included almost all admission variables collected for 
our cohort. Variable selection influencing outcome can 
be performed in ML models but is less crucial than for 
logistic regression. We refrained from such a variable 
selection in our EBM model’s decision process. In our 
analysis we were able to confirm that age and pulmo-
nary function on admission are important predictors in 
COVID-19 ICU patients. The present shape functions 
clearly show a non-linear association between the predic-
tive factors and the outcome variable. Patient’s age, for 
instance, as the most important predictive factor, shows 
a higher chance for ICU survival below 61  years. Addi-
tionally, the ML approach identified the D-dimer level 
and platelet/neutrophil ratio at ICU admission as impor-
tant factors. This is especially interesting in the context 
of reported thrombotic complications of COVID-19 
patients [32, 33]. When activated, neutrophils complex 
with platelets to form platelet-neutrophil complexes 
(PNCs) activating both cell types. These PNCs enhance 
inflammation, increases neutrophil extracellular trap 
formation, and result in micro-thrombosis [34, 35]. The 
same is applicable when looking at D-dimer levels. High 
D-dimer levels reflect an activation of inflammation and 
the formation of micro-thrombi with neutrophil extracel-
lular trap formation. We can therefore say that our data 
reflects the inflammatory markers known from trans-
lational science and confirm their relevance to outcome 
[35].

In everyday clinical practice, it is of great interest to 
assess the further course of patients in intensive care, 
such as a necessity for renal replacement or ECMO 
therapy. The present ML model predicting the need for 
ECMO therapy identified age and pulmonary compro-
mise (Murray lung injury score) as important factors. 
Admission both from an external hospital and already 
in an intubated state are associated with the need for 
ECMO therapy. This result is not surprising, as both 
younger and more severely pulmonary compromised 
patients were typically transferred for ECMO ther-
apy to our participating centers [36]. Our ML models 
assessing the need for RRT include age as an important 
factor as well as variables quantifying disease severity 
(SOFA score) or inflammatory and thrombotic activ-
ity (D-dimers and Platelet/neutrophil ratio). Our mod-
els do not only permit the identification of risk factors 
in COVID-19 patients, they also provide insights to 
the weight of each individual variable for the selected 
ICU outcome of the individual patient [18, 37]. The 
ML models chosen allow for transparent assessment 
of various variables in a non-linear fashion which 
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overcomes limitations of currently employed regression 
models. The use of shape functions in GAMs for each 
variable allows for complex relationships (even non-lin-
ear) between the variable and the outcome prediction. 
Therefore, EBMs can be significantly more accurate 
than simple linear models [27]. Interactions of differ-
ent variables extend the analyzing capabilities of the 
ML approach. Overall, the results from the EBM offer 
a greater degree of interpretability than a p-value of a 
linear regression, or an odds ratio analysis. As shown in 
Figs. 2 and 3 the visualizations offer insight into transi-
tion values from positive to negative impact, plateaus, 
as well as confidence intervals as a certainty measure.

A limitation of the present study is that we were 
not able to include even more patients into the analy-
sis. This is of course a valid point of criticism, yet the 
data used for our analyses were manually collected 
and curated. The data was not simply exported from 
an electronic medical record where missing data are 
prevalent and validity of the information has not been 
confirmed. Missing data often needs to be imputed 
prior to analysis. As a result of the design of our study, 
we were largely able to reduce imputation of missing 
data, again adding to the significance of our findings. 
The predictiveness of the models presented here dif-
fered for the three outcomes (survival, ECMO, RRT). 
This is likely due to the underlying dataset containing 
more information for predicting e.g. survival compared 
to ECMO. Since the study was designed with a focus on 
predicting survival, some variables which might better 
predict ECMO or RRT might not have been included 
in this study (for details see Additional file 1: Table E9). 
Furthermore, whereas the validation of survival predic-
tion was largely consistent between the retrospective 
and prospective datasets, there was more variability 
with regard to ECMO and RRT. A possible reason for 
this might be structural differences between the retro- 
and prospective datasets, e.g. changes in treatment or 
age cohort over time. However, the moderate predictive 
capabilities of the variables used in these ML models 
leave open the opportunity to add further, even trans-
lational technologies for risk prediction in future. A 
strength of our approach is the ability to determine a 
weight for individual patient factors with respect to an 
individual prediction. Additionally, risk factors are pre-
sented with a shape function. This allows for a more 
detailed interpretation and segmentation of risk fac-
tors than a simple linear incrementation, as it is the 
case for the linear regression. Finally, due to the imbal-
anced dataset (more patients survived ICU therapy, 
more patients did not need ECMO or RRT), our model 
is more reliable for predicting “survival” than “mortal-
ity”. Nonetheless, the strength of these clinical data is 

the generalizability across institutions and even other 
similarly resourced countries.

Conclusions
Yet, we present individual risk factors that can be com-
bined for a prediction of “survival” during COVID-19 
treatment and ICU course and these factors are weighed 
for importance. This has been done for the first time and 
will allow clinicians to weigh clinical criteria for outcome 
prediction in the patients treated.
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