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Nauris Zdanovskis 1,2,*, Ardis Platkājis 1,2, Andrejs Kostiks 3, Ol,esja Grigorjeva 4 and Guntis Karelis 3

����������
�������

Citation: Zdanovskis, N.; Platkājis,

A.; Kostiks, A.; Grigorjeva, O.; Karelis,

G. Cerebellar Cortex and Cerebellar

White Matter Volume in Normal

Cognition, Mild Cognitive

Impairment, and Dementia. Brain Sci.

2021, 11, 1134. https://doi.org/

10.3390/brainsci11091134

Academic Editor: Krystal Parker

Received: 25 July 2021

Accepted: 25 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia;
ardis.platkajis@rsu.lv

2 Department of Radiology, Riga East University Hospital, Hipokrata Street 2, LV-1038 Riga, Latvia
3 Department of Neurosurgery and Neurology, Riga East University Hospital, Hipokrata Street 2,

LV-1038 Riga, Latvia; andrejs.kostiks@gmail.com (A.K.); guntis.karelis@gmail.com (G.K.)
4 Department of Computer Control Systems, Riga Technical University, Kal,k, u Street 1, LV-1658 Riga, Latvia;

Olesja.Grigorjeva@rtu.lv
* Correspondence: nauris.zdanovskis@rsu.lv

Abstract: The cerebellum is commonly viewed as a structure that is primarily responsible for the
coordination of voluntary movement, gait, posture, and speech. Recent research has shown evidence
that the cerebellum is also responsible for cognition. We analyzed 28 participants divided into three
groups (9 with normal cognition, 9 with mild cognitive impairment, and 10 with moderate/severe
cognitive impairment) based on the Montreal Cognitive Assessment. We analyzed the cerebellar
cortex and white matter volume and assessed differences between groups. Participants with normal
cognition had higher average values in total cerebellar volume, cerebellar white matter volume, and
cerebellar cortex volume in both hemispheres, but by performing the Kruskal–Wallis test, we did not
find these values to be statistically significant.
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1. Introduction

The cerebellum is commonly seen as a structure that is primarily responsible for the
coordination of voluntary movement, gait, posture, and speech [1–3]. Recent research
has shown there is clear evidence that the cerebellum is responsible not only for motor
functions but also for cognition [1,4].

Based on cerebellar anatomy, it is not difficult to theoretically conclude that the cere-
bellum could be involved in cognition; i.e., we have approximately 16 billion neurons in
the cerebral cortex compared to 69 billion neurons in the cerebellum, and the same analogy
applies to cerebellar connections [1,5]. The cerebellum is connected to the brain via three
peduncles (superior, middle, and inferior cerebellar peduncles), which form cerebellar path-
ways and connections to the brain. There are several afferent tracts (cortico-ponto-cerebellar,
cortico-olivo-cerebellar, cortico-reticulo-cerebellar, spinocerebellar, dorsal spinocerebellar, ventral
spinocerebellar, cuneocerebellar, vestibulocerebellar, rostral spinocerebellar tract, and vestibulocere-
bellar tract) and efferent tracts (rubrospinal tract and cerebellovestibular tract) [5,6]. These tracts
connect to the sensorimotor and association areas of the cerebral cortex [7]. In functional
magnetic resonance studies (fMRI), the functional topography of the cerebellum shows
that sensorimotor tasks engage the cerebellar anterior lobe and lobule VIII, and cognitive
tasks activate the posterolateral cerebellar hemispheres [8–10]. Neuroimaging studies
suggest that the cerebellum forms anatomical connections with the prefrontal cortex, which
is important for normal cognitive function [11–13]. Additionally, there is evidence that
abnormal prefrontal–cerebellar connections are seen in patients with autism [14,15] and
schizophrenia [16].

In terms of cerebellar contribution to cognition, several mechanisms have been de-
scribed. In particular, cerebellar cognitive affective syndrome (CGAS) is characterized by
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impaired executive function (including planning, set-shifting, abstract reasoning, verbal
fluency, working memory), visuospatial memory and perception impairment, personality
changes, and impaired verbal fluency. These impairments were seen in patients with large,
bilateral, or pan-cerebellar disorders. Cerebellar lesions were located in the posterior lobe,
vermis, and anterior lobe [1,17,18].

In cerebellar stroke, lesion location is associated either with motor or cognitive deficits;
i.e., anterior lobe lesions usually impact motor functions, and posterior lobe lesions are
associated with worse cognitive scores [8,10,18].

It is important to note cerebellar changes with aging; i.e., with aging, there is a 10%
to 40% decrease in the Purkinje cell layer and reduction in dorsal vermis volume [1,19,20].
While the cerebellum is not the primary region of interest in aging and cognition, cell loss
in this region could potentially lead to functional changes [1].

In recent studies, there is evidence that the cerebellum contributes to cognitive func-
tioning, and, thus, it should be noted when analyzing magnetic resonance examinations in
patients with cognitive impairment.

In our study, we evaluated cerebellar white matter volume and cerebellar cortex
volume in participants with normal cognition, mild cognitive impairment, and moder-
ate/severe cognitive impairment.

2. Materials and Methods
2.1. Participant Groups and Montreal Cognitive Assessment Cutoff Scores

Participants with suspected cognitive impairment were admitted to the neurologist.
All participants were evaluated by the board-certified neurologist, and the Montreal Cogni-
tive Assessment (MoCA) was carried out. All participants had at least 16 years of higher
education. We divided participants into 3 groups [21,22]:

1. Participants with normal cognition (NC) with MoCA scores ≥27;
2. Participants with mild cognitive impairment (MCI) with MoCA scores ≥18 and ≤23;
3. Participants with moderate and severe cognitive impairment (SCI) with MoCA

scores ≤17.

We excluded participants with MoCA scores of 24, 25, and 26 as these scores are
inconclusive and can provide false-positive or false-negative results. Scores lower than
23 are not healthy with 88% accuracy and scores ≥27 are not pathological with 91%
accuracy [23]. Participant demographic data and MoCA results based on the participant
group are shown in Table 1.

Table 1. Demographic data and MoCA scores in participant groups (NC—normal cognition, MCI—
mild cognitive impairment, SCI—moderate and severe cognitive impairment).

Age MoCA

NC MCI SCI NC MCI SCI

Participants 9 9 10 9 9 10
Female:Male 6:3 4:5 6:4 6:3 4:5 6:4

Mean 55.1 71.4 74.8 28.7 20.9 10.1
Std. Error of Mean 5.4 2.4 3.3 0.3 0.7 1.3

Median 51.0 71.0 71.0 29.0 20.0 11.5
Std. Deviation 16.1 7.2 10.4 1.0 2.1 4.1

Minimum 35.0 58.0 66.0 27.0 18.0 4.0
Maximum 76.0 82.0 96.0 30.0 23.0 15.0

Exclusion criteria for participants were clinically significant neurological diseases
(tumors, major stroke, malformations, etc.), drug use, and alcohol abuse. Study participants
did not have other significant pathological findings on magnetic resonance imaging (MRI).

Based on the neurological assessment and MRI data, participants in MCI and SCI
groups had mixed types of cognitive impairment; i.e., we did not have participants in
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MCI and SCI groups that had clear evidence of one type of dementia (vascular dementia,
Alzheimer’s disease, Lewy body dementia, or frontotemporal dementia). All patients had
at least some T2 white matter hyperintensities and some degree of global cortical atrophy
in combination with other cerebral lobe atrophies.

2.2. Magnetic Resonance Imaging (MRI) Data Acquisition and Post-Processing with Freesurfer

MRI scans were performed on a single site 3T scanner in a university hospital setting.
For cerebellar parcellation, we used a sagittal 3D T1-weighted MP RAGE (Magnetization
Prepared Gradient Echo) sequence with 1 mm voxel size. Scans were converted from
DICOM format to neuroimaging informatics technology initiative (NIfTI) files and then
post-processed. Cortical reconstruction and volumetric segmentation were performed with
the FreeSurfer 7.2.0. image analysis suite, which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/, accessed on 1 July 2021). The
technical details of FreeSurfer processing steps and procedures are described in prior
publications [24–42].

2.3. Statistical Analysis

Statistical analysis was performed by using the software JASP Version 0.14.1 (Am-
sterdam, Netherlands). We analyzed descriptive statistics in all participant groups and
performed the Kruskal–Wallis test to identify statistically significant differences between
groups. Furthermore, we analyzed descriptive statistics for each participant group for both
cerebellar white matter volume and cortex volume, including mean, median, standard
deviation, minimum, and maximum values.

3. Results

We compared total cerebellum volume, white matter volume and cortex volume in
both cerebellar hemispheres and performed the Kruskal–Wallis test to evaluate statistical
significance between groups. In addition, we calculated mean, median, standard deviation,
minimum, and maximum values for each participant group. Results are grouped based on
cerebellar anatomical parcellation—left hemisphere white matter and cortex volume, right
hemisphere white matter and cortex volume, and total cerebellum volume.

3.1. Left Cerebellum White Matter Volume

Left cerebellum white matter volume data were acquired from FreeSurfer parcellation
statistical data. The descriptive statistics of participant groups are shown in Table 2.

Table 2. Descriptive statistics for left cerebellum white matter volume in participants with normal
cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI).

Left Cerebellum White Matter Volume, mm3

NC MCI SCI

Participants 9 9 10
Mean 12,684.2 11,429.8 11,506.7

Median 12,750.5 10,647.7 11,726.8
Std. Deviation 1699.8 1849.2 1852.4

Minimum 9944.9 10,186.9 7885.2
Maximum 14,908.2 16,105.9 14,536.1

Comparing mean values in groups, we found the highest values in the normal cogni-
tion participant group and the lowest values were found in the mild cognitive impairment
group (Figure 1).
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Figure 1. Mean left cerebellum white matter volume in mm3 with standard deviation in participant
groups. Black dots represent outliers (i.e., exceptionally diverging values).

The Kruskal–Wallis test was conducted to assess differences between groups. No
statistically significant changes were found between participant groups (H (2) = 3.476,
p = 0.176).

3.2. Left Cerebellum Cortex Volume

Left cerebellum cortex volume data were acquired from FreeSurfer parcellation statis-
tical data. The descriptive statistics of participant groups are shown in Table 3.

Table 3. Descriptive statistics for left cerebellum cortex volume in participant groups with normal
cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI).

Left Cerebellum Cortex Volume, mm3

NC MCI SCI

Participants 9 9 10
Mean 52,724.6 50,075.8 51,631.8

Median 52,665.2 51,573.7 51,431.8
Std. Deviation 5596.8 4919.9 6323.4

Minimum 46,530.4 41,886.6 40,268.9
Maximum 62,715.6 57,555.6 62,242.0

Comparing mean values in the groups, we found the highest values in the normal
cognition participant group, the lowest values were found in the mild cognitive impairment
group, and the highest variability was found in the moderate/severe cognitive impairment
group (Figure 2).

The Kruskal–Wallis test was conducted to assess differences between groups. No
statistically significant changes were found between participant groups (H (2) = 0.970,
p = 0.616).

3.3. Right Cerebellum White Matter Volume

Right cerebellum white matter volume data were acquired from parcellation statistical
data. The descriptive statistics of participant groups are shown in Table 4.
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Figure 2. Mean left cerebellum cortex volume in mm3 with standard deviation in participant groups.
Black dots represent outliers (i.e., exceptionally diverging values).

Table 4. Descriptive statistics for right cerebellum white matter volume in participants with normal
cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI).

Right Cerebellum White Matter Volume, mm3

NC MCI SCI

Participants 9 9 10
Mean 12,535.4 11,542.3 11,073.9

Median 12,279.9 11,124.0 11,237.1
Std. Deviation 1551.1 1542.9 2078.7

Minimum 10,220.2 9552.4 6591.0
Maximum 15,019.2 14,494.6 14,550.6

Comparing mean values in groups, we found the highest values in the normal cogni-
tion participant group, and the lowest values were found in the moderate/severe cognitive
impairment group (Figure 3).
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The Kruskal–Wallis test was conducted to assess differences between groups. No
statistically significant changes were found between participant groups (H (2) = 2.987,
p = 0.225).

3.4. Right Cerebellum Cortex Volume

Right cerebellum cortex volume data were acquired from FreeSurfer parcellation
statistical data. The descriptive statistics of participant groups are shown in Table 5.

Table 5. Descriptive statistics for right cerebellum cortex volume in participants with normal cogni-
tion (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI).

Right Cerebellum Cortex Volume, mm3

NC MCI SCI

Participants 9 9 10
Mean 53,667.8 51,066.6 52,981.4

Median 52,242.6 52,704.6 54,000.4
Std. Deviation 5982.1 5194.9 7410.6

Minimum 47,858.8 42,292.4 39,232.7
Maximum 63,872.6 58,125.1 65,617.1

Comparing mean values in groups, we found the highest values in the normal cogni-
tion participant group, and the lowest values were found in the mild cognitive impairment
group (Figure 4).
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Figure 4. Mean right cerebellum cortex volume in mm3 with standard deviation in participant
groups. Black dots represent outliers (i.e., exceptionally diverging values).

The Kruskal–Wallis test was conducted to assess differences between groups. No
statistically significant changes were found between participant groups (H (2) = 0.467,
p = 0.792).

3.5. Total Cerebellum Volume

Total cerebellum volume was calculated as a sum of white matter and gray matter
volume in the right and left cerebellum. The descriptive statistics of participant groups are
shown in Table 6.
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Table 6. Descriptive statistics for total cerebellar volume in participants with normal cognition (NC),
mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI).

Total Cerebellum Volume, mm3

NC MCI SCI

Participants 9 9 10
Mean 131,612.0 124,113.8 127,193.8

Median 131,689.9 125,600.9 130,447.9
Std. Deviation 14,099.5 11,921.3 16,451.6

Minimum 115,429.9 104,217.5 93,977.8
Maximum 155,494.1 140,885.4 152,585.8

Comparing mean values in groups, we found the highest values in the normal cogni-
tion participant group, and the lowest values were found in the mild cognitive impairment
group (Figure 5).
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The Kruskal–Wallis test was conducted to assess differences between groups. No
statistically significant changes were found between participant groups (H (2) = 1.188,
p = 0.552).

4. Discussion

In our study, we focused on general cerebellar quantitative measurement, i.e., white
matter and cortical volume in both cerebellar hemispheres.

Today, the cerebellum is recognized as an associative center of higher cognitive func-
tions [43,44]. Thanks to the fMRI studies, it was possible to map functional cerebro-
cerebellar connections and identify specific cerebellar regions that are responsible for
cognition [45].

Although the cerebellum contributes to cognition, when correlating cerebellar size,
volume, or general structure, it has a poor correlation with cognitive tests. These findings
have been reported in several articles:

Paradiso et al. correlated cerebellar volume with general intelligence, and although
there was a positive correlation, it was not statistically significant [46].

Bernard et al. analyzed the volume of several anatomical regions in the cerebellum
(anterior part, crus 1, posterior part, and vermis) and correlated volumetric data with
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cognitive tasks (digit symbol, trails, spatial span, spatial learning, letter span, and verbal
learning) and did not find a statistically significant relationship [47].

Hoogenda et al. found a minor relationship between larger cerebellar volume and bet-
ter cognition in healthy older adults, which further attenuated after correcting for cerebral
volume, concluding that it is not the main leading structure in terms of cognition [48].

Mitoma et al. in a consensus paper discussed cerebellar reserve and cerebellar cog-
nitive reserve. The cerebellar reserve is defined as the capacity of the cerebellum to
compensate and restore function in response to pathology. Regarding cerebellar cognitive
reserve, there may be no structural or functional differences in different disease groups (i.e.,
Alzheimer’s disease, frontotemporal dementia, autism spectrum disorder, schizophrenia,
and major depressive disorder) rather than compensatory reorganization changes that
improve behavior and cognition [49,50].

In general, although we did not achieve statistically significant results in our study,
it is important to be aware of cerebellar contribution to cognitive function, especially in
diagnostic imaging in patients with cognitive impairment.

Further research is necessary to assess more detailed cerebellar anatomical volumetric
measurements and correlate those findings with clinical data and cognitive testing.

Limitations

This was an exploratory study to assess the cerebellar white matter and cortical
volume in association with cognitive impairment and dementia. The limitations of this
study include cross-sectional design and a small participant cohort. In addition, it is
necessary to note that there were significant differences in the mean age of the participants
in study groups. The mean age for the NC group was younger than that for the MCI
and SCI groups. Thus, we expected the differences between the NC group and either the
MCI group or SCI group to be statistically significant, but we did not find any statistically
significant differences.

5. Conclusions

In our study, we did not find statistically significant differences in cerebellar cortex
volume and cerebellar white matter volume in participant groups with normal cognition,
mild cognitive impairment, and dementia.
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