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Simple Summary: Coffee pulp is a typical byproduct in nations where coffee is cultivated, par-
ticularly Thailand. Such phytonutrients as tannin, saponin, and chlorogenic acid are abundant in
this residue. Ruminants’ rumen fermentation and feed utilization may both be improved by these
substances. Our study demonstrates that feeding goats coffee pulp improved animal digestibility
and rumen fermentation activity without affecting feed intake or blood metabolite levels.

Abstract: This research examines the impact of adding dried coffee cherry pulp (CoCP) to goat
feed on the digestibility of the feed, rumen fermentation, hematological, and nitrogen balance.
A goat feeding experiment employed four male crossbreds (Thai Native × Anglo Nubian) aged
12 months and weighing 21.0 ± 0.2 kg each. The treatment was conceived as a 4 × 4 Latin square
with four specific CoCP levels at 0, 100, 200, and 300 g/day. Dry matter intake (DMI), organic matter
intake (OMI), and crude protein intake (CPI) were unaffected by the addition of CoCP. However,
across treatment groups, there was a linear increase in ether extract intake (EEI) (p < 0.01), neutral
detergent fiber intake (NDFI) (p = 0.06), and acid detergent fiber intake (ADFI) (p = 0.04), as well
as a quadratic effect on DMI% BW (p = 0.04). The findings showed that rumen temperature, pH,
ammonia-nitrogen, or pack cell volume did not change with CoCP supplementation. Total volatile
fatty acid showed linear effects on acetate (p = 0.03) and was quadratically affected by propionate
concentration (p = 0.02), acetate to propionate ratio (p = 0.01), acetic plus butyric to propionic acid
ratio (p = 0.01), and methane estimation (p = 0.01). With increased CoCP supplementation, there was
a linear decrease in protozoa count by about 20.2% as the amount of CoCP supplemented increased
(p = 0.06). CoCP supplementation in animal feed resulted in a linear decrease in urinary nitrogen
(p = 0.02) and a quadratic effect on absorbed nitrogen (p = 0.08) among treatment groups, with greater
N utilization values found in goats fed 200 g/d CoCP. In light of this, supplementing CoCP into
animal feed may improve animal digestion and rumen fermentation effectiveness while having no
effect on feed intake, rumen microbes, or blood metabolites.
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1. Introduction

A major issue for the twenty-first century is ensuring a sustainable global food supply.
The worldwide meat consumption will grow by 58% by 2050 [1]. Because it provides
an adequate number of non-limiting amino acids and a balanced fatty acid profile, the
flesh of small ruminants is one of the most significant sources of animal protein. Small
ruminant production in tropical nations, especially Thailand, has been severely impacted
by the degradation of grazing habitats and the growing expense of traditional concentrate
diets [2]. For long-term sustainability and the development of shrewd livestock feeding
practices, it is therefore imperative to give priority to research into alternative feed suppliers
in low-input production systems such as those in Thailand [1]. The use of agro-industrial
byproducts in livestock husbandry is essential in both emerging and developed nations.
The agro-industrial application is gaining popularity because it offers phytonutrient sources
(PTN), which are beneficial to animal nutrition and health [3].

Coffee pulp is a waste product that is plentiful in coffee-growing areas. The first
by-product of coffee processing is coffee pulp (CoP) or coffee cherry pulp (CoCP), which is
extracted from the grain or bean using either a wet or dry method. According to Gouvea
et al. [4], CoP is a residue formed during coffee wet processing that accounts for roughly
40–50% of the wet weight of the fresh fruit cherry. [5]. Coffee trash production is estimated
to be around 15 million tons per year [6]. CoCP has a high concentration of PTN and
antioxidant compounds such as caffeine, saponin, phenolic substances, chlorogenic acid,
and tannin content, which varies depending on the coffee species, stage of development,
farming practices, and extraction process. [7]. According to certain researchers, PTN (such
as tannin and saponin) is related to a decrease in protozoa and a decrease in methane
(CH4) gas [3,7,8]. Protozoa are primary ruminal hydrogen (H2) providers, and the H2
produced is largely transformed to CH4 by methanogens found inside protozoa or on their
surface [5]. Additionally, CoCP contains significant amounts of neutral detergent fiber (NDF,
41.5–46.0%), acid detergent fiber (ADF, 37.8–41.0%), crude protein (CP, 9.7–10.3%), 1.0–2.0%
of lipids, and 45.0–89.0% of carbohydrates (including pectin), suggesting the possibility of
using it as a ruminant feed [8–10]. The contents of P, K, Ca, and Mg in coffee pulp were
found to be 2.48, 25.13, 4.10, and 1.39 g/kg, respectively, whereas Fe and Mn were found to
be 77 and 46 mg/kg [11]. The CoCP can be used in the diets of ruminants, according to
de Souza et al. [12], because tannins can also reduce the digestibility of carbohydrates and
protein and prevent feed protein from rumen microbial degradation, enhancing animal
production [13,14]. According to Barcelos et al. [15], supplementing coffee husk with 1.65 kg
of DM/head/day did not influence weight gain in bulls. On dairy cows, some coffee by-
products have been tested. Cow diets can contain up to 150 g/kg of coffee pulp without
affecting output [16], or 25% of the diet at a 60:40 forage-to-concentration ratio [17,18]. As a
result, CoCP has great potential as a ruminant feed ingredient.

The use of CoCP as a source of phytochemical content in goats, on the other hand, has
gotten far less attention. We hypothesized that CoCP-containing PTN appears to affect
rumen fermentation and positively affect performance in experimental animals. Therefore,
the goal of this study was to see how adding CoCP as a phytochemical source affected
goat rumen fermentation, nutritional digestibility, hematological, CH4 estimation, and
nitrogen balance.

2. Materials and Methods
2.1. Preparing of Dried Coffee Cheery Pulp

The Prince of Songkla University, Department of Plant Science, Faculty of Natural
Resources, provided the Robusta CoCP used in this study. Machine extracts were used to
remove the coffee beans from the CoCP after the ripe coffee production and harvesting
were completed. CoCP was collected fresh and dried at 60 ◦C for 72 h before being ground
in a Cyclotech Mill (Tecator, Hganäs, Sweden) to pass through a 0.2-mm mesh screen,
packed in air-tight polyethylene bags, and stored in a freezing, dry place as recommended
by Hagerman [19]. The quantities of tannins, phenolic compounds, flavonoids, saponin,
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caffeine, and antioxidant content in the CoCP were analyzed by Makkar et al. [20]. The
total alkaloids were measured spectrophotometrically by Shamsa et al. [21]. The plant
material was extracted using methanol (100 g). Following the extraction, a portion of the
residue was melted in 2 N HCl and filtered again. 1 mL of this solution was transferred
to a separatory funnel and rinsed with 10 mL of chloroform (3 times). After that, 5 mL of
bromocresol green solution and 5 mL of phosphate buffer were added to the solution. After
stirring the mixture, 1 to 4 mL chloroform was used to separate the resulting complex. In a
10-mL volumetric flask, the extracts were collected and diluted to volume using chloroform.
The complex’s chloroform absorbance was measured at 450 nm (Unico Spectrophotometer,
2800 UV/VIS, NJ, USA).

2.2. Animals, Treatments, and Experimental Design

A goat feeding study was performed with four male crossbreds (Thai Native × Anglo
Nubian) at 12 months of age (21.0 ± 0.2 kg). The treatment design was a 4 × 4 Latin square,
with four different levels of CoCP. Based on a coffee literature review on byproduct utiliza-
tion, daily CoCP supplementation at 0, 100, 200, and 300 g/day was used as the dietary
treatment [12,15–17]. The diets were designed in accordance with NRC [22] standards in
order to attain a daily gain of 100 g. The ruminants were given free access to feed (50 g/kg
refusals) two times per day (07:00 a.m. and 4:00 p.m.). Before beginning the trial, the goats
were injected (ivermectin) against parasites and given a vitamin injection with AD3E for
prevention of vitamin deficiencies, stress and improvement of feed conversion in animals.
Table 1 shows the components and chemical compositions of TMR (total mixed rations)
and CoCP. To verify that the animals received all the supplements, CoCP was manually
hand-mixed with 200 g of TMR feed before the morning meal, and more TMR was provided
to individual animals later.

Table 1. Ingredients and chemical compositions used in the experiment: TMR basal diet and coffee
cherry pulp (CoCP).

Item Basal Diet CoCP 3

Ingredients, %DM
Rice straw 30.0

Ground corn 45.0
Soybean meal 7.30

Fish meal 0.40
Leucaena leaves meal 7.00

Palm kernel cake 7.00
Molasses 2.00

Dicalcium phosphate 0.40
Salt 0.20

Mineral and vitamin mix 1 0.70
Chemical composition, %

DM 95.27 94.52
OM 94.60 99.03
CP 15.10 11.62
EE 1.90 3.52

NDF 47.33 43.58
ADF 24.34 10.41

GE, Mcal/kg DM 4.35 4.08
ME, Mcal/kg DM 2 2.75 2.34

Tannins, mg/100 g DM - 4.27
Saponins, mg/100 g DM - 2.61
Caffeine, mg/100 g DM 0.92

Antioxidant activity content (mg Fe (II) equivalent/ 100 g DM) - 3.75
Phenolic compound content (mg gallic acid equivalent/ 100 g DM) - 7.50

Flavonoid content (mg catechin equivalent/ 100 g DM) - 4.37
DM, dry matter; CP, crude protein; OM, Organic matter; EE, Ether extract; NDF, Neutral detergent fiber; ADF,
Acid detergent fiber; ME, Metabolizable energy; GE, Gross energy. 1 Minerals and vitamins (each kg contains):
Vitamin A: 10,000,000 IU; Vitamin E: 70,000 IU; Vitamin D: 1,600,000 IU; Fe: 50 g; Zn: 40 g; Mn: 40 g; Co: 0.1 g; Cu:
10 g; Se: 0.1 g; I: 0.5 g. 2 Calculated value. 3 CoCP, Robusta coffee cherry pulp.
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Individual pens (0.115 × 0.95 m) beneath well-ventilated sheds with a constant supply
of water and mineral salts were used to raise the animals. The investigation was carried
out over four 21-day intervals. The total animals were fed their respective diets ad libitum
for the first 14 days before being moved to metabolism crates for total collection for the
final 7 days, during which they were limited to 90 percent of their previous voluntary
TMR feed intake and supplemented with varying amounts of CoCP to ensure overall feed
consumption.

2.3. Sampling Method and Data Collection
2.3.1. Fecal and Feed Sampling Methods

During the trial, the amount of feed supplied, the amount of CoCP, and orts samples
were all recorded on a daily basis. To investigate nutritional digestibility, feed, orts, and
fecal samples were collected from each individual goat using the total collection method
during the last 7 days of each period. The obtained samples were dried at 72 ◦C, milled
(1 mm screen using a Cyclotech Mill, Tecator, Sweden), and measured for dry matter
(DM; ID 967.03), ash (ID 492.05), ether extract (EE; ID 455.08), and crude protein (CP; ID
984.13) by the protocols of the Association of Official Analytical Chemists [23]. Analyses of
NDF and ADF were performed with α-amylase but without sodium sulphite according
to Van Soest et al. [24] NDF and ADF were expressed inclusive of residual ash. The CoCP
contained 94.5% DM, 11.6% CP, 0.97% ash, 3.52% EE, 43.6% NDF, 10.4% ADF of DM,
4.27 mg tannins/100 g DM, 2.61 mg saponins/100 g DM, 3.75 mg antioxidant activity
content/100 g DM, 7.50 mg phenolic compound content/100 g DM, and 4.37 mg flavonoid
content/100 g DM (Table 1). Using an automatic adiabatic bomb calorimeter, the feed gross
energy (GE) content was calculated (AC 500, LECO Corporation, St. Joseph, Michigan,
USA). The equation proposed by Robinson et al. [25] was used to compute metabolic
energy (ME).

ME (MJ/kg DM) = 0.82 × [2.4 × CP + 3.9 EE × 1.8 × the rest of the OM] × in vitro
organic matter digestibility (IVOMD).

2.3.2. Urine Sampling Method

Whole urine was collected on the same days as feces in a plastic container treated with
ten percent H2SO4. to keep the final pH below three and prevent nitrogen (N) extinction.
Urine samples were taken at approximately 100 mL of total volume, frozen, and pooled at
the end of each session using the AOAC total N measurement method [23].

2.3.3. Rumen Fluid Sampling Method

On the final day of the data collection session, rumen fluid samples were taken at 0
and 4 h post-feeding. The oral stomach collection device consisted of a 90-cm polyvinyl
chloride orogastric tubing with a 15-mL perforated plastic conical tube attached to one end
that served as a rumen sieve. The other end of the stomach tube was attached to an electric
vacuum pump. Each time, a stomach tube linked to a vacuum pump was utilized to extract
approximately 50 mL of rumen fluid from the rumen center. The pH and temperature of
rumen fluid were quickly measured using a portable pH and temperature meter (HANNA
HI-8424 Portable pH/ORP Meter, Woonsocket, USA). Following that, rumen fluid samples
were filtered through four levels of cheesecloth. A total of 45 mL of rumen fluid was col-
lected and maintained in a plastic bottle with 5 mL of sulfuric acid solution to disrupt the
microbial activity fermentation process (1 M). The mixture was centrifuged at 16,000× g for
15 min (Table Top Centrifuge PLC-02, FL, USA). Using a Kjeltech Auto 1030 Analyzer [23],
the supernatant was tested for ammonia nitrogen (NH3-N), and volatile fatty acids (VFAs)
were separated using a high-performance liquid chromatography method developed by
Mathew et al. [26] (HPLC, Instruments by Controller, water model 600E, water model
484 UV detector, column Novapak C18, column size 4 mm 150 mm, mobile phase 10 mM
H2PO4 (pH 2.5); ETL Testing Laboratory, Inc.). Estimation of ruminal CH4 using VFA pro-
portions according to the equation of Moss et al. [27] is as follows: CH4 production = 0.45



Vet. Sci. 2022, 9, 532 5 of 14

(acetate) − 0.275 (propionate) + 0.4 (butyrate). Collect about 20 mL of ruminal fluid with
a large-bore pipette (to determine for bacteria, protozoa, and zoospores) and add 1 mL
to the formalin solution. This step yields a 1:10 dilution. After diluting, keep samples
refrigerated. For protozoa counts, use a Sedgewick-Rafter chamber (S.I Scientific Supply
Co., Ltd., Bangkok, Thailand), and add a cover slip. Add a grid to the eyepiece of the
microscope. Then, to obtain the average per square, count 25 large squares (at random)
and divide the number of protozoa counted by 25. It is possible that a higher dilution
is required. Counting at 100 powers would most likely suffice. Use a Petroff-Hausser
chamber for bacterial counts (Xinxiang Vic Science & Education Co., Ltd., Henan, China).
To calculate the average number of bacteria per square, count one set of 25 squares, add
the counts, and divide by 25. Use 600 power phase contrast [28]. Moreover, the total direct
count of fungal zoospores was made using the methods of Galyean [28] based on the use of
a haemacytometer (Booeco).

2.3.4. Blood Metabolites

Blood samples (about 10 mL) were collected at 0 and 4 h post-feeding on the last day of
the data collection period from the jugular vein into tubes containing 12 mg of EDTA, and
the plasma was separated by centrifugation at 1500× g for 10 min (Table Top Centrifuge
PLC-02, USA). The plasma was kept at 20 ◦C until it was analyzed for blood urea nitrogen
(BUN), blood glucose (GLU), non-esterified fatty acids (NEFA), beta-hydroxybutyric acid
(BHBA), and creatinine (Cr). These analyses were performed on a fully automatic bio-
chemical analyzer using standard commercial kits supplied by Stanbio Laboratory (Taxas,
USA); NEFA and BHBA were analyzed using kits from Randox (Crumlin, UK). The plasma
concentrations of urea nitrogen and plasma glucose were measured by using a commercial
kit (No. 640, Sigma Chemical Co., St. Louis, MO, USA). Packed cell volume (PCV) was
determined using a microhematocrit method.

2.4. Statistical Analysis

All of the experimental data were analyzed to ANOVA for a 4 × 4 Latin square
design using the general linear model (GLM) techniques [29]. The model was used to
examine data.

Yijk = µ + Mi + Aj + Pk + εijk

where Yijk is the observation from animal j, receiving diet i, in period k; µ is the overall
mean; Mi is the effect of the different levels of CoCP (i = 1, 2, 3, 4); Aj is the effect of
animal (j = 1, 2, 3, 4); Pk is the effect of the period (k = 1, 2, 3, 4); and εijk is the residual
effect. To assess treatment effects on response variables, orthogonal polynomials (linear
and quadratic) were used. p < 0.05 was used as the threshold for significance, with p-values
of >0.05 < 0.10 indicating a trend approaching significance.

3. Results
3.1. Influence of CoCP on Feed Intake and Nutrient Digestibility

Feed intake, nutritional intake, and digestibility are shown in Table 2. Supplementing
with CoCP showed no effect on DMI or dietary intake (OMI and CPI). However, a linear
increase was found in EEI (p < 0.01), NDFI (p = 0.06), and ADFI (p = 0.04), and had
a quadratic effect on DMI as % BW (p = 0.04), and DMI as BW0.75 (p = 0.06) among
treatment groups. CoCP supplementation at 300 g/d decreased DM, OM, CP, NDF, and
ADF digestibility while increasing EE digestibility (p < 0.05). There was no difference in
estimated energy intakes (ME Mcal/DM/d) across treatments (p > 0.12). Nonetheless,
energy intake (ME Mcal/kg DM) showed a quadratic influence (p = 0.01).
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Table 2. Effects of dietary CoCP supplementation (g/d) on feed intake, nutrient intake, and apparent
digestibility of nutrients in goats.

Item Supplement Levels (g/d) of CoCP 1 SEM 2 Contrast p-Value 3

0 100 200 300 Linear Quadratic

Dry matter intake
Total DMI, kg/d 0.851 0.885 0.898 0.869 0.04 0.75 0.50

DMI, %BW 3.51 3.84 3.87 3.58 0.16 0.71 0.04
DMI, g/kg W0.75 77.84 84.14 84.90 79.32 3.50 0.69 0.06

Nutrient intake, kg/d
OMI 0.786 0.819 0.824 0.786 0.03 0.97 0.41
CPI 0.126 0.133 0.137 0.132 0.01 0.74 0.46
EEI 0.016 b 0.018 ab 0.022 a 0.022 a 0.01 <0.01 0.41

NDFI, kg/d 0.351 0.376 0.390 0.410 0.03 0.07 0.93
ADFI, kg/d 0.186 b 0.201 ab 0.225 a 0.244 a 0.01 0.04 0.91

Apparent digestibility, %
DM 69.38 a 71.10 a 70.21 a 63.82 b 1.15 0.03 0.03
OM 70.95 a 72.28 a 70.59 a 64.73 b 1.27 0.01 0.04
CP 71.35 ab 74.42 a 73.72 a 67.16 b 1.30 0.11 0.02
EE 70.10 b 79.61 a 83.40 a 81.29 a 2.56 <0.01 0.03

NDF 56.93 a 59.07 a 57.56 a 50.44 b 1.20 0.09 0.05
ADF 34.65 a 38.94 a 37.41 a 25.51 b 2.50 0.06 0.04

Estimated energy intake 4

ME, Mcal/d 2.12 2.25 2.21 1.94 0.12 0.30 0.12
ME, Mcal/kg DM 2.49 a 2.54 a 2.46 a 2.23 b 0.04 <0.01 0.02

DMI, dry matter intake; CPI, crude protein intake; OMI, Organic matter intake; EEI, Ether extract intake; NDFI,
Neutral detergent fiber intake; ADFI, Acid detergent fiber intake; DM, dry matter; CP, crude protein; OM, Organic
matter; EE, Ether extract; NDF, Neutral detergent fiber; ADF, Acid detergent fiber; ME, Metabolizable energy. ME,
Metabolizable energy; GE, Gross energy. 1 Levels of coffee cherry pulp (CoCP) supplementation at 0, 100, 200,
and 300 g/d/animal. 2 SEM = Standard error of the mean. 3 Significance was defined as p < 0.05, whereas p < 0.10
indicated a trend. 4 1 kg of digestible organic matter (DOM) = 3.8 Mcal ME/kg [25]. a,b means in the same row
with different lowercase letters differ (p < 0.05, p < 0.01).

3.2. Influence of CoCP on Rumen Characteristics and Blood Metabolites

Table 3 shows the rumen temperature, pH, ammonia nitrogen (NH3-N), PCV, and
blood urea nitrogen (BUN) values from the rumen fermentation investigation. The addition
of CoCP to the diet had no effect on rumen temperature, pH, NH3-N, or PCV. However,
feeding CoCP at a rate of 200 g/d resulted in plasma GLU levels that were higher than
those in the control group. BUN was lowered linearly (p = 0.01) after treatment with CoCP.
NEFA (p = 0.01) and BHBA (p = 0.05) content also decreased linearly.

Table 3. Effects of dietary CoCP supplementation (g/d) on the rumen fermentation and blood
metabolites in goats.

Item Supplement Levels (g/d) of CoCP 1 SEM 2 Contrast p-Value 3

0 100 200 300 Linear Quadratic

Temperature, ◦C 39.30 39.40 39.30 39.10 0.16 0.83 0.25
Ruminal pH 6.00 6.04 6.04 5.96 0.05 0.76 0.48

NH3-N, mg/dL 20.58 23.47 22.36 18.26 2.77 0.66 0.40
BUN, mg/dL 21.58 a 17.39 b 17.87 b 17.37 b 0.34 <0.01 <0.01
GLU, mg/dL 63.69 b 66.25 ab 66.75 a 66.50 ab 0.81 0.04 0.43

PCV, % 28.63 29.25 29.50 29.37 0.69 0.43 0.59
NEFA, µmol/L 225.63 a 210.13 ab 205.63 b 198.88 b 3.25 <0.01 0.67
BHBA, µmol/L 0.48 a 0.42 ab 0.35 b 0.38 ab 0.02 0.05 0.24

Cr, mg/dL 1.19 1.29 1.14 1.17 0.06 0.70 0.78

NH3-N, ammonia nitrogen; BUN, blood urea nitrogen; GLU, blood glucose; PCV, pack cell volume; NEFA,
non-esterified fatty acids; BHBA, beta-hydroxybutyric acid; Cr, creatinine. 1 Level of coffee cherry pulp (CoCP)
supplementation at 0, 100, 200, and 300 g/d/animal. 2 SEM = Standard error of the mean. 3 Significance was
defined as p < 0.05, whereas p < 0.10 indicated a trend. a,b means in the same row with different lowercase letters
differ (p < 0.05, p < 0.01).
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3.3. Influence of CoCP on Volatile Fatty Acid Profiles

Table 4 and Figure 1 show the VFA from the rumen fermentation investigation. Total
VFA had quadratic effects (p = 0.02), while acetate (p = 0.03), propionate concentration
(p = 0.02), acetate to propionate ratio (p = 0.01), acetic plus butyric to propionic acid ratio
(p = 0.01), and CH4 (p = 0.01) had linear effects. The addition of CoCP had no effect on the
molar proportions of individual VFA, butyric acid, or other VFA (p > 0.05).

Table 4. Effects of dietary CoCP supplementation (g/d) on the ruminal volatile fatty acid (VFA)
profiles and methane (CH4) estimation in goats.

Item Supplement Levels (g/d) of CoCP 1 SEM 2 Contrast p-Value 3

0 100 200 300 Linear Quadratic

VFA profiles, mol/100 mol
Acetic acid 62.28 a 58.40 b 56.99 b 57.35 b 0.74 0.03 0.18

Propionic acid 22.58 c 26.38 b 28.04 a 26.35 b 0.36 0.02 0.03
Butyric acid 12.76 12.91 12.24 13.39 1.33 0.79 0.63

Acetic/propionic acid ratio 2.78 a 2.28 b 2.09 c 2.23 bc 0.04 0.01 0.04
Estimated methane,

mol/100 mol 4 26.92 a 24.18 b 22.83 c 23.91 b 0.29 0.01 0.04

1 Levels of coffee cherry pulp (CoCP) supplementation at 0, 100, 200, and 300 g/d/animal. 2 SEM = Standard
error of the mean. 3 Significance was defined as p < 0.05, whereas p < 0.10 indicated a trend. 4 Methane = (0.45 ×
acetic acid, mmol/L) – (0.275 × propionic acid, mmol/L) + (0.40 × butyric acid, mmol/L) [27]. a–c means in the
same row with different lowercase letters differ (p < 0.05, p < 0.01).
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Figure 1. Effects of dietary CoCP supplementation (g/d) on total volatile fatty acids (TVFA) of Thai
crossbred goats. a–c means in the same row with different lowercase letters differ (p < 0.05, p < 0.01).

3.4. Influence of CoCP on Microbial Population

The amount of rumen microbes’ data is shown in Table 5. CoCP supplementation had
no influence on ruminal bacterial populations or fungal zoospore counts (p > 0.05). Nonethe-
less, increased CoCP supplementation led to a linear reduction in protozoa (p = 0.06).
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Table 5. Effects of dietary CoCP supplementation(g/d) on the microorganism count in the rumen.

Item Supplement Levels (g/d) of CoCP 1 SEM 2 Contrast p-Value 3

0 100 200 300 Linear Quadratic

Bacteria (×1010 cells/mL) 7.27 7.39 7.63 7.77 0.36 0.33 0.98
Fungal zoospores
(×106 cells/ mL) 1.10 1.05 1.28 1.26 0.12 0.23 0.91

Total protozoa
(×106 cells/mL) 3.02 2.99 2.81 2.41 0.26 0.06 0.95

1 Levels of coffee cherry pulp (CoCP) supplementation at 0, 100, 200, and 300 g/d/animal. 2 SEM = Standard
error of the mean. 3 Significance was defined as p < 0.05, whereas p < 0.10 indicated a trend.

3.5. Influence of CoCP on N Balance

Figure 2 shows the N consumption, output, and use of N fed with various doses
of CoCP. Total nitrogen intake and fecal excretion were not significantly different across
treatments (p > 0.05). Nonetheless, CoCP supplementation had a linearly decreasing impact
on urinary N (p = 0.02) and a quadratic impact on N absorption (p = 0.08) between treatment
groups, with goats fed CoCP at 100–200 g/d having a higher value of N consumption.
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4. Discussion
4.1. Nutrients and Phytochemical Composition of CoCP

Coffee waste has been the subject of much research, and it has ramifications for many
parts of human life. Some studies have shown that coffee waste can be used as organic
fertilizer and animal feed for rabbits, pigs, and fish [30]. When compared to coffee beans,
the pericarp of coffee produces a high phenolic content, and it also has a similar tannin
and polyphenol content to coffee seeds [31,32]. According to Table 1, CoCP possessed
macronutrients such as crude protein, organic matter, and ether extract that were essen-
tially identical to the composition of the basal diet, but it also had a lower ADF value
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than rice straw and the basal diet, indicating that this substance has greater nutrition as
ruminant feed. Furthermore, phytochemical compounds or phytogenic feed additives
(PFA) such as tannin, saponin, phenolic component flavonoids, and antioxidant activity
at low concentrations were conceived by CoCP. Phytochemicals provide a wide range of
benefits in animals, including lowering CH4, enhancing microbial activity, protein binding,
regulating rumen diseases, and promoting fiber digestion [14,33,34]. Saponin is one of the
phytochemical substances that may contribute to selective defaunation from the rumen
microbial community, enhancing ruminant nitrogen utilization and perhaps improving
growth and milk production [35]. The antioxidant effect also impacts the goat’s metabolism.
Other studies using plants with high phenolic content found that processing plant sec-
ondary compounds increased the synthesis of biotransformation enzymes in goats [36]. The
flavonoid component of the plant has been shown to influence rumen microbial metabolism
by changing fermentation conditions such as pH and protein breakdown [37]. High tannin
levels in forages were found to impair goat digestibility and feed intake in one study [38],
but another study found that adding tannin in low concentrations to forages can improve
goat weight by altering rumen fermentation and reducing internal parasite burdens as well
as protecting dietary protein in the rumen [39]. Saponin and tannin can lower methane
and ammonia production in the rumen, resulting in improved animal development and
nutrition use [33].

4.2. Influence of CoCP on Digestibility and Intake

Supplementation of CoCP at 100–200 g/d had no impact on feed intake except for an
increase in EEI, which is a direct shift in the chemical composition of CoCP with around
3.5% EE content. Our findings reveal that plant-derived byproducts have only a minor
impact on palatability. At all amounts of CoCP added to the diet, animals maintain a steady
feed intake. Incorporation (not supplementation) of up to 200 g/d CoCP has no adverse
effects on feeding value and may significantly increase the propionate:acetate ratio in the
end products of fermentation and thereby increase amino acid uptake and reduce CH4
production. Similar to other studies that have shown that including coffee residues in diets
at values between 25 and 28% had no negative impact on the DM digestibility of sheep [40],
total nitrogen intake of dairy heifers [41], or feed intake of lambs during fattening [42].

However, supplementation with CoCP at 300 g/d can have a detrimental effect on
digestion. This may be because the presence of tannin, saponin, and phenolic chemicals
may influence the nutritional digestibility [14]. A reduction in rumen cellulolytic bacteria,
in accordance with Patra et al. [33], may be what causes plant extracts’ inhibitory effects
on feed digestibility. It could be related to the volatile essential oils, tannins, and other
metabolites present in the plants under investigation that limit the action of certain enzymes
(such as acetylesterase, xylanase, and carboxymethylcellulase) [43].

4.3. Influence of CoCP on Rumen Characteristics and Blood Metabolites

In this study, supplementation with CoCP decreased BUN in comparison with the
control group (Linear, p < 0.01); although, likewise, in our experiment, the slight decrease
in NH3-N was not statistically significant. These effects may be related to the high content
of phenolic compounds, especially the amount of CT, SP, polyphenols, and caffeine [44].

The use of tannins in the ruminant diet is well recognized to inhibit protein breakdown
in the rumen [45]. Furthermore, the data in Table 3 clearly demonstrated the positive effect
of the maximum CoCP supplementation (300 g/d) on BUN release. NH3 synthesis in the
rumen is closely associated with BUN concentrations [46]. Because blood urea N rises
when the kidney is harmed, it is a useful indicator of renal function.

The most commonly used biochemical measurements in evaluating energy metabolism
in animals such as dairy cows and small ruminants are GLU, NEFA, and BHBA in plasma.
According to one study, plasma NEFA and BHBA have been found to have a negative
correlation to energy balance in lactating cows [47]. The increase in plasma glucose with
increased CoCP intake revealed the glucogenic capacity of this additive in the current
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investigation [48], with a mean glucose amount of 65.79 mg/dL. These results agree with
those of Chanjula et al. [39], who observed a mean value of 62.90 mg/dL in goats fed
fermented oil palm fronds supplemented with urea-calcium hydroxide. Because the optimal
glucose range is 50 to 80 mg/dL [46], all groups in all samples were within this range.

Furthermore, CoCP addition reduced the plasma content of NEFA and BHBA. These
findings indicate CoCP could reduce body fat mobilization while also enhancing negative
energy balance and milking ability in lactating cattle [49]. Lower NEFA concentrations
in the CoCP treatment group might be attributed to higher content in the rumen. Hence,
CoCP supplementation was expected to increase energy intake, which is consistent with the
present research, and hence decrease the level of NEFA and BHBA in the serum. Improved
negative energy balance related to CoCP serves as the foundation for its use in small
ruminants. However, the mode of action is unknown. Creatinine is a biological marker
used to evaluate muscle activity or renal disease. In the current research, it was discovered
that supplementation of CoCP had no effect on creatinine levels during the administration
of meals with or without CoCP, similar to the results reported by Carta et al. [50].

4.4. Influence of CoCP on Microbial Population

It is widely known that PSM has antibacterial activities against ruminal microbiota
(bacteria, protozoa, and fungi). Both phenolic and nonphenolic chemicals are responsible
for this activity [51]. The effect on the ruminal microbiota varies depending on the plant
type ingested.

CoCP supplementation had no effect on ruminal microbial numbers, but it did appear
to reduce protozoa populations linearly by about 20.2% as the amount of CoCP supple-
mented increased. Because of the hydrophobicity of their active chemicals, PSM has a wide
spectrum of anti-microbial actions against microbial populations, including protozoa and
PSM [44,45]. In their dairy cows’ study, Junior et al. [52] employed A. mearnsii containing
CT at 6 g/kg, which led to a reduction in protozoal numbers. Nevertheless, research on the
effect of tannins on ruminal protozoa has been contradictory [43]. While a few investiga-
tions found inconclusive results [8], others found significant antiprotozoal action [15,16].
The exact mechanism by which tannins influence protozoa in the rumen is unknown;
however, tannins’ lipophilic nature has been proposed to increase EO permeability through
the protozoal membrane [34]. In summary, PSM generally decreases the ruminal proto-
zoal population because of a decrease in cell membrane permeability, resulting mostly in
decreased ruminal CH4 generation (i.e., inhibition of ruminal methanogens).

Furthermore, Patra and Saxena [33] demonstrated that SP-containing plants or extracts
limit protozoal growth. Saponins could bind to cholesterol and form irreversible complexes
in the protozoal cell membrane, resulting in cell membrane breakdown, lysis, and death [32].
Saponins have been shown to have antiprotozoal properties in vitro [32,33] and in vivo [37].
Furthermore, Fagundes et al. [53] discovered that tannin-rich fodder affected the population
of rumen bacteria. Since bacteria are less preyed upon by protozoa, a drop in protozoal
numbers increases the total bacterial population.

Because some methanogen communities retain ectosymbionts and endosymbionts of
protozoa, the removal of protozoa by SP can diminish CH4 synthesis [32]. Furthermore, CT
inhibits methanogenesis by either directly lowering methanogenic archaea or indirectly
reducing protozoal numbers, hence lowering methanogens symbiotically connected with
protozoal numbers [33,43].

On the other hand, CoCP supplementation at 300 g/head/day decreased the protozoal
population. In this study, the relative impact of SP’s anti-protozoa impact in CoCP on
acetate, propionate, and CH4 synthesis was not assessed. Since the model in this experiment
estimated CH4, discussions on CH4 production with other components could be restricted.
Although there are several models with various features for estimating CH4 emission from
ruminants, the majority of them rely on feed intake, which is challenging to gather on a
large scale, making them ineffective [27].
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4.5. Influence of CoCP on Volatile Fatty Acid Profiles

Changes in ruminal fermentation end products such as NH3-N and VFA are generated
by changes in ruminal bacteria caused by phytochemical supplementation [37,44]. The
concentration of TVFAs in the rumen shows animal feeding efficiency, as TVFAs are the
primary source of energy for ruminants. In this experiment, CoCP supplementation at
200 g/head/day improved propionate while decreasing acetate, C2:C3, and CH4 synthesis.
Likewise, Gunun et al. [36] found that increasing propionate resulted in a decrease in CH4
generation by Mao seed meal (96 g CT/kg and 92 g SP/kg) at 0.8–2.4% DM intake in goats.
Furthermore, Cherdthong et al. [51] reported that supplementing Thai native beef cattle
with Delonix regia seed meal (93 g tannins/kg and 12 g SP/kg) at 90–270 g/head/day
increased propionate synthesis while reducing CH4 generation at 4 h post-feeding. These
observations are most likely because CT in MPM suppresses methanogen for more than 15 h,
reducing CH4 generation and boosting propionate volume proportion in the rumen prior
to feeding. CT in CoCP could reduce CH4 estimates by (a) suppressing the methanogen
population directly, (b) changing the VFA profile, and (c) changing the C2:C3 ratios [51].
Declined ruminal total and cellulolytic bacterial numbers are frequently linked to reductions
in VFA synthesis when tannins have a deleterious effect on substrate fermentation [45].
Tannins’ influence could be seen in changes to the primary VFA ratios [40]. With tannin
feeding, there was an increase in acetate and a decrease in propionate or acetate [38].

Saponins have different effects on VFA production. The majority of investigations
found that ruminal propionate levels were higher while acetate and butyrate levels were
lower [33]. Such effects are caused by saponins’ inhibitory effects on G+ bacteria (typically
acetate producers) and protozoa, leading to greater propionate production [54]. In an
in vitro investigation, Hu et al. [55] demonstrated that tea saponins at 8 mg/0.2 g of diet
had no effect on acetate, propionate, or butyrate levels.

4.6. Influence of CoCP on N Utilization

CoCP had no effect on N consumption, fecal N output, urine N excretion, total N
excretion, or N absorption. Although retention of N was unaffected at 100 to 200 g/d, CoCP
was reduced once 300 g/d of CoCP was added. The maximum nitrogen retention was
obtained by supplementing with 100 to 200 g/d of CoCP (percent of N intake). Likewise,
Wanapat et al. [46] discovered that although 150 g/d of lemongrass powder (LGP) had no
effect on N consumption, the output of N, N absorption, or retention of N, 200 or 300 g/d
of LGP addition reduced the intake of N, the output of N, absorption of N, and retention of
N. Owens and Zinn [56] indicate that differences in N metabolism might be represented by
N retention and N excretion since N retention was the most relevant marker of animals’
protein dietary status. Currently, 100 to 200 g/d of CoCP addition reduces N excretion
while increasing N retention, with the N accumulation to N intake ratios of 9.31; 9.19 g/d
and 56.14; 57.82%, respectively. This could be due to the addition of CoCP, which can
limit the level of N breakdown in the rumen, resulting in slower N excretion rates when
compared with the control [17,18]. Excessive N is promptly converted to NH3 by ruminal
microbial urease, which is normally eliminated in the urine as urea [35,46].

5. Conclusions

According to this study, CoCP may be added to goat diets at a level of up to 200 g/d
without compromising feed intake or nutrient digestibility. With 200 g/d of supplemental
intake, TVFA and C3 are maximized. According to the study, 300 g/d is not recommended
since it lowers digestibility and rumen fermentation output. At this level, N absorption also
degrades. Future study into goat products, such as the impact of CoCP on carcasses or meat
quality, is likely to lead to CoCP being utilized as a feed supplement in environmentally
friendly animal production systems.
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