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Abstract

Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that 

can be associated with clinical variables or modulated by interventions such as behavioral training 

or pharmacological manipulations. These biomarkers include time-averaged regional brain 

function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled 

(ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with 

either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are 

typically carried out using just one of several prescribed state conditions such as eyes closed (EC), 

eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and 

specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state 

task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and 

examined the effects of these task conditions on reliability and reproducibility as well as trait 

specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and 

compared the network connectivity reliabilities between the four ASL conditions and the BOLD 

FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, 

reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX 

was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and 

trait specificity than EO and EC. Overall network connectivity reliability was comparable between 

ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of 

resting-state regional brain function and support the use of EC or EO over FIX and PVT as the 

resting-state condition.
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Introduction

Resting state fMRI (rs-fMRI) reveals the intrinsic brain activity unrelated to a specific 

cognitive of sensorimotor task and it is now widely used to characterize the state and trait 

effects of brain function (Matthews et al., 2006; Sorg et al., 2007; Fox and Raichle, 2007; 

Raichle, 2015; Bijsterbosch et al., 2017; Detre et al., 2009, 2012). Because resting-state 

fMRI requires minimal subject engagement, it can easily be acquired in a variety of 

populations including patients (Power et al., 2014) and, in contrast to task fMRI, can address 

brain function broadly across multiple domains as subserved by differing brain regions and 

networks. In general, state effects are studied within subject over time, whereas trait effects 

are derived from cross-sectional analyses.

Two rs-fMRI techniques, blood oxygen level dependent (BOLD) MRI and arterial spin 

labeled (ASL) perfusion MRI, have been most commonly used to measure resting brain 

function. Whereas rs-fMRI based on BOLD contrast detects spatial correlations in 

spontaneous fluctuations of brain activity as manifested in BOLD signal revealing 

distributed networks (Fox and Raichle, 2007; Raichle, 2015; Bijsterbosch et al., 2017), it is 

challenging to interpret the magnitude of resting brain activity since BOLD signal intensity 

does not provide absolute quantification of cerebral blood flow (CBF) or metabolism. In 

contrast, ASL MRI can measure resting function directly at the voxel level using 

magnetically labeled arterial blood water as an endogenous diffusible tracer for 

quantification of regional CBF (Detre et al., 2009, 2012), which is thought to be coupled to 

regional neural activity (Raichle, 1998). Static regional CBF (i.e. mean CBF signal averaged 

across an acquisition) is typically used as a measure of regional brain function (Detre et al., 

2009). However, dynamic fluctuations of CBF (e.g. correlations of CBF fluctuations 

between brain regions) can also be used to assess for spatially correlated changes in brain 

function in a manner analogous to resting-state BOLD fMRI (Dai et al., 2016).

Resting-state BOLD MRI has been used to identify macroscale brain network organization 

(Petersen and Sporns, 2015; Power et al., 2014), and functional connectivity metrics have 

been applied as biomarkers for brain development (Richmond et al., 2016), various disorders 

(Sheline and Raichle, 2013; Hull et al., 2016; Sheffield and Barch, 2016) and drug effects 

(Kaczkurkin et al., 2016). Resting-state ASL has also been used to study the neural 

correlates of state effects such as task (Lim et al., 2010; Poudel et al., 2012) or 

pharmacological manipulation (Kaczkurkin et al., 2016) as well as trait effects including 

both genotype (Rao et al., 2007; Franklin et al., 2009) and phenotype (Gianaros et al., 2009).

Although rs-fMRI nominally addresses task-independent brain function, data must be 

acquired under some task condition, albeit typically low-level, such as eyes closed (EC), 

eyes open (EO), or visual fixation on a cross-hair (FIX), while the subject lies quietly in the 

scanner (Power et al., 2014). The specific conditions for rs-fMRI acquisition may influence 
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regional brain function and its reproducibility. Systematic differences between task 

conditions have been reported for BOLD rs-fMRI (Marx et al., 2004; Liu et al., 2013; 

Castellanos et al., 2013). For example, Bianciardi et al. reported substantially higher 

spontaneous fluctuations of activity in visual areas in EC than FIX (Bianciardi et al., 2009). 

Dijk et al. compared the EC, EO, FIX and continuous word-classification tasks and reported 

stronger functional connectivity in default mode and attention networks in EO and FIX than 

the other tasks (Van Dijk et al., 2010). Patriat et al. compared EC, EO and FIX, and found 

higher functional connectivity in an auditory network in EC than in the other conditions, 

greater reliability in FIX than in other conditions of within-network connectivity 

measurements of default mode, attention and auditory networks, and greater reliability in EO 

in primary visual network connectivity (Patriat et al., 2013). Tagliazucchi et al. analyzed the 

functional connectivity of a large publicly available rs-fMRI dataset and reported that EO 

subjects were less likely to fall asleep during the scan than EC subjects, and FIX subjects 

had a higher likelihood of staying stably awake (Tagliazucchi and Laufs, 2014). Similarly, 

using ASL MRI, Hermes et al. reported greater CBF in primary and secondary visual cortex 

in EO than EC (Hermes et al., 2007). Zou et al. reported higher CBF in primary visual 

cortex in EO than EC (Zou et al., 2015b), but negligible CBF reliability difference between 

the two conditions (Zou et al., 2015a). These studies provided valuable insights into the 

differences between the rs-fMRI conditions, however, systematic comparisons between the 

commonly used rs-fMRI task conditions are still lacking, especially for ASL MRI.

Understanding how task conditions affect the reliability of rs-fMRI is crucial for developing 

and optimizing rs-fMRI biomarkers used to elucidate state and trait effects on brain function 

(Finn et al., 2017). The goal of the present study was to evaluate the effects of specific 

resting task conditions on ASL MRI, including both mean CBF and the functional 

correlations in CBF time series, so as to optimize the reliability and sensitivity for detecting 

state and trait effects on regional brain function. We collected ASL MRI during 4 resting-

state task conditions: EC, EO, FIX and PVT (Psychomotor Vigilance Task: a low-level, low-

frequency, sustained attention task), at two time points separated by approximately one week 

in a healthy adult cohort. We used intraclass correlation coefficient (ICC) (Shrout and Fleiss, 

1979) and within-subject coefficient of variation (wsCV) to examine the effects of task 

condition on CBF reliability for detecting state effects, based on the notion that the task 

condition that would provide the highest sensitivity to state changes across time or trait 

effects across groups would show the highest ICC and lowest wsCV across repeated 

measures. In addition, a metric for “trait specificity” (portion of the variance of the observed 

variable determined by transsituationally consistent and temporally stable trait effects) was 

derived using latent state-trait (LST) modeling (Steyer et al., 2015), which reflects both the 

consistency and the stability of the measurements (Hagemann et al., 2002). Previous work 

using 1.5T ASL data demonstrated high trait specificity of CBF (Hermes et al., 2009). In the 

present study, we applied the LST model to examine the effects of task condition on trait 

specificity. For comparison with ASL MRI data, we also acquired resting-state BOLD fMRI 

under a single resting-state condition (FIX) that was previously suggested to maximize 

resting-state BOLD retest reliability of default mode, attention and auditory networks 

(Patriat et al., 2013), and compared the reliability of the network connectivity across the four 

ASL conditions and BOLD FIX condition.
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Methods

Subjects

32 healthy adult subjects (19 female, age = 28.7 ± 4.9 years) with no history of neurologic or 

psychiatric disorders consented to the study. The study procedures were approved by the 

University of Pennsylvania Institutional Review Board (IRB). All subjects provided written 

informed IRB-approved consent prior to participating in the study procedures.

MRI acquisition

The subjects completed two MRI scanning sessions spanning a mean of 7 days. Each session 

was conducted at the same time of day for each subject, using either a 3T Siemens Trio and 

32-channel head array (for N = 14 subjects) or a 3T Siemens Prisma and 64 channel head 

array (for N = 18 subjects). The same scanner was used for both scans in each subject. The 

scanning protocol included a 1 mm isotropic T1-MPRAGE structural MRI scan, TOF 

angiography to guide labeling plane selection, and four 8-min ASL scans obtained with FIX, 

EO, EC and PVT carried out in pseudorandomized order counterbalanced across subjects 

and sessions. A single-shot, background-suppressed pseudocontinuous ASL (pCASL) 

sequence with 90% background suppression, balanced pCASL and an accelerated 3D RARE 

Stack-Of-Spirals readout was used to collect whole-brain perfusion maps at 3.75 mm 

isotropic resolution with the following imaging parameters: FOV = 240 × 240 × 128 mm, 34 

nominal partitions with 5.9% oversampling, slice PF = 5/8, R = 2 slice acceleration, in-plane 

matrix = 64 × 64, effective TE = 10.3 ms, TR = 4–4.5s. Each kz partition was divided into 

two spiral interleaves, with each interleaf acquired sequentially between a separate pair of 

refocusing RF pulses. The spiral readout trajectories were generated numerically (King et 

al., 1995), assuming maximum gradient amplitude and slew rate of 36 mT/m and 120 

mT/m/ms, respectively, and receiver bandwidth = 400 kHz. A full description can be found 

in (Vidorreta et al., 2017). 60 control-label pairs of ASL images were collected for each scan 

(~8 min). A labeling duration and postlabeling delay of 1.8s each were chosen to minimize 

the sensitivity of CBF quantification to transit time effects in this cohort (Alsop and Detre, 

1996; Alsop et al., 2015). An M0 image with no ASL preparation and long TR was also 

collected for CBF calibration purposes. To better control for possible off-resonance effects 

that can affect labeling efficiency (Wu et al., 2007), the shimming volume was adjusted to 

include the chosen labeling location.

An 8-min multiband BOLD-EPI scan was also obtained under FIX condition with the 

following parameters: TR/TE = 750/30 ms, flip angle 40°, matrix = 76 × 76 on a 192 mm × 

192 mm FOV, multiband factor = 6, 66 slices with slice thickness = 2.5 mm, and 641 time 

points.

The subjects lay supine in the scanner and small cushions were used to secure the subjects’ 

heads to minimize head movements during scanning. The mirror on top of the head coil was 

adjusted to ensure that the subjects could see the whole screen. The awake status of the 

subjects was checked by video monitoring and by communications with subjects between 

scans. Before each resting scan, subjects were instructed through the intercom to either keep 

their eyes open and fixed on the cross on the screen (FIX), or keep their eyes open without 
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fixation (EO), or keep their eyes closed (EC), or keep their eyes on the screen and press the 

response button when a visual stimulus appeared on the screen (PVT).

8 subjects including 1 subject who fell asleep during the scan, and 7 other subjects who 

showed excessive head motion (mean relative motion >0.3 mm) or low SNR images (global 

temporal SNR <3.33) were discarded. The images of the remaining 24 subjects (14 female, 

age = 29.0 ± 5.2 years) were analyzed in the study. Three of the twenty-four subjects did not 

complete all 4 ASL task conditions, so their data were only used for the within-condition 

analysis.

ASL data preprocessing

The raw ASL and M0 images were realigned and registered to the anatomical dataset using 

FSL (Jenkinson et al., 2012) and custom scripts in Matlab. Subtracted [control-label] volume 

pairs were converted into CBF units following the one-compartment model using assumed 

values for labeling efficiency and blood T1 relaxation (Alsop et al., 2015). The CBF images 

were then normalized into MNI space using FSL. For simplicity, we denote the CBF time 

series as the time series of calculated CBF images of each scan, and denote the CBF maps as 

the mean CBF image of each scan in the following sections.

Regions of interest (ROI) examined in prior work on ASL retest reliability (Hermes et al., 

2009) were defined using published templates (Tzourio-Mazoyer et al., 2002; Tatu et al., 

1998). These include whole-brain gray and white matter regions, the four cerebral lobes, the 

arterial vascular territories, and multiple specific cortical and subcortical GM regions (Table 

1). The mean CBF of the selected ROIs as well as the global mean CBF were extracted from 

the CBF maps.

CBF reproducibility and reliability analysis

The reproducibility and reliability across sessions and across conditions were assessed using 

the within-subject coefficient of variance (wsCV) and the intraclass correlation coefficient 

(ICC), respectively, for global mean CBF and the mean CBF of selected ROIs. The 

differences across sessions and conditions were assessed via permutation tests with a paired 

sample design.

To assess data quality, the temporal SNR (tSNR) and mean Gray matter-White matter (GM-

WM) contrast ratio were computed for each scan and compared across sessions and 

conditions.

CBF latent state-trait analysis

To test the consistency and stability of CBF measures, we evaluated the trait specificity of 

CBF for the 4 task conditions using the LST model. Latent state-trait theory has been 

applied in various domains, especially psychology (Steyer et al., 2015). LST decomposes 

observable variables into the sum of latent trait variables (personal attributes), state residuals 

(person-situation interaction), and measurement errors (Steyer et al., 2015). A previous 

study estimated both the LST model and the latent-trait model (LT model, which 

decomposes observable variables into the sum of latent trait variables and the measurement 
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errors, and presumes that there are no occasion-specific effects) on ASL data acquired on a 

1.5T MRI scanner, and demonstrated that the mean CBF of most regions of interest accepted 

the LST model and the mean CBF had high trait specificity, whereas only a few regions of 

interest accepted the LT model (Hermes et al., 2009). Acceptance of the latent state-trait 

model means that the model adequately explains the underlying structure of the observed 

CBF data, as defined by statistical significance (defined below).

In the present study, the LST models were implemented with R toolbox “lsttheory” (Steyer 

et al., 2015) and “lavaan” (Rosseel, 2012). To fit the data to the LST model, first each 8-min 

ASL scan was divided into two measurement halves. The mean CBF maps were calculated 

for each half and shuffled to avoid order effects. Both ROI-based (Table 1) and whole-brain 

voxel-based LST models (Fig. 1A) were estimated. For LST modeling, we treated the CBF 

values as the observed variables Yik (Fig. 1) (Steyer et al., 1999)(Hermes et al., 2009), where 

indices i and k indicate measurement and session, respectively. The LST model decomposes 

the observed variable Yik into the sum of a measurement error variable εik and the true score 

variable τik, i.e. the latent state variable, which is further decomposed into the sum of a 

latent trait component ξik and a latent state residual ζik, to reflect the situation and/or 

person-situation interaction effects (Steyer et al., 1999):

Yik = εik + τik = εik + ξik + ζik

The measurement error, the latent state residual, and the latent trait are un-correlated with 

each other. The variance of each observed variable can be decomposed into the variances of 

the measurement error, trait component and latent state residual (Steyer and Schmitt, 1990; 

Steyer et al., 1999):

Var(Yik) = Var(εik) + Var(τik) = Var(εik) + Var(ξik) + Var(ζik)

Inspired by the work of Hermes et al. (2009), a restrictive LST model equating the 

measurement error variance, state residual variance, and effects of trait and states in the 

model was used in the current study.

The structural equation of the LST model was created with “lsttheory” toolbox (Steyer et al., 

2015), and the model was then estimated with the confirmatory factor analysis (CFA) using 

the maximum likelihood algorithm (ML) implemented in the structural equation modeling 

(SEM) package “lavaan” (Rosseel, 2012) to maximize the likelihood between the estimated 

variance-covariance matrices of the model ( Cov(Y)) and the actual variance-covariance 

matrices of the observed variables (Cov(Y)). An LST model was only accepted when the 

critical ratios (C.R.) of the estimated model parameters (variance of trait Var(ξik), variance 

of state residual Var(ζik) and variance of measurement error Var(εik)) to their corresponding 

standard errors (S.E.) were statistically significant (C.R. = Var/S.E.; α = 0.05), and the 

discrepancy between estimated variance-covariance matrices of the model ( Cov(Y)) and the 

variance-covariance matrices of the observed data (Cov(Y)) was not significant (assessed by 

Chi – square χ2test; α = 0.05) (Hermes et al., 2009).

Li et al. Page 6

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Trait specificity was calculated dividing the estimated variance of the trait component by the 

variance of the observed variable (Steyer et al., 2015; Hagemann et al., 2002):

Trait specificity = Var(ξik)/Var(Yik)

The trait specificity ranges from 0 to 1, and it is unitless. It represents the portion of variance 

of the observed CBF that is determined by temporally stable and transsituationally 

consistent individual differences, hence is likely to represent phenotype effects. Higher trait 

specificity denotes higher consistency and stability of the measured trait effects.

A single grouped LST model (Fig. 1B) was additionally used to compare the trait effects 

between the four conditions, combining the CBF measurements of the four conditions as 

four groups and more stringently assuming the model to have equal measurement error 

variance and equal state residual variance across the conditions, so that the trait effects can 

be compared between the conditions more directly.

Network connectivity analysis

To compare the reliability of network connectivity across the resting ASL conditions and 

BOLD data, we evaluated the mean within-network connectivity strength and the mean ICC 

of the within-network connections (Patriat et al., 2013) using the 264-node network atlas 

provided in the 2011 study by Power et al. (2011).

The resting BOLD data were preprocessed following the functional connectivity analysis 

pipeline in (Biswal et al., 2010) using FSL (Jenkinson et al., 2012) and AFNI (Cox, 2012). 

The BOLD data was band-pass filtered (0.009–0.1 Hz). We regressed out the mean white 

matter (eroded mask), CSF, and global signals, as well as the motion parameters, for both 

BOLD time series and the CBF time series of each ASL task condition. Because of the 

controversy regarding the usage of the global signal as regressor in functional connectivity 

analyses (Murphy et al., 2009), we also conducted a sensitivity analysis that did not include 

the global signal as a confound (see supplementary material).

Because the cerebellum region and the top of the brain were not covered well for some of 

subjects during the ASL scans, we created a common brain mask across the subjects by 

taking the intersection of their skull stripped (Smith, 2002) and normalized brain mask of the 

mean ASL image. We eliminated the ROIs in the cerebellum region as well as the ROIs 

outside of our common brain mask in the 264-node network atlas (Power et al., 2011), 

leaving 215 ROIs of 12 distinctive cerebral rs-fMRI networks for the network connectivity 

analysis (Supplementary Table S1 and Supplementary Fig. S1). The mean time series of the 

network ROIs were extracted and Pearson’s r correlation coefficient between each pair of 

ROIs was calculated and transformed to Z scores using Fisher’s r-to-z transformation 

(Fisher, 1921) to form a connectivity matrix for each BOLD and ASL time series. The ties 

of nearby ROIs (<20 mm) were terminated and an 8% tie density mask was created to retain 

the strongest correlations for each condition (Power et al., 2011). An intersection mask of 

the tie masks was generated and the connections in the intersection mask were used in 

analysis described below.
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The mean connectivity strength within each network was calculated for each scan of the 5 

conditions (BOLD FIX and the 4 ASL conditions) and a 12 × 5 two-way repeated measures 

ANOVA (Networks x resting conditions) was used to examine the effects of network and 

resting condition on the within-network connectivity strength. The mean connectivity 

strength of all within-network connections, as well as the mean connectivity strength within 

each network was further compared between each pair of conditions using paired T-tests. To 

evaluate their reliability, the ICC of each within-network connection was calculated and the 

ICC values were averaged within each network, as well as across all the within-network 

connections, for each task condition. Differences in the averaged ICCs were then assessed 

between the task conditions using a paired Jackknife leave-one-out resampling method 

(Patriat et al., 2013). Briefly, one subject was left out each time, and the averaged ICC was 

computed for the within network connections for each condition. The averaged ICCs of all 

possible leave-one-out samples were collected and compared between the conditions using 

the paired T test. The paired T test results of mean connectivity strength and averaged ICCs 

were thresholded at p < 0.05, Bonferroni corrected for the number of comparisons (13 

‘networks and all within network’ x 10 combinations of the task conditions).

Results

Reproducibility and reliability of mean CBF

No significant difference was found in global mean CBF across sessions. Excellent within-

session agreement was observed for both scan sessions (wsCV <5%, ICC >0.9) (Fig. 2, row 

1).

Significant differences in reproducibility and reliability were found across the four task 

conditions. The global mean CBF of EC was significantly higher than the other task 

conditions (Fig. 2, D). FIX condition presented significantly higher wsCV than EC, and 

significantly lower ICC than the other 3 task conditions, suggesting lower reproducibility 

and reliability compared to the other task conditions (Fig. 2, E and F). Similar 

reproducibility and reliability patterns were also shown for the mean CBF within selected 

ROIs, as listed in Tables 2 and 3.

The global tSNR and the GM-WM contrast ratios were similar between the two scan 

sessions (Fig. 3, A and B). The global tSNR of EC condition was smaller than FIX and PVT; 

however there was no difference in GM-WM contrast ratio between the four conditions (Fig. 

3, C and D).

Latent state-trait model

The restrictive LST model was accepted for most ROIs for each of the conditions (Fig. 4). 

The derived trait specificities of regional CBF were mostly larger than 0.7 for the four task 

conditions. EC yielded the highest trait specificity (range 0.77–0.87), while FIX showed the 

lowest trait specificity (range 0.56–0.81).

Voxel-wise estimation of the LST model demonstrated that most brain voxels accepted the 

restrictive LST model (Supplementary Fig. S2). FIX showed distinctly lower trait specificity 

than the other conditions.
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The single grouped LST model which nested the 4 task conditions and further assumed 

equal measurement error variance and equal state residual variance across the conditions 

was accepted for all ROIs (Supplementary Fig. S3). In the single grouped model, the 

estimated trait specificity for FIX was again lower than other conditions for most ROIs. 

Compared to the separated model (Fig. 4), differences between FIX and other conditions 

were reduced, likely due to assuming equal state residual variance across all conditions in 

the single grouped model.

Network connectivity strength and reliability

A 12 × 5 two-way repeated measures ANOVA (networks x resting conditions) on the mean 

within-network connectivity strength examined here found significant effects of network (p 

< 0.0001) and resting condition (p = 0.026). Paired T-tests between the conditions showed 

that the within-network connectivity strength was generally similar across all 4 ASL task 

conditions, however EO and EC demonstrated stronger connectivity than PVT in the visual 

network, and EO presented higher mean connectivity strength of all within-network 

connections than PVT (Fig. 5A). There were no significant differences between the 

measured network strength of BOLD FIX and that for the 4 ASL task conditions in most 

networks. BOLD FIX only presented higher connectivity in the sensory/somatomotor mouth 

network than the 4 ASL conditions, higher connectivity in the default mode network than 

ASL EO and ASL EC, and lower connectivity in the salience network than ASL EO and 

ASL EC (Fig. 5A).

The mean ICCs across all within-network connections were not significantly different 

between the ASL EO, EC and PVT, while ASL FIX demonstrated significantly lower ICC 

than the other 3 ASL conditions (Fig. 5B, leftmost group of bars). When broken down into 

different networks, the mean ICC’s were significantly different across conditions (Fig. 5B). 

For example, ASL EO presented the highest reliability in the visual, ventral attention and 

dorsal attention networks; ASL EC presented the highest reliability in the cingulo-opercular 

task control, auditory, memory retrieval, and salience networks; ASL PVT presented highest 

reliability in the sensory/somatomotor hand, default mode, and frontoparietal task control 

networks; ASL FIX and PVT shared higher reliability in the sensory/somatomotor mouth 

network; ASL FIX, EO and PVT demonstrated higher reliability than ASL EC in the 

subcortical network.

The mean ICC across all within-network connections of BOLD FIX was significantly higher 

than that of ASL FIX but wasn’t significantly different than the other 3 ASL conditions, and 

showed no consistent trend across different networks (Fig. 5B). The relationship between the 

ICC and connectivity strength is also illustrated in Supplementary Fig. S4 for each network 

and each connection tie.

Similar within-network connectivity strength and reliability results were obtained when data 

were preprocessed without global signal regression (Supplementary Fig. S5 and Fig. S6). 

Without global signal regression, the averaged ICC across all within-network connections 

slightly and gradually increased from ASL FIX to ASL EO, and to ASL EC, while the 

averaged ICC of ASL PVT was lower than the other 3 ASL conditions. There was no 
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significant difference between the averaged ICC across all within-network connections of 

BOLD FIX and that of ASL FIX (Supplementary Fig. S5B, leftmost group of bars).

Discussion

We investigated the effects of 4 different resting task conditions (FIX, EO, EC and PVT) on 

the reproducibility and trait specificity of ASL mean CBF, and on the reliability of ASL 

CBF network connectivity. Retest reproducibility was examined to help guide resting-state 

ASL task selection for repeated measures designs using CBF as a biomarker of intervention 

effects, while trait specificity was examined to provide additional guidance on resting-state 

ASL task selection for cross sectional studies using CBF as a biomarker of genotype and 

phenotype effects.

In accordance with previous studies (Chen et al., 2011; Jain et al., 2012; Jahng et al., 2005; 

Hodkinson et al., 2013; Zou et al., 2015a; Almeida et al., 2018), our results demonstrated 

excellent retest reliability of both mean and regional CBF for all the four resting conditions. 

Among the 4 resting conditions, FIX presented the lowest retest reliability, while EC yielded 

higher (but not significantly) reliability and reproducibility than EO and PVT. The lower 

ICC and higher wsCV of FIX suggests higher within-subject variability of mean CBF in the 

FIX condition. Accordingly, repeated measures designs using resting-state ASL to detect 

changes in regional CBF and brain function might be optimized by using a resting-state task 

other than FIX. A slightly increased mean CBF in EC as compared to other conditions along 

with increased between-subject variance and reduced within-subject variance (Table 3 and 

Supplementary Table S2) may explain the increased ICC and reduced wsCV observed for 

EC versus the other conditions. However, a limitation of EC is the challenge in 

distinguishing EC awake from EC asleep.

The lower global tSNR of EC (Fig. 3) was driven by the higher global fluctuation in EC than 

other conditions (Supplementary Fig. S7). This was in agreement with earlier literature 

reporting higher spontaneous fluctuations of brain activity in EC than EO using BOLD 

fMRI (Bianciardi et al., 2009), and the decrease in BOLD rs-fMRI global signal amplitude 

from EC state to EO state was correlated with the increase of EEG vigilance (Wong et al., 

2016). The higher amplitude of fluctuation in EC versus EO may be attributed to the 

different levels of BOLD and CBF in deactivated states of these two conditions, as has been 

reported previously (Uludag et al., 2004).

Consistent with prior work (Hermes et al., 2009), most of the brain regions examined also 

accepted the latent state-trait model, suggesting that the LST model could adequately 

explain the underlying structure of CBF data and confirming that resting CBF can be 

effectively decomposed into trait-like factors, measurement errors and situational effects. 

The latter include both physiological effects (such as hormonal status) and psychological 

effects (such as anxiety) which may influence the mean CBF in each scan session (Hermes 

et al., 2009). Four regions in EC or PVT conditions failed to accept the LST model (white 

grids of Fig. 4), suggesting that the estimated model didn’t fit the measured data well. This 

might be a result of the maximally restricted model criteria: equal effects of traits, equal 

effects of states, equal measurement error variance and equal state residual variance. 
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Relaxation of these restrictions would provide a better model fit to the data (Schmitt and 

Steyer, 1993; Hagemann et al., 2002). The trait specificity reflects both consistency and 

stability (Hagemann et al., 2002). We found that trait specificity of the selected ROIs was 

mostly >0.7 for the 4 resting conditions, suggesting >70% of the observed mean CBF 

variance were determined by trans-situationally consistent and temporally stable individual 

differences. Among the 4 resting conditions, EC yielded the highest trait specificity (77%–

87%), EO (69%–85%) was slightly lower than EC, and FIX was the lowest (56%–81%). 

These results suggest that ASL CBF measured during EC and EO provides a more stable 

and consistent proxy for trait effects of CBF, and that FIX is more vulnerable to situational 

effects than the other three conditions.

As has previously been shown for BOLD data (Patriat et al., 2013), there were no significant 

differences in mean within-network connectivity strength between the 4 ASL conditions for 

most of the networks studied, except in the visual network, where EO and EC showed higher 

connectivity than PVT. The mean reliability of within-network connections wasn’t 

significantly different between ASL EO, EC and PVT, while ASL FIX demonstrated lower 

reliability than the other 3 conditions. However at the individual network level, some 

differences in reliability were observed across resting-state conditions. Our findings for 

resting-state ASL data are contrary to previous BOLD findings (Patriat et al., 2013), which 

suggested greater reliability in FIX than EO and EC in default mode, attention and auditory 

networks, and greater reliability in EO in primary visual network connectivity. Potential 

factors contributing to this difference include imaging modality, acquisition parameters, 

image processing procedures, effects of the pairwise subtraction in ASL, and ROI selection 

(215 ROIs vs 18 ROIs). Unfortunately, we were not able to repeat all of the resting-state 

conditions with BOLD acquisitions for comparison with ASL data, so we are unable to 

determine which resting-state condition optimized resting-state BOLD reproducibility in our 

cohort. However, without including the global signal as nuisance variable in the nuisance 

regression of preprocessing to match the previous study (Patriat et al., 2013), our data 

showed that FIX yielded highest reliability of default mode network together with EC, while 

EO remained more reliable in the visual network (Supplementary Fig. S5).

The mean connectivity strength of all within-network connections for BOLD resting data 

acquired during FIX was similar with that of ASL data. There was no significant difference 

between BOLD FIX and ASL EO, EC and PVT in the average reliability of all within-

network connections when global signal regression was included in preprocessing (Fig. 5B), 

or between BOLD FIX and ASL FIX when global signal regression was not performed 

(Supplementary Fig. S5B), suggesting that the overall network reliability was comparable 

between these two modalities. While ASL provides a direct measure of CBF, BOLD contrast 

indirectly reflects a complex interaction between changes in CBF, cerebral blood volume, 

cerebral metabolic rate of oxygen (Detre and Wang, 2002; Buxton et al., 2004). As 

previously mentioned, acquisition parameters such as the voxel size and time resolution 

were also different between the two imaging modalities; and the processing steps such as the 

pairwise subtraction in ASL could also contribute to differences in network connectivity 

between ASL and BOLD.
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Resting-state functional connectivity relies on low frequency correlations in spontaneous 

fluctuations of brain activity (Cordes et al., 2001), and can be can be reliably detected with 

ASL (Chuang et al., 2008; Viviani et al., 2011; Zhu et al., 2013; Dai et al., 2016; Zou et al., 

2015a). Although the effective TR = 8s of the ASL CBF time series in the present study is 

much longer than the BOLD TR, it corresponds to a frequency band between 0 and 0.06 Hz, 

which is very similar to the commonly used frequency band of ~0.01–0.1 Hz used to filter 

resting-state BOLD fMRI data for connectivity analysis. The pair-wise subtraction in ASL 

CBF quantification also reduces low-frequency noise inherent in BOLD fMRI data, making 

ASL a particularly useful tool for investigation of slow brain activity fluctuations (Aguirre et 

al., 2002; Wang et al., 2008). Prior work has demonstrated that ASL MRI can detect resting-

state correlations at very low frequencies (Niazy et al., 2011).

A limitation of this study is that 60 sampled CBF time points may be suboptimal for 

connectivity analyses, though prior work has successfully identified resting-state networks 

with even smaller times series (Zhu et al., 2013; Dai et al., 2016). The temporal resolution of 

current ASL approaches is fundamentally limited by the time required for labeling and post-

labeling delays, and by the need for two images (control and label) to generate the perfusion 

contrast. However, ASL temporal resolution can be doubled with careful attention to 

background and artifact suppression resulting in a single image in which the contrast is 

almost purely CBF (Zhao et al., 2017). Factors such as morning-evening variation (Shannon 

et al., 2013) and scan order (Yan et al., 2009) may also influence CBF and network 

connectivity, but in the present study, images were collected at the same time of day for the 

two visits and the four ASL conditions were scanned in a pseudorandomized order 

counterbalanced across the subjects and visits.

Global signal regression is a controversial preprocessing step in connectivity analysis, and 

our recent findings suggest that a global network represents a sizeable portion of brain 

connectivity measured by ASL MRI (Zhao et al., 2017). Accordingly, we examined 

connectivity both with and without global signal regression (Murphy and Fox, 2017). Lastly, 

given the immense sleep pressure in resting studies (Tagliazucchi and Laufs, 2014), subjects 

may fall asleep during scanning. We verified awake status by video monitoring and by 

communications with subjects between scans, but it is conceivable that some subjects still 

fell asleep during the EC scans.

In the present study, EC presented the highest CBF reliability, reproducibility, trait 

specificity, and network connectivity reliability for resting-state ASL data, followed by EO, 

whilst FIX showed the lowest on these measures. The poorer reliability of FIX might be 

attributable to variations in strategic behavior of subjects during the FIX scan to fight sleep 

and boredom and to adhere to fixating on the target (Tagliazucchi and Laufs, 2014). PVT 

demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC, 

and similar network connectivity reliability with EC and EO (and lower network 

connectivity reliability than EC, EO and FIX when global signal regression was not 

performed). These differences might be attributed to practice effects (Jolles et al., 2010). 

Given the higher reliability in CBF and network connections, and better proxy to the CBF 

trait, our results support the use of EC or EO over FIX and PVT for resting-state ASL. 
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Because of the challenges in verifying awake status during EC, EO may be preferable as 

awake status can be easily verified using video monitoring.

Conclusion

This study confirmed ASL CBF as a reliable, stable, and consistent measure of regional CBF 

and physiological trait effects in brain function, and provided a reference for choosing 

optimal conditions for future studies. Our findings suggest that EC and EO are more reliable 

conditions for both repeated measures of ASL CBF and for detecting trait-like effects in 

regional brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Latent State-trait model. (A). The Latent State-trait model (LST) (Steyer et al., 2015) 

decomposes measured CBF Yik (ith measure at occasion k) into measurements errors (εik) 

and latent Statek. It then further decomposes the latent Statek into state residual (ζik) and 

trait components (ξik). The measurement error, the state residual, and the trait are un-

correlated with each other. A restrictive LST model used in this study further assumes equal 

measurement error variance and equal state residual variance. (B). The grouped LST model 

nests four models for the four conditions and assumes equal measurement error variance and 

equal state residual variance across the conditions.
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Fig. 2. 
Evaluation of global CBF (mean, wsCV and ICC) across scan sessions (Top row) and across 

task conditions (Bottom row). The global mean CBF was computed for each subject, session 

and condition, and the within-subject coefficient of variance (wsCV) and the intraclass 

correlation coefficient (ICC) were then calculated for each session and condition. Fig. 2A 

and 2D show the global mean CBF and standard deviation across each session and 

condition, respectively. Fig. 2B and 2E show the wsCV computed across each session and 

condition, respectively, along with their 95% confidence intervals. Similarly, Fig 2C and 2E 

how the ICC and theirs 95% confidence interval. Significant differences between each 

session/condition pairs assessed with permutation tests with a paired sample design are 

marked with *: p < 0.05; **:p < 0.01; ***: p < 0.001.
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Fig. 3. 
tSNR of global CBF and the GM-WM ratio for the scan sessions and conditions. Temporal 

signal-to-noise-ratio (tSNR) of global mean CBF and the gray matter-white matter (GM-

WM) contrast ratio across the two scan sessions (Top Row A and B) and across the four task 

conditions (Bottom Row C and D). The error bars show the standard deviations for each 

session/condition. Significant differences between each session/condition pairs assessed with 

permutation tests with a paired sample design are marked with *: p < 0.05; **: p < 0.01.
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Fig. 4. 
Trait specificity of four task conditions: region of interest results. Mean CBF measurements 

were analyzed separately using the Latent state-trait (LST) model for each of the resting 

conditions (each column) and each region of interest (ROI, each row). The colored cells are 

the regions that accepted the restrictive LST model (assuming equal measurement error 

variance for the measurements and equal state residual variance across the occasions). The 

labeled values and color scale show the trait specificity of mean CBF estimated by the LST 

model for each corresponding condition and ROI. Trait specificity ranges from 0 to 1, and is 

unitless.

Li et al. Page 21

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Comparison of network connectivity between ASL and BOLD task conditions. (A): the 

mean connectivity strength of within-network connections. Results are presented across all 

within-network connections, as well as broken down by networks. The bars and error bars 

represent the across subject mean and standard deviation of the mean connectivity strength 

of all within-network connections of the two scan sessions. Significant differences between 

the conditions were assessed using the paired T test and the Bonferroni corrected p values 

are marked with *: p < 0.05; **: p < 0.01; ***: p < 0.001. (B): the averaged ICC of within-

network connectivity. Results are presented across all within-network connections, as well as 

broken down by networks. The bars and error-bars show the mean and standard deviation of 

the averaged ICC of all within-network connections for each task condition using Jackknife 

leave-one-out resampling method. Significant differences between the conditions were 

assessed using the paired Jackknife resampling method. Most pairs showed significant 

differences after Bonferroni correction. For clarity, pairs showing Bonferroni corrected p > 

0.05 are instead marked as ‘ns’, i.e., non-significant.
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Table 1

List of regions of interest (ROIs).

Region of interest size (cm3)

Whole-brain gray matter 718.32

Whole-brain white matter 741.21

Cerebral Lobes

 Frontal lobe 222.66

 Temporal lobe 116.63

 Parietal lobe 132.72

 Occipital lobe 94.46

Arterial territories

 Anterior cerebral artery (ACA) 135.93

 Middle cerebral artery (MCA) 321.9

 Posterior cerebral artery (PCA) 100.39

Dorsolateral prefrontal cortex 51.13

Ventromedial prefrontal cortex 25.25

Superior parietal cortex 16.52

Anterior cingulum 8.59

Posterior cingulum 3.14

Insula 14.86

Ventral striatum 1.43

Thalamus 8.72

Hippocampus 7.46

Amygdala 1.76
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