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Abstract

Motivated by the capabilities of modern radiotherapy techniques and by the recent develop-

ments of functional imaging techniques, dose painting by numbers (DPBN) was proposed to

treat tumors with heterogeneous biological characteristics. This work studies different

DPBN optimization techniques for virtual head and neck tumors assessing tumor response

in terms of cell survival and tumor control probability with a previously published tumor

response model (TRM). Uniform doses of 2 Gy are redistributed according to the micro-

scopic oxygen distribution and the density distribution of tumor cells in four virtual tumors

with different biological characteristics. In addition, two different optimization objective func-

tions are investigated, which: i) minimize tumor cell survival (OFsurv) or; ii) maximize the

homogeneity of the density of surviving tumor cells (OFstd). Several adaptive schemes,

ranging from single to daily dose optimization, are studied and the treatment response is

compared to that of the uniform dose. The results show that the benefit of DPBN treatments

depends on the tumor reoxygenation capability, which strongly differed among the set of vir-

tual tumors investigated. The difference between daily (fraction by fraction) and three

weekly optimizations (at the beginning of weeks 1, 3 and 4) was found to be small, and

higher benefit was observed for the treatments optimized using OFsurv. This in silico study

corroborates the hypothesis that DPBN may be beneficial for treatments of tumors which

show reoxygenation during treatment, and that a few optimizations may be sufficient to

achieve this therapeutic benefit.

Introduction

During the last years, several studies have provided clinical evidence for the non-uniform

response of tumors to radiation, mainly caused by tumor-specific heterogeneity factors such as

varying oxygen supply and tumor cell proliferation and density [1]. Among these, tumor
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oxygenation is important because of the increased radioresistance of hypoxic cells, which can

seriously affect radiotherapy treatment outcome [2–4]. In these cases, dose escalation would be

required to maintain the same level of tumor control probability as compared to well-oxygen-

ated tumors. This may, however, produce unacceptable levels of normal tissue toxicity [5, 6]. A

similar situation may occur in tumors presenting a non-uniform tumor cell density distribu-

tion. As an alternative to this homogeneous dose escalation, the delivery of non-uniform dose

distributions was proposed long ago to increase the efficiency of radiotherapy [7–9]. Nowadays

this approach is becoming more realistic due to the capabilities of modern delivery techniques,

such as IMRT. The effect associated to the delivery of non-uniform dose distributions has

been evaluated both in terms of TCP and BED [10, 11]. Moreover, functional imaging tech-

niques providing spatial-temporal information associated to biological tumor properties can

provide input data for biological optimization strategies [12–14].

Despite the experimental difficulties, several studies have shown the technical feasibility to

prescribe and deliver inhomogeneous dose distributions based on functional imaging (see for

example the review on dose painting by Shi et al. [15]). Among others, dose painting by con-

tours (DPBC) and dose painting by numbers (DPBN) are terms that are most commonly used

to refer to these techniques. The DPBC technique identifies one or several regions of the

planned target volume with a higher probability of local recurrence. These subvolumes are

then defined as subtargets to be treated with an additional uniformly distributed dose boost

[16, 17]. DPBN on the other hand, involves a voxel-based dose prescription that is calculated

based on the biological information provided by functional imaging [18, 19]. Two different

DPBN-strategies have been proposed: i) delivering additional dose to the less radiosensitive

cells [20–22] or; ii) redistributing the dose while keeping the integral dose to the target volume

constant [23, 24].

For the implementation of either DPBC and DPBN, several methodologies have been pro-

posed to guide dose prescriptions based on functional imaging, considering: i) tumor metabo-

lism [21, 25–29], ii) oxygenation status [16, 30–32], and iii) proliferation of tumor cells [33,

34]. Usually, they parameterize tumor control probability (TCP) or design a dose prescription

function based on tracer uptakes [22, 29, 35–38].

Comparing results from the works that have addressed the clinical implementation of dose

painting is however a very difficult task. Many works involved dose escalation to different dose

levels, applying different adaptive schemes, and aiming at different endpoints: locoregional

tumor control improvement [27, 39, 40], maximun tolerated dose [25, 41], normal tissue toxic-

ity reduction preserving tumor control [28, 42–44], palliative response [45], etc. For this rea-

son, and in spite of the intense research dedicated to dose painting during the last years,

procedures are far from being standardized. Under such scenario, radiobiological modeling is

a powerful tool that can help to study different aspects of dose painting like adaptive scheme,

tumor microenvironment changes, dose prescription algorithms, etc.

In this modeling study we investigate different DPBN strategies targeting hypoxic tumors.

To simulate tumor response to uniform and non-uniform dose distributions we use a previ-

ously published computational model that considers several biological processes [46]. The

main objective of the study is to determine the treatment gain that could be achieved with dif-

ferent number of treatment adaptations (optimization). As the clinical implementation of dose

painting treatments involving a large number of optimizations is non realistic nowadays due

to the high logistic effort (both in terms of human resources and functional imaging tests)

finding a realistic compromise between treatment gain and number of biological optimizations

is mandatory.

Other relevant aspect is the method used for dose distribution optimization. In general, the

spatial dose distribution in the target is a result of an optimization problem governed by an
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objective function (OF). Two of the most frequently applied radiobiological optimization strat-

egies are: i) to minimize the overall tumor cell survival (in this work referred as OFsurv) [9, 20,

24] and; ii) to search for the dose distribution leading to a uniform tumor cell density (OFstd).

The latter approach assumes that a dose distribution designed to reduce biological heterogene-

ity within the tumor maximizes the TCP [23, 37, 47]. Although both optimization strategies

would lead to a TCP higher than that of a uniform dose, the gain in treatment outcome for the

different OF has not been investigated under a common methodology.

Materials and methods

Dose painting optimization methods generally involve models of cell survival, which are based

on the linear quadratic (LQ) model [48]. This model accounts for the oxygen effect through

oxygen enhancement ratios (OER), which are modulating factors of the fully oxic radiosensi-

tivity parameters α and β. Using the expression of Wouters and Brown for the OERs [49], the

expression for the cell survival fraction (SF) can be written as follows:

SF ¼ exp½� ahOERaðpÞd � bhðOERbðpÞdÞ
2
� ð1Þ

where d is the fractional dose, p is the oxygen partial tension (pO2), αh and βh are the radiosen-

sitivity parameters under hypoxic conditions and OERα and OERβ are the oxygen enhance-

ment ratios for α and β, respectively:

OERaðbÞ ¼
kþ p � OERamðbmÞ

pþ k
ð2Þ

Here, OERam
and OERbm

are the maximum values of OERα and OERβ under aerobic condi-

tions and k is the parameter determining the slope of the curve, i.e. the change of OER with p.

In Eq (1), αh and βh are equal to a=OERam
and b=ðOERbm

Þ
2

respectively.

Regarding the oxygen tension in the tumor, the microscopic oxygen distribution rather

than the average pO2 value in a voxel should be used to calculate the oxygen-dependent tumor

response [24]. The reason for this is that pO2 values may vary on a scale much smaller than the

typical voxel size and the tumor response will be governed by the most hypoxic and thus most

radioresistant cells. In this work, oxygen distributions are generated by a previously published

Tumor Oxygenation Model (TOM) [50] depending on the vascular fraction (vf), which is

defined as tumor vascular volume fraction in the voxel, and the oxygen consumption rate. To

allow efficient calculations, oxygen distributions, condensed into 16 bin pO2-histograms, are

assigned to each tumor voxel (see below).

For a virtual tumor consisting of N voxels with j levels of pO2 each, the cell survival Csurv is

quantified as,

Csurv ¼
XN

i¼1

X16

j¼1

ci;j � exp½� ahOERaðpkÞdi � bhðOERbðpjÞdiÞ
2
� ð3Þ

where ci,j is the number of tumor cells in voxel i with an oxygen pressure pj corresponding

to the j-th bin of the pO2-histogram assigned to the voxel, and di is the dose delivered to the

voxel i.

Simulation of the impact of biologically-adapted radiotherapy strategies on tumor control
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Optimization problem

Considering the cell survival presented in Eq (3), two dose redistribution optimization

approaches were implemented using two different objective functions (OFs). Both are subject

to the following dose constraints:

1. The average (integral) dose delivered to the virtual tumor is kept constant and equal to 2 Gy

per fraction. The choice of dose redistribution, rather than dose escalation, allows compar-

ing the results with that of standard fractionated treatments. Considering a boost would

produce a higher effectiveness, not only because of the dose distribution modulation but

also because of the increased energy deposition, i.e. integral dose to the tumor [23].

2. Dose modulation within the tumor: maximum and minimum doses (dmax and dmin) are

limited to differ by ±25% from the prescribed dose (2 Gy).

The objective functions investigated involved the following aproaches:

1. Minimizing the number of surviving cells (OFsurv):

The dose distributions minimizing the cell survival were determined according to,

di ¼ argmin
dmin�di�dmax

Csurv; subject to d ¼
1

N

XN

i¼1

di ¼ 2Gy ð4Þ

2. Minimizing heterogeneity of surviving cells (OFstd):

The dose distributions leading to the highest spatial uniformity of cell survival were calcu-

lated by minimizing the standard deviation (std) of the number of surviving tumor cells

within the tumor as,

di ¼ argmin
dmin�di�dmax

stdðCsurvÞ; subject to d ¼
1

N

XN

i¼1

di ¼ 2Gy ð5Þ

The non-linear constrained optimization problems defined by Eqs (4) and (5) were solved

using the FILTER Sequential nonlinearly constrained optimization algorithm available on the

NEOS server [51, 52].

Tumor model (TOM and TMR)

In order to test the dose painting optimization strategies described above, a virtual head and

neck (H&N) tumor was generated using the previously published Tumor Oxygenation Model

(TOM) [50] and the Tumor Response Model (TRM) [46]. These simulation programs were

developed to describe the spatial-temporal development of a given tumor, based on its biologi-

cal parameters, but it may also be used to generate a virtual tumor with specified biological

properties. A brief description of TOM and TRM is given in the following sections.

TOM. In this tool, microscopic pO2 distributions are calculated in a reference tumor vol-

ume (voxel) by solving a reaction-diffusion equation [50]. This voxel is assumed to contain

parallely aligned and randomly distributed linear vessels as sources of oxygen and oxygen-con-

suming cells outside the vessels. pO2 distributions are calculated considering the vascular frac-

tion, the intravascular pO2 and the oxygen consumption rate, which depends on the fraction of

dead (i.e., non-consuming) cells. Oxygen distributions, summarized in pO2-histograms, are

Simulation of the impact of biologically-adapted radiotherapy strategies on tumor control

PLOS ONE | https://doi.org/10.1371/journal.pone.0196310 April 26, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0196310


pre-calculated for a set of vascular and dead cells fractions and are stored for further use by the

TRM.

TRM. This voxel-based multiscale model simulates the growth and radiation response of

hypoxic tumors [46]. It considers viable and dead tumor cells, capillary and normal cells, as

well as the most relevant biological processes such as: i) proliferation of tumor cells; ii) hyp-

oxia-induced angiogenesis; iii) spatial exchange of cells between neighbouring voxels leading

to tumor growth; iv) oxygen-dependent radiation response according to Eq (1); v) resorption

of dead cells and; vi) spatial exchange of cells between neighbouring voxels leading to tumor

shrinkage. By iterating through these steps, the model describes the spatial-temporal behavior

of the tumor, including cell density changes, development of hypoxic cores or tumor reoxy-

genation arising from changes in the vascular fraction as well as from changes in the oxygen

consumption. Oxygenation within each voxel is described by the oxygen histograms calculated

by TOM.

Virtual tumors. Starting from a single cell, the TRM was used to grow a spherical virtual

tumor of approximately 2 cm in diameter using parameters specific for a H&N-tumor. During

this growth, the tumor develops a central hypoxic core of 1 cm diameter, corresponding to the

gross tumor, and a 0.5 cm rim, with an increased oxygenation, representing the microscopic

extension of the primary tumor. The tumor consists of 3888 cubic voxels (side length 1.124

mm) with an average cell density of μ = 106 cells/mm3 [53]. The tumor cell density, ρ, decreases

at the tumor border such that ρ ranges from 1 to approximately 5 × 105 cells/mm3 (see Fig 1).

The resting cells in the tumor voxels are capillary cells, according to the vf, and normal cells.

This virtual tumor will be referred to as tumor 1 (T1).

To study the impact of the tumor heterogeneity (distribution of ρ and vf) on the outcome of

DPBN treatments, results for the tumor T1 were compared with those achieved for other three

Fig 1. Radial distribution of vascular fraction and tumor cell density in the investigated virtual tumors prior to

irradiation. Left axis: homogeneous (o) and inhomogeneous (.) tumor cell density distributions, ρ. Right axis:

homogeneous (�) and inhomogeneous (□) vascular fraction distributions, vf. Each tumor consist of a combination of

one vf and ρ profiles (see text for details).

https://doi.org/10.1371/journal.pone.0196310.g001
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additional virtual tumors, referred to as T2, T3 and T4. These tumors differed either in the dis-

tribution of ρ or vf, or in the distribution of both (see Fig 1). As a result, the following tumors

were investigated: T1) non-uniform distribution of ρ and vf; T2) uniform distribution of ρ and

vf; T3) uniform distritubion of ρ and non-uniform distribution of vf and T4) non-uniform dis-

tribution of ρ and uniform distribution of vf.

All tumors were defined to have the same number of tumor cells. The value of vf for the

uniform distribution was selected to be 6%, which is a representative value for well oxygenated

tumors [54, 55]. With this vf, the oxygen effect on the optimization process is expected to be

negligible. The value of ρ, used for the uniform distribution in T2 and T3 was calculated from

the total number of tumor cells in T1. The biological parameters values used for the simulation

of the radiation response with the TRM were the same for all tumors.

Biological parameters in the TRM. For the simulation of tumor response, parameter val-

ues representative for H&N tumors were taken from the literature (Table 1). For this, a tumor

cell doubling time (tp) of 1200 h was used at the beginning of the treatment. This slow tumor

proliferation is in accordance with the Gompertzian growth of macroscopic tumors [56]. After

two weeks of treatment, tp was changed to 120 h to simulate radiation-induced accelerated

repopulation [57]. The capillary cell doubling time (ta) was set to 612 hours to simulate the

slow angiogenesis process [58, 59]. The rate of dead cells resorption, characterized by the half

time tr, was considered to be equal to 168 h [60]. The radiosensitivity parameters of the LQ

model were selected to be α = 0.35 Gy−1 and β = 0.035 Gy−2, respectively [61, 62]. Additionally,

a σα equal to 0.05 Gy−1 was used to consider interpatient radiosensitivity variations [63, 64].

Finally, the parameter values associated to the OERs (Eq 2) were selected [49].

Considering Eqs (3)–(5) and the employed tumor model, the dose optimization was carried

out considering not only the oxygen-related variation of cell radiosensitivity in the tumor, but

also the distribution of tumor cells density.

Simulation studies

For each of the described virtual tumors (T1-T4), treatment response was calculated using a

uniform dose distribution of 2 Gy per fraction as well as inhomogeneous dose distributions

optimized using either OFsurv or OFstd (keeping the average dose equal to 2 Gy). A conven-

tional fractionation scheme consisting of one daily fraction with two-day breaks on weekends,

starting on a Monday, was simulated. These simulations were used to analyze the effect of the

different objective functions in combination with different tumor characteristics.

Table 1. Biological parameters used for the simulations.

Parameters Symbol Value

Average cell density μ 106 cells/mm3 [53]

Tumor cell proliferation doubling time tp 120 and 1200 hours [56, 57]

Angiogenesis proliferation doubling time ta 612 hours [58, 59]

Half time of dead cell resorption tr 168 hours [60]

Radiosensitivity LQ-model parameters α 0.35 Gy−1 [61, 62]

β 0.035 Gy−2 [61, 62]

Normal std of the α parameter σα 0.05 Gy−1 [63, 64]

Maximum value of the OER for α OERam
2.5 [49]

Maximum value of the OER for β OERbm
3 [49]

OER slope parameter k 3.28 mmHg [49]

https://doi.org/10.1371/journal.pone.0196310.t001
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In general, the dose distribution resulting from the optimization will depend on the biologi-

cal status of the tumor, which will change during the course of irradiation. In terms of biologi-

cally adapted radiotherapy, these changes could be taken into account by daily optimization.

For clinical implementation, however, this would require a daily assessment of the biological

status of the tumor, e.g. by imaging. As this may not be feasible and since the changes in the

tumor may not be so fast, a more practical approach would be to optimize the dose distribu-

tion only at certain time points of the treatment schedule. Although the best time for replan-

ning is still a matter of debate for the clinical implementation of dose painting, there is some

consensus towards doing it 1-3 weeks after treatment start [19]. We therefore simulated differ-

ent adaptive schemes (see Fig 2): 1F) One fraction optimization: the dose distribution is opti-

mized only once, at the beginning of the treatment; 2F) Two fractions optimization: the

optimization is done at the beginning of the treatment and after 2 weeks of treatment; 3F)

Three fractions optimization: the optimization is done at the beginning of the treatment, after

2 weeks of treatment and after 3 weeks of treatment; FBF3W) Fraction by fraction optimiza-

tion: the optimization is done for every single fraction within the first 3 weeks and FBF4W)

Fraction by fraction optimization: the optimization is done for every single fraction within the

first 4 weeks. Uniform 2 Gy dose distributions were delivered after the 4th week of treatment

in all cases with the exception of the FBF3W scheme, that continued treatment with uniform

distributions already after the 3rd week.

Treatment outcome evaluation and statistical analysis. The response of the tumors was

quantified in terms of cell survival and TCP curves. For the TCP calculations, tumor response

was simulated at different dose levels for a population of 30 tumors per dose level using a vary-

ing intrinsic radiosensitivity described by the parameter σα in Table 1 [63, 64]. The dose level

increment was realized by increasing the number of fractions rather than the fractional dose.

The DPBN dose distributions were calculated by running the TRM with the mean radiosensi-

tivity alpha parameter. An individual tumor was considered as controlled if no tumor cell sur-

vived. For each dose level, control rates were calculated as the ratio of controlled to total

number of irradiated tumors. TCP curves were fitted to the control rates using a univariate

logistic regression model, based on the mean dose to the tumor for each patient. TCP curves

Fig 2. Time points of dose optimization within the investigated treatment schedules. Vertical arrows indicate the

days (represented with dots) when dose optimization was performed. The optimized distributions are applied in all the

treatment fractions from the day of optimization until a new optimization is performed. Note: No irradiations were

performed at weekend (dots in red) and after 3 weeks (FBF3W) or 4 weeks (all other schedules), fractions were

delivered with uniform dose (u.d. = 2Gy). The response of each virtual tumor was simulated for a uniform dose

distribution as well as for the five adaptive schemes (1F, 2F, 3F, FBF3W and FBF4W) optimizing the dose distribution

either with OFsurv and OFstd.

https://doi.org/10.1371/journal.pone.0196310.g002
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were characterized by tumor control dose, D50 (dose at 50% TCP), which can be derived as

the ratio of the two fitting coefficients of the logistic model [65]. Regarding the statistical analy-

sis, a bootstrapping method was used to estimate the uncertainty associated to the D50 calcula-

tions [66]. Uncertainties are expressed with two standard deviations (coverage factor, k = 2).

For each tumor type and DPBN adaptive scheme, treatment gain was calculated as the differ-

ence of D50 between the conventional uniform dose and the DPBN treatment (this is, gain =

D50conv −D50DPBN).

Results

Tumors response to uniform dose distributions

The simulation of the response to conventional treatments with uniform dose distributions

leads only to slightly different responses for the different tumors (see Fig 3A). As all tumors

have the same number of tumor cells, a difference is only seen between the well oxygenated

tumors (T2, T4) and the tumors with a hypoxic core (T1, T3). In accordance with this, the well

oxygenated tumors (T2 and T4) have the same D50 values, which are lower than the D50 val-

ues of the hypoxic tumors, see Fig 3B. Focusing in the hypoxic tumors (T1 and T3), the slightly

better outcome observed for T1 with respect to T3 is due to the observed higher degree of reox-

ygenation occurring in this tumor during the treatment. These TCP curves are in accordance

with those observed from preclinical studies involving H&N xenografts from an intermediate

radiosensitivity cell line (FaDu) and with a volume similar to the virtual tumors considered in

our work [67]. The radiosensitivity α and β parameter values used in our simulations were

taken from the literature [61, 62] and not specifically modified to fit to this experimental

curve.

To illustrate the evolution of oxygenation during the course of the treatments, the status of

the tumor core vf during the treatment is shown in Fig 4. The higher reoxygenation capability

observed for the tumors with non-uniform tumor cell density (T1 and T4 reoxygenating

more than T3 and T2, respectively) is due to the larger number of tumor cells killed in regions

with high tumor cell density, which leads to a more pronounced tumor shrinkage associated

with a stronger reoxygenation. This relationship has not been clinically proven and might

not represent the true response of clinical tumors. However, as the reoxygenation-related

Fig 3. Tumor response to a uniform dose distribution. (a) Number of surviving tumor cells with time for the 4 tumor

types irradiated with a uniform dose distribution. The weekend treatment breaks lead to small plateaus in the cells survival

curves, in which the number of tumor cells increases slightly due to proliferation. (b) TCP curves for the simulated tumors

and experimental response of a 200mm3 xenograft of the H&N FaDu line [67]. The D50conv values (in Gy) of the simulated

TCP curves are 68.6 ± 1.4, 65.6 ± 2.1, 71.3 ± 2.0 and 66.0 ± 2.0, for T1, T2, T3 and T4 respectively.

https://doi.org/10.1371/journal.pone.0196310.g003
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radiosensitization might affect the treatment gain associated to DPBN, the use of virtual

tumors with these distinct characteristics is considered of interest for the purpose of this work.

Tumors response to DPBN treatments

The response of the tumors to the DPBN treatments is presented in Fig 5 in terms treatment

gain (T1 and T4, of higher reoxygenation capability, and T2 and T3, of lower reoxygenation

capability). It is noted that DPBN applied to T1 and T4 exhibits significantly larger treatment

Fig 4. Radiation induced reoxygenation in the investigated virtual tumors. Evolution of the vascular fraction

(averaged in the 1 cm diameter tumor core) for the 4 tumors when irradiated with a uniform dose distribution.

https://doi.org/10.1371/journal.pone.0196310.g004

Fig 5. Treatment gains. Treatment gains obtained for the studied tumors (T1-T4) using dose distributions optimized

with either OFsurv (�) or OFstd (�) under different adaptive schemes.

https://doi.org/10.1371/journal.pone.0196310.g005
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gains, than for T2 and T3, where treatment gains are comparable with zero within uncertain-

ties. Detailed D50 values leading to these treatment gains can be found in S1 Table.

Effect of the optimization objective function. Fig 5 shows that treatment gains are sys-

tematically larger for the DPBN treatments using OFsurv (minimization of survival) than for

OFstd (minimization of heterogeneity). This is true under all the adaptive schemes investigated

for tumors T1 and T4. Although treatment gains of T2 and T3 are not significant, they also

exhibit systematically higher values with OFsurv in most of the cases.

Effect of different adaptive schemes. The responses observed under the different adap-

tive schemes depend again on the tumor type. For T2 and T3, outcomes for the conventional

and the DPBN treatments are very similar (treatment gains comparable with zero within

uncertainties, see Fig 5). Further analysis revealed that this observation is a result of the

degree of vf heterogeneity and not due to the limited variation of dose allowed in this study

(25% of 2 Gy). On the other hand, the DPBN treatments delivered to T1 and T4 exhibit treat-

ment gains which generally increased with the number of dose distribution optimizations

performed during the treatment (gain1F< gain2F< gain3F< gainFBF3W). However, only

small differences between 3F and FBF3W were observed, and treatment gains for FBF4W

decreased again relative to FBF3W. This is observed for both objective functions and was

found to be related to the following reasons: i) As the DPBN treatment was optimized assum-

ing a population-averaged radiosensitivity, the resulting dose distribution is slightly subopti-

mal for the individual tumors used to estimate TCP, ii) Another factor contributing to this is

the small differences arising from the stochasticity of the cell killing, which becomes impor-

tant towards the end of the treatment (when the number of tumor cells is small). For this rea-

son, dose distributions were only optimized up to 4 weeks after the start of treatment. This

effect also contributes to the finding that the treatment gains for FBF4W are not signicantly

larger than for FBF3W.

To illustrate this effect, Fig 6 shows the response curves of T1 when irradiated with the

FBF4W adaptive scheme using OFsurv under different assumptions. (i) When the dose distri-

butions are optimized using one single tumor having the population-averaged radiosensitivity

α, the tumor is controlled with 50 Gy. (ii) If the same treatment is delivered repeated times to

this tumor to build a TCP curve, the cell killing stochasticity makes the response curve to

become slightly shallow and D50 is (57.7 ± 1.0) Gy. (iii) If the radiosensitivity is additionally

assumed to be normally distributed within a tumor population, D50 increases further to

(64.2 ± 2.2) Gy and the slope is even more shallow.

Effect of tumor inhomogeneities. As shown above, the treatment gains achieved with the

DPBN treatments were different for the 4 tumors, with values comparable with zero in some

cases (T2 and T3). When the results for the 4 tumors are compared, a relationship between

tumor reoxygenation capability and treatment gain can be observed: the higher the reoxygena-

tion capability, the higher the treatment gain obtained from the DPBN treatment. Fig 7 shows

the treatment gains associated to the DPBN treatments for both OFs and for the adaptive

schemes leading to the higher treatment gains (3F, FBF3W and FBF4W). The tumors are

ranked on the x-axis according to their reoxygenation capability (reoxT2 < reoxT3 < reoxT1 <

reoxT4).

Discussion

Comparison with other studies and limitations of this work

The present work studies DPBN by using a in-silico tumor response model that simulta-

neously considers several biological processes in the tumor during treatment. These processes

are: oxygen-dependent cell survival after irradiation, proliferation of tumor cells, hypoxia-

Simulation of the impact of biologically-adapted radiotherapy strategies on tumor control

PLOS ONE | https://doi.org/10.1371/journal.pone.0196310 April 26, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0196310


induced angiogenesis, resorption of dead cells, and tumor growth or shrinkage. These effects

show complex interaction with tumor reoxygenation [46]. To our knowledge, no other study

on the modelling of dose painting treatments considered these interacting biological processes

altogether. Previous works either did not consider reoxygenation [13, 20, 22, 34], or simulated

Fig 6. Sthocastic and population radiosensitivity variability effects. Response curves for tumor T1 when irradiated

with the FBF4W scheme using OFsurv. Solid line, treatment response achieved when the treatment is optimized using

the population-averaged radiosensitivity α; dashed line, TCP curve calculated using the same population-averaged

radiosensitivity (the cell killing stochasticity produces the shallowing and displacement towards higher dose of the

response curve); and dashed-dotted line, TCP curve calculated for a population with a normally distributed α
radiosensitivity parameter (further shallowing and displacement).

https://doi.org/10.1371/journal.pone.0196310.g006

Fig 7. Impact of the adaptive scheme on treatment gain. Treatment gains associated to the DPBN treatments under

the adaptive schemes 3F, FBF3W and FBF4W. Tumors ordered on the x-axis by ascending reoxygenation capability.

https://doi.org/10.1371/journal.pone.0196310.g007
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it in a simplified way [23, 24, 47]. For example, some of them neglected tumor proliferation

during treatment [24, 47] or decoupled it from reoxygenation [23], although both processes

are known to be linked [68].

In this work we show that the dynamics of the biological processes during irradiation

strongly affect the treatment results. Thus, to accurately model the radiation response of clini-

cal tumors treated with radiotherapy using dose painting, three main aspects must be consid-

ered: i) a proper representation of the tumor oxygenation at a subvoxel scale [24, 49], ii) the

spatial distribution of tumor cells [9, 20], and iii) realistic values of the biological parameters.

In addition to the above mentioned aspects, we showed that the choice of the OF used for the

DPBN optimization is also important. Minimizing the survival [9, 20, 24] was observed to lead

to better treatment outcomes than minimizing the spatial heterogeneity of the surviving tumor

cells, which had been investigated by [23, 37, 47]. The reason for this is that dose distributions

calculated using OFstd change more drastically from fraction to fraction than those calculated

using OFsurv (data not shown). Thus, when the tumor characteristics are measured only once

or twice during treatment, the solution from OFsurv is closer to the optimal distribution that

would have been calculated for the intermediate fractions. In this situation (only one or two

optimizations), the use of OFstd would lead to lower local tumor control rates than the use of a

uniform dose distribution. Consequently, the use of OFsurv would present a better choice for

DPBN treatments.

In the study of different adaptive schemes, better treatment outcomes are observed when

optimizations are performed at several time points of the treatment schedule, which is in

agreement with the work of Sovik et al. 2007 [23]. The difference between fraction by fraction

optimization schemes and optimizing 3 times (at the beginning of weeks 1, 3 and 4), was how-

ever found to be small. This is of great clinical advantage as a 3F scenario would be much

implementable in the clinic, while performing daily measurements of the tumor characteristics

with subsequent optimization is unfeasible. Other factors discouraging the use of fraction by

fraction adapted dose distributions would be: i) uncertainties associated the measurement of

tumor characteristics with molecular imaging (with radiation induced signal due to inflamma-

tion affecting some tenchiques like FDG) ii) lack of knowledge of individual tumor radiosensi-

tivities, and iii) cell killing stochasticity, which may affect treatment response (being not

reasonable to perform DPBN) in the late phase of the treatment.

Unfortunately, comparison of our results with experimental data is currently not possible.

Several clinical trials have already implemented similar promising (2F or 3F) dose redistribu-

tion adaptive schemes, but for some of them, like the ARTFORCE trial [39], outcome data is

still incomplete. Some other trials aimed at reducing normal tissue toxicity and thus results

from these works are not comparable with ours [28, 45]. Amongst the few publications quanti-

fying dose painting related treatment gain, the work recently published by Kong et al. shows

that one (mid-treatment) FDG-PET based adaptation can result in locoregional tumor control

improvement for patients with locally advanced Non-Small-Cell Lung Cancer [40]. However,

this trial involved dose escalation and comparison of results with our dose redistribution

approach is neither possible. One preclinical study [69] has investigated the use of dose redis-

tribution with larger heterogeneities than the 25% allowed in our work. Trani et al. applied

DPBC using 40% and 60% dose heterogeneity constraints, based on a pretreatment FDG-PET

image, for single fraction irradiation of rhabdomyosarcomas [69]. Such dose redistributions

were observed to be detrimental for tumor control with respect to the use of homogeneous

dose distributions. This work did not involved the use of any radiobiology based dose distribu-

tion optimization though. Other trials have been focused on dose escalation, frequently aiming

at endpoints different to tumor control [25, 41, 43, 44, 70].
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This work was developed for the DPBN technique because it allows a more general voxel-

based heterogeneity analysis. Results for the DPBC technique, also appropriate for tumors

with relatively large subvolumes of uniform characteristics [71], should not be significantly dif-

ferent. Treatment gain values may change, but the authors would expect that DPBC plans

using several (few) dose distribution optimizations should still be more beneficial for tumors

with a higher reoxygenation capability than for poorly reoxygenating tumors. The effect of the

optimization objective functions should also be the same for DPBN and DPBC.

We should notice that, in spite of the variety of interplaying dynamic biological processes

considered in our work, the biological mechanisms arising in tumors during radiotherapy are

very complex and not yet well understood, and our model makes simplifications about tumor

growth and response. For example, only one type of tumor cells is considered, but it is well

known that tumor cells with different degrees of differentiation conform the tumor, and that

the initially small subpopulation of tumor stem cells plays an important role both in response

and tumor repopulation [72]. We simulate, however, an average tumor cell radiosensitivity

and proliferation parameter values based on experimental doubling times. Moreover, acceler-

ated repopulation was modelled by using a single kick-off and doubling time, but there is evi-

dence that such parameters may depend on tumor stage, number of viable tumor stem cells or

hypoxia status [57, 73]. Tumor shrinkage in our model is due to undirected cell exchange,

which may be also an oversimplification of the underlying process [74]. Cell death kinetics can

affect the reoxygenation rate of tumors, but this effect is not relevant for conventional fraction-

ation and vf above 3% [75].

A relevant aspect in DPBN is the choice of optimization constraints. The results presented

here were derived from optimizations subjected to two constraints: i) a constant average dose

constraint (2 Gy/fraction) and ii) a dose heterogeneity constraint of ±25% of 2 Gy, allowing

doses from 1.5 to 2.5 Gy in each tumor voxel. No limits were however established for the

allowed dose differences between neighboring voxels. Modern radiotherapy techniques are

able to deliver strongly modulated dose distributions, however, the spatial resolution in the

order of 5 mm may still be somewhat below that of the voxel size used in the TRM. Therefore,

the use of smoother dose distributions might be clinically more feasible. Despite these dis-

cussed limitations, the trends observed in this work should not be qualitatively different from

those observed in a clinical scenario.

Conclusion

Our study of DPBN with a computer-based tumor response model allowed us to gain insight

into some factors affecting the treatment gain, like the optimization objective function, the

tumor reoxygenation capability and the implemented adaptive scheme. Our study shows that

tumors with high reoxygenation capability benefit more from DPBN. Additionally, the treat-

ment gains of DPBN treatments in which dose distributions are optimized once a week are

similar to those achieved with daily optimization. This indicates that only a few weekly optimi-

zations, which is clinically more feasible, may be sufficient to improve the response of hypoxic

tumors. This work shows that the dynamics of the biological processes arising in tumors dur-

ing treatment have a relevant effect on dose distribution optimization. This evidences the need

of not only a proper understanding of these processes but also quantitative information from

functional imaging or any other methods.

Regarding the objective function, dose distributions optimized minimizing survival lead to

better treatment outcomes than those optimized minimizing the spatial heterogeneity of the

tumor cell survival.
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Supporting information

S1 Table. Treatment outcomes data. Treatment outcomes for the investigated tumors quanti-

fied in terms of D50 values and treatment gains of DPBN treatments relative to irradiation

with uniform dose. All values are expressed in Gy. DPBN treatments were optimized either

with OFsurv or OFstd.

(PDF)
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51. Gropp W, Moré J. Optimization environments and the NEOS server. In: Buhmann M. D. and Iserles A.,

editors. Approximation theory and optimization, Cambridge University Press Cambridge, UK. 1997;

p. 167–182.
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