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Topological superconductors, where the
bulk state shows superconducting gap
and Majorana fermions constitute gap-
less edge states, have become one of the
most important topics in physical sci-
ences. Majorana fermions are their own
antiparticles andMajorana quasiparticles
in a solid-state system obey non-Abelian
statistics, and thus can be used for fault-
tolerant topological quantum computa-
tion.

Due to both scientific and appli-
cable values, plenty of effort has been
made in searching for topological
superconductors. The major effort is
designing heterostructures composed
of Bardeen–Cooper–Schrieffer (BCS)
superconductor-topological insulator or

BCS superconductor–spin orbit cou-
pling material, where the supercon-
ducting proximity effect makes the
interface or junction become an effective
topological superconductor [1–5].
Then, with applying magnetic field, the
zero bias conductance peak (ZBCP), a
typical signature of the Majorana-bound
state, has been observed at the ends of
nanowires or vortex cores by tunneling
measurements [6–8]. Nevertheless,
there is still a lot of debate over whether
the ZBCP in these measurements is truly
from theMajorana-bound state.

Recent discovery of topological
semimetals [9], such as topological 3D
Dirac semimetals and Weyl semimetals,
offers a new platform to look for and

investigate topological superconductors
if the materials can be superconduct-
ing. Differently from topological insula-
tors [10,11], where only the surface state
is topologically non-trivial and shows a
linear energy-dispersion electronic struc-
ture, namely a Dirac cone structure [12],
the bulk state of topological semimetals
exhibits a topologically non-trivial Dirac
or Weyl cone structure with relativis-
tic quasiparticles [13,14]. In these topo-
logical materials, some intriguing quan-
tum properties can be revealed, such
as the discovery of log-periodic quan-
tum oscillations [15]. Recently, by us-
ing non-superconducting metallic tips to
carry out hard point contact measure-
ments on non-superconducting Dirac
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Figure 1. The schematic of tip-induced super-
conductivity in topological semimetals.

semimetals Cd3As2 and Weyl semimetal
TaAs crystals as shown in Fig. 1, it
was found that the contact region be-
comes superconducting and point con-
tact spectra (PCS) showZBCP, symmet-
rical conductance peaks with dips com-
bined in a structure, indicating the pos-
sibility of topological superconductivity
[16,17] (Fig. 2a–f). Indeed, theoretically,
there is a great chance that the induced
superconductivity is topologically non-
trivial. In previous studies, the hard point
contact measurement was a common
method to study superconductors. Now
the technique has been demonstrated to
be able to induce superconductivity in
non-superconducting materials by using
a non-superconducting tip as a modula-
tion method like gating [18]. Actually,
the tip for hard point contact measure-
ment is also capable of enhancing the
transition temperature (Tc) for some su-
perconductors, like Au2Pb [19] (Fig. 2g–
i).Thus, the hard point contact measure-
ment on topological semimetals, which
also can be called the tip-induced super-
conductivity method here, offers a new
way to trigger and detect topological su-
perconductivity. Since neither the nor-
mal metal tip nor the sample is a su-
perconducting material, tip-induced su-
perconductivity on topological semimet-
als is reminiscent of the interface su-
perconductivity in the LaAlO3/SrTiO3

(LAO/STO) system, which has not been
seriously considered before. Therefore,
further theoretical and experimental in-
vestigations are highly desired to un-
derstand what exactly happens at the
interface and how to precisely analyse
PCS. Besides, more evidence beyond the
observed ZBCP and special PCS fea-
tures in previous work is still neces-
sary to completely demonstrate that the
tip-induced superconductivity on topo-
logical semimetals is topologically non-
trivial. Since topological superconductiv-
ity may show p-wave spin-triplet pairing
symmetry, superconductivity is able to
coexist with ferromagnetism, which can
be experimentally tested.

Searching for intrinsic superconduct-
ing topological semimetals is another im-
portant direction in which to explore
topological superconductivity. The type
II Weyl semimetal MoTe2, where the
Weyl cone is heavily tilted and Lorentz
invariance is violated, has been reported
as a superconductor at around 0.1 K
[20]. The problem is that the Tc is too
low to carry out various experiments.
By doping S into MoTe2, it has been
found that the Tc can be extremely en-
hanced and thus the superconductivity
can be fully studied by transport, diamag-
netic, heat capacity and scanning tunnel-
ing microscopy (STM) measurements
[21]. Surprisingly, two superconducting
gaps from the bulk state have been de-
tected and the interband interaction is
much stronger than the intraband inter-
action, which indicates s+– pairing. It
is known that most Fe-based supercon-
ductors are s+– pairing. Nevertheless,
differently from Fe-based superconduc-
tors, there are no magnetic orders in S-
doped MoTe2. Thus, it would be a very
interesting topic to figure out the mech-
anism of s+– pairing superconductivity
in non-magnetic systems. Furthermore,
it has been theoretically predicted that
sign-changing superconductivity in the
Weyl semimetal would form topologi-
cal superconductivity [22]. On the sur-
face of doped MoTe2, scanning tunnel-
ing spectroscopy (STS) studies reveal
a much larger superconducting gap and
the ratio of superconducting gap vs Tc is
much higher than that in weakly coupled
BCS superconductors, which could re-

sult fromparitymixing on the topological
surface state. Another typical example of
superconducting topological semimetal
is TaIrTe4, where the surface supercon-
ductivity from Fermi arc states is de-
tected while the bulk state is not super-
conducting [23]. It is noted that the ra-
tio of superconducting gap vs Tc of the
TaIrTe4 surface is also much larger than
the standard BCS ratio 3.53. Therefore,
the extremely enlarged surface super-
conducting gap seems to be a universal
property of topological superconductor
candidates,which still needs further theo-
retical consideration and physical under-
standing.

Normally, the Tc of discovered topo-
logical superconductor candidates is not
high and most topological superconduc-
tor candidates are different from high-Tc
superconductors, where the strong cor-
relation effect plays a great role. Low
Tc is a limitation for potential applica-
tion in topological quantum computa-
tion. It is believed that the parent mate-
rials of many Fe-based superconductors
are semimetal in type. Recent progress
reveals that the surface states of some
Fe-based superconductors can show the
topologicalDirac cone structure—amar-
riage between topology and high-Tc su-
perconductors [24]. Besides, in most
studies on topological superconductors,
a magnetic field has to be applied to
detect Majorana-bound states, which is
another practical limitation for applica-
tion. However, very recently, without
an applied magnetic field, Majorana-like
ZBCP has also been detected on the
top of Fe adatoms deposited by molec-
ular beam epitaxy (MBE) on one-unit-
cell-thick FeSe films on STO substrate,
which are 2D high-Tc superconductors
with the Tc higher than 50 K [25]. The
quantum anomalous vortex nucleated at
the magnetic ion in a strongly spin orbit
coupled superconductor might induce
the Majorana-bound state. The undoped
one-unit-cell-thick FeSe film is consid-
ered a 2D Dirac semimetal. Therefore, it
is highly desired to widely and deeply in-
vestigate the topological superconductiv-
ity andMajorana-bound states in high-Tc
Fe-based superconductors.

In summary, some topological
semimetals show superconductivity
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Figure 2. Tip-induced and enhanced superconductivity on topological materials. (a) Temperature dependence of four-probe bulk resistivity of Cd3As2
single crystal showing non-superconducting behavior. Upper inset: Schematics of the standard four-probe measurement configuration. Lower inset:
Zoom-in of the resistance–temperature curve below 10 K. (b) Temperature dependence of the zero-bias resistance of the point contact (PC) measurement
result on Cd3As2 single crystal with W tip showing superconductivity. Inset: Schematics of the PC measurement configuration. (c) Normalized dI/dV
spectra of PC (PCS) on Cd3As2 at different temperatures without an external magnetic field. (d) Temperature dependence of four-probe bulk resistivity
of TaAs showing non-superconducting property. Lower inset shows negative magnetoresistance as a signature of chiral anomaly when B//E. (e) and (f)
Point contact measurements on TaAs with PtIr tip showing superconductivity. (g) Transport measurement of bulk Au2Pb single crystal showing Tc∼1.3 K.
(h) and (i) The zero-bias PC resistance as a function of temperature and the PCS at different temperatures for the point contact measurement of Au2Pb
with W tip, showing an enhanced Tc∼2.1 K. (a) to (c) Reprinted with permission from Wang et al. [16], Copyright 2016 NPG. (d) to (f) Reprinted with
permission from Wang et al. [17]. (g) to (i) Reprinted with permission from Xing et al. [19], Copyright 2016 NPG.

at low temperatures and some are non-
superconducting but can be modulated
to be the superconductors, such as tip-
induced superconductivity on topologi-
cal semimetals. It is noted that the the-
oretical prediction points out hundreds
of topological semimetals [26]. More-
over, the topologically non-trivial prop-
erty has been predicted and observed in
some Fe-based superconductors show-
ing semimetal like electronic structure
in undoped situations, which reveals a
correlation between topological super-
conductors and high-Tc superconduc-
tors and might pave the way to realizing

feasible topological quantum computa-
tion in the future. Normally, high car-
rier density is required to achieve su-
perconductivity, but the Fermi surface is
small in semimetals when the Fermi en-
ergy is close to Weyl or Dirac points.
Indeed, type II topological semimetals
show higher carrier density and are eas-
ier to be superconducting. As for type
I topological semimetals, superconduc-
tivity may originate from the topolog-
ical surface state or doped bulk state.
To fully demonstrate whether the super-
conductivity is topologically non-trivial,
the Dirac physics contribution on the

emerged superconductivity is neces-
sary to be further clarified. Thus, the
development of topological semimet-
als and other topological materials
promises a great opportunity to detect
and study topological superconductivity
and will certainly stimulate the related
investigations.
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