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Panels of 3 to 8 hematological parameters significantly improved
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Abstract: Prediction of primary cardiovascular events has been

thoroughly investigated since the landmark Framingham risk score

was introduced. However, prediction of secondary events after initial

events of coronary artery disease (CAD) poses a new challenge.

In a cohort of coronary angiography patients (n¼ 1760), we

examined readily available hematological parameters from the UPOD

(Utrecht Patient Oriented Database) and their addition to prediction of

secondary cardiovascular events. Backward stepwise multivariable Cox

regression analysis was used to test their ability to predict death and

major adverse cardiovascular events (MACE). Continuous net reclas-

sification improvement (cNRI) and integrated discrimination improve-

ment (IDI) measures were calculated for the hematological parameters

on top of traditional risk factors to assess prediction improvement.
l, MD, PhD, Gerar , MD, PhD,
, and Imo E. Hoefer, PhD

to 0.40 (P< 0.001 in 5 of 6 outcome measures). In the hematological

panels red cell distribution width (RDW) appeared most often. The

multivariable adjusted hazard ratio of RDW per 1 standard deviation

(SD) increase for MACE was 1.19 [1.08–1.32], P< 0.001.

Routinely measured hematological parameters significantly

improved prediction of mortality and adverse events in coronary

angiography patients. Accurately indicating high-risk patients is of

paramount importance in clinical decision-making.

(Medicine 94(45):e1992)

Abbreviations: ACS = acute coronary syndrome, BMI = body

mass index, CABG = coronary artery bypass grafting, CAD =

coronary artery disease, cNRI = continuous net reclassification

improvement, CVA = cerebrovascular accident, IDI = integrated

discrimination improvement, MACE = major adverse

cardiovascular event, MI = myocardial infarction, PAD =

peripheral arterial disease, PCI = percutaneous coronary

intervention, RBC = red blood cell, RDW = red cell distribution

width.

INTRODUCTION

Improvements in cardiovascular health care have significantly
increased survival of coronary artery disease (CAD) patients.1

Consequently, the number of patients at risk for secondary
events has risen. Despite being generally considered as high risk,
this patient group is far from homogeneous; the risk of developing
secondary adverse events varies from very low to very high.

The prediction of primary events has been studied for over
half a century now, starting with the introduction of the land-
mark Framingham risk score.2 In addition to a clinical predic-
tion model, many biomarkers have been evaluated for their
ability to improve primary and secondary prediction, for
example C-reactive protein,3,4 Cystatin C,5,6 and myeloperox-
idase7,8 have shown to be associated with the risk of future
events. Also, hematological parameters, mainly leukocyte-
related parameters,9,10 have been reported to reflect the risk
of primary cardiovascular events. More recently, high red blood
cell distribution width (RDW), a measure of the variation of red
blood cell size, has emerged as a predictor for atherosclerosis
progression,11 CAD severity,12 and mortality.13

However, the secondary predictive value of traditional risk
factors, for example, body mass index14 (BMI) and of bio-
ry risk prediction is limited or remains
edicting secondary risk is of paramount
nt and their treating clinician in order to
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optimize secondary preventive measures for those at need. This
may include novel and/or expensive therapies, for example,
the proprotein convertase subtilisin/kexin (PCSK) type
9-inhibitors.15 To date, reliable tools that discriminate between
high and low-risk patients with known CAD are lacking.

In the current study, we therefore sought to improve
secondary risk prediction among coronary angiography
patients. We did this by extending a clinical model containing
risk factors, cardiovascular history, and angiographic charac-
teristics with routinely measured and readily available hemato-
logical parameters. For this purpose, we used the Utrecht
CORonary BIObank (UCORBIO) cohort16 in combination with
hematological measurements from the Utrecht Patient-Oriented
Database (UPOD)17 laboratory registrations.

METHODS

Study Population
We analyzed data from the UCORBIO cohort (clinical-

trials.gov identifier: NCT02304744), an observational cohort
study of patients undergoing coronary angiography for any
indication in the University Medical Center in Utrecht, The
Netherlands. From October 2011 to February 2014, a total of
1904 patients were enrolled. For the current study, adult (>18
years) patients presenting with myocardial infarction (either ST-
Segment Elevation Myocardial Infarction [STEMI] or Non-ST-
Segment Elevation Myocardial Infarction [NSTEMI]), chest
pain without release of cardiac enzymes (stable or unstable
angina), dyspnea on exertion, silent ischemia, or screening for
noncardiac surgery were selected (n¼ 1760). Patients with
other indications for coronary angiography (coronary
anomalies, screening for cardiac surgery, or heart transplant
follow-up) were thus excluded (n¼ 144).

Ethics, Consent, and Permissions
All patients provided written informed consent and the

study conforms to the Declaration of Helsinki. The institutional
review board of the University Medical Centre Utrecht
approved of this study (reference number 11-183).

Data Collection
The investigators completed standardized electronic case

report forms at baseline based on the patient’s medical files
containing age, sex, cardiovascular risk factors, indication for
angiography, medication use, angiographic findings, and event-
ual treatment of CAD. The definitions used for the baseline
variables were published previously in more detail.18 The
angiographic findings were categorized into 4 groups by the
treating interventional cardiologist: no CAD, minor CAD (wall
irregularities,<50% stenosis), single-vessel disease (1 vessel
with>50% stenosis19), and multivessel disease (2 or 3 vessels
with>50% stenosis).

Hematological Parameters
The hematological parameters were obtained through

complete blood count analysis at the moment of coronary
angiography. The parameters that were used in this study
comprised 56 routinely measured hematological parameters
(listed in supplemental Figure 1, http://links.lww.com/MD/
A515) from the UPOD database.17 A feature of the automated

Gijsberts et al
blood cell analyzer is that it not only reports the parameters
requested by the physician, but all hematological parameters
that it is capable of measuring. For example, when a physician
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requests a hemoglobin measurement, the analyzer also auto-
matically determines the platelet count. Although this platelet
count is not reported to the clinician, the analyzer stores the data.
Periodically, all data captured within the blood cell analyzers are
downloaded to a database format, and are cleaned and checked for
integrity, making the data available for research.

The UPOD parameters contain information on red blood cell
(RBC) numbers and characteristics, leukocyte numbers and
characteristics, and platelet numbers and characteristics. All
hematological parameters are measured using the Cell-Dyn
Sapphire20–22 hematology analyzer (Abbott Diagnostics, Santa
Clara, CA, USA). This analyzer is equipped with an integrated
488-nm blue diode laser and uses spectrophotometry, electrical
impedance, laser light scattering (multiangle polarized scatter
separation), and 3-color fluorescent technologies to measure
morphological parameters of leukocytes, RBCs, and platelets
for classification and enumeration. The morphological
parameters entail the following 5 optical scatter signals for
leukocytes: cell size (08 scatter, axial light loss), cell complexity
and granularity (78 scatter, intermediate angle scatter (IAS)),
nuclear lobularity (908 scatter, polarized side scatter (PSS)),
depolarization (908 depolarized side scatter (DSS)), and viability
(red fluorescence (FL-3), 630� 30 nm). For platelets, 2 optical
scatter signals are measured: IAS scatter (78, cell size) and PSS
scatter (908, granularity; internal structure). RBC parameters are
measured or calculated on the basis of the impedance measure-
ment. Reticulocytes are optically measured using IAS scatter (78,
cell size) and FL-1 fluorescence (RNA content). Throughout this
paper, all values of hematological parameters are reported as
multitudes of their standard deviation (SD) in order to ensure
comparability of effect sizes among parameters with absolute
values that vary strongly in their order of magnitude.

Follow-Up
On a yearly basis, patients received a questionnaire to

check for hospital admissions and occurrence of major adverse
cardiovascular events (MACE). When the patient reported a
hospital admission suspect for MACE or did not complete or
return the questionnaire, the general practitioner or reported
hospital was contacted for confirmation. In the case of hospi-
talization or death, medical records were obtained and the
relevance of the event or the cause of death was determined.
A panel of cardiologists adjudicated the occurrence of events.
The composite end-point MACE was defined as any of the
following clinical events: all-cause death, nonfatal myocardial
infarction, unplanned revascularization; both cardiac (percuta-
neous coronary intervention (PCI) and coronary artery bypass
grafting (CABG)) and noncardiac intervention, stroke, and
admission for heart failure.

Statistical Analysis
This study is reported in accordance with the STROBE

guidelines for observational research.23 Baseline characteristics
were reported as means and standard deviations for continuous
variables and percentages for categorical variables, for the
entire cohort and separately for patients who experienced
MACE during follow-up and who did not.

First, we constructed a clinical risk prediction model.
Covariates for this model were selected using a boosting
technique for Cox regression models (R package ‘‘Cox-
Boost’’24). The covariates considered were: age, sex, diabetes,
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hypertension, hypercholesterolemia, BMI, smoking, indication
for angiography, angiographic CAD severity, treatment follow-
ing angiography, history of PCI, history of CABG, history of
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acute coronary syndrome (ACS), history of cerebrovascular
accident (CVA), history of peripheral arterial disease (PAD),
kidney failure, use of ACE-inhibitor, use of beta-blocker, use of
statin, use of P2Y12-inhibitor (clopidogrel, prasugrel, or tica-
grelor), and use of diuretics. Age, sex, indication for angio-
graphy, angiographic severity of CAD, and treatment following
angiography were considered mandatory covariates. The vari-
ables additionally selected using a boosting procedure were
diabetes, history of PCI, history of ACS, history of PAD, kidney
failure, and use of diuretics.

The coefficients of the clinical model parameters were refit
for each outcome measure; the clinical model performed well
for all outcome measures (AUCs ranging from 0.681 to 0.884).

For the identification of hematological parameters that
could aid prediction of adverse events (total n¼ 56), first we
evaluated mutual correlation of the parameters by means of a
hierarchically clustered heatmap (supplemental Figure 1, http://
links.lww.com/MD/A515). From each cluster of collinear
parameters the parameter that showed the strongest relation
with MACE was selected for the further analysis.

The remaining parameters (n¼ 37) were entered in 6
backward stepwise Cox regression models, 1 for each outcome
measure: all-cause death, MACE, cardiovascular death, non-
cardiovascular death, re-PCI, and myocardial infarction.

From this procedure, the top 10 significant parameters for
each outcome were added to the clinical parameters (which
were forced to stay in the model, ie, mandatory covariates) and
again backward stepwise Cox regressions were performed for
the hematological parameters, rendering the final panels of
hematological parameters for the 6 outcome measures while
keeping the clinical parameters stable. In order to evaluate
whether the predictive properties of hematological parameters
differed across the indications for angiography and severities of
CAD, we evaluated interaction terms.

For the panel of hematological parameters that appeared to
be significantly related to adverse events and that were thus
added to the clinical model, areas under the curve (AUCs) were
compared to the clinical model alone using receiver operating
characteristics (ROC) analysis. The R package ‘‘timeROC’’25

was used for this purpose, which is based on the methods
described by Chiang et al.26

Furthermore, according to the most recent epidemiological
recommendations, continuous net reclassification improvement
(cNRI) and integrated discrimination improvement (IDI)
measures were calculated using the ‘‘survIDINRI’’ package27,28

in order to assess the improvement of risk prediction of adverse
events. Continuous NRI was chosen over categorical NRI due to
the lack of established meaningful risk categories in secondary
risk prediction.29

Of the hematological parameters, RDW appeared to be
performing particularly well. Therefore, baseline characteristics
were additionally summarized by quartiles of RDW. All stat-
istical analyses were performed using Rstudio30 and the R
software package (version 3.1.2, Vienna, Austria).31 A P value
of<0.05 was considered statistically significant. Missings were
deleted listwise (<10%); no bias could be detected in terms of
differing MACE occurrence between patients with and without
missing covariates.

RESULTS

Medicine � Volume 94, Number 45, November 2015
Patient Characteristics
The baseline results are presented for the entire cohort and

stratified by the occurrence of MACE during follow-up

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
(Table 1). On average, people with MACE were older (67.2
vs. 63.4, P< 0.001) than those without. Diabetes and hyper-
tension were also more prevalent in the MACE group. The
cardiovascular medical history of people with MACE more
often showed ACS, PCI, CABG, CVA, and kidney failure.
The indication for coronary angiography did not differ between
the groups. The left ventricular ejection fraction (LVEF) was
poorer and the angiographic burden of CAD was more severe
in the MACE group. Consequently, the treatment was more
invasive in the MACE group. The use of prasugrel, beta
blockers, ACE inhibitors, statins, and diuretics was higher in
the MACE group. During a median follow-up time of 779 days,
99 deaths and 368 MACEs occurred.

Hematological Parameters
In Table 2, the baseline levels of the hematological

parameters of interest (n¼ 37) are displayed by the occurrence
of MACE during follow-up. Sixteen parameters differed sig-
nificantly between patients with and without MACE during
follow-up: leukocyte count, monocyte count, eosinophil count,
basophil count, lymphocyte %, hemoglobin, % RCBs larger
than 120fL, RDW, mean corpuscular hemoglobin concentration
(MCHC), mean platelet volume (MPV), mean neutrophil cell
size, mean neutrophil granularity/lobularity, mean neutrophil
red fluorescence, lymphocyte cell size coefficient of variation
(CV), platelet granularity CV, and reticulocyte hemoglobin
concentration (CHCr).

Risk Prediction With Hematological Parameters
For each outcome, the 10 best predictive hematological

parameters (derived from backward stepwise analysis as
described in the Methods section) were added to the clinical
model containing age, sex, diabetes, indication for angiography,
angiographic CAD severity, history of PCI, history of ACS,
history of PAD, kidney failure, treatment following angiogra-
phy (conservative, PCI or CABG), and use of diuretics. The
hematological parameters that remained significantly associ-
ated with the outcome of interest are displayed in Table 3.
Panels of hematological parameters, sized between 3 and 8
parameters, were significantly predictive on the top of the
clinical model. For all outcomes except re-PCI (for which
the panel only contained leukocyte parameters) the panels
consisted of parameters from both leukocyte and RBC origin.
In particular, RDW was abundant and appeared in 4 panels (for
MACE, all-cause death, noncardiovascular death, and myo-
cardial infarction), thus showing broadly applicable predictive
properties.

The predictive properties of the hematological panels did
not differ by indication for angiography or by severity of CAD
for any of the outcome measures, as reflected by nonsignificant
interaction terms.

Improvement of Risk Prediction
Measures of prediction improvement were calculated for

the prediction models extended with hematological parameters
as compared with the basic clinical model. The cNRIs and IDIs
resulting from this comparison are presented in Table 4.
Additionally, Figure 1 shows the result from traditional ROC
analysis for MACE, all-cause death, cardiovascular death,
noncardiovascular death, myocardial infarction, and re-PCI.
Supplemental Figures 2 and 3, http://links.lww.com/MD/

Mortality Prediction With Hematological Parameters
A515, provide visual representations of the changes in predicted
risk after addition of hematological parameters. For MACE, the
IDI—indicating the change in the difference of the predicted
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TABLE 1. Baseline Characteristics of UCORBIO Patients, Stratified by MACE During Follow-Up

All No MACE MACE P Value

n 1760 1392 368
Age (mean�SD) 64.22� 10.85 63.44� 10.71 67.18� 10.88 <0.001
Sex (% males) 72.7 72.9 72.0 0.779
BMI (mean�SD) 27.14� 4.48 27.13� 4.45 27.18� 4.60 0.854
Diabetes (% yes) 22.3 19.5 32.6 <0.001
Hypertension (% yes) 57.6 55.8 64.4 0.004
Hypercholesterolemia (% yes) 47.3 46.8 48.9 0.516
Smoking (%) 0.047

Smoker 24.9 24.8 25.4
Ex smoker 28.5 27.2 33.4
Non-smoker 46.6 48.0 41.2

Medical history
History of ACS (% yes) 31.1 29.0 39.1 <0.001
History of PCI (% yes) 29.7 27.3 38.9 <0.001
History of CABG (% yes) 12.0 10.3 18.5 <0.001
History of CVA (% yes) 9.7 8.6 13.9 0.004
History of PAD (% yes) 11.4 8.2 23.6 <0.001
Kidney failure (% yes) 2.7 1.6 6.8 <0.001

LVEF (%) <0.001
Normal (>¼ 50%) 58.0 60.7 48.3
Mildly impaired (40–50%) 21.7 21.2 23.4
Moderately impaired (30–40%) 12.3 11.1 16.6
Poor (<30%) 8.0 6.9 11.7

Medication
Aspirin (% yes) 59.6 59.7 59.5 1.000
Clopidogrel (% yes) 21.5 21.0 23.6 0.296
Ticagrelor (% yes) 2.0 1.8 3.0 0.221
Prasugrel (% yes) 0.7 0.4 1.9 0.010
Beta-blocker (% yes) 56.3 54.7 62.2 0.012
ACEi (% yes) 36.1 34.4 42.7 0.004
Statins (% yes) 62.2 60.7 67.7 0.017
Diuretic (% yes) 29.6 26.5 41.3 <0.001

Coronary angiography
Indication for angiography (%) 0.842

Stable CAD 54.9 54.8 55.2
UAP 10.1 9.8 11.1
Infarction 28.6 28.9 27.7
Other 6.4 6.5 6.0

Angiographic CAD severity (%) <0.001
No CAD 6.5 7.2 3.9
Minor CAD 16.7 17.7 12.7
Single vessel disease 34.0 34.8 30.9
Multi vessel disease 42.8 40.3 52.5

Treatment of CAD (%) 0.005
Conservative 33.1 34.8 26.7
PCI 61.6 59.6 68.9
CABG 5.3 5.6 4.4

Follow-up (days, median [IQR]) 779 [573, 1033] 753 [558, 1005] 886 [677, 1112]

ACEi¼ angiotensin-converting enzyme inhibitor, ACS¼ acute coronary syndrome, BMI¼ body mass index, CABG¼ coronary artery bypass
ent

ntio
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risk between patients with events and patients without events in
the model extended with hematological parameters as compared
with the model without hematological parameters32—was the

grafting, CAD¼ coronary artery disease, CVA¼ cerebrovascular accid
PAD¼ peripheral arterial disease, PCI¼ percutaneous coronary interve
cNRI for MACE—indicating the proportion of individuals
that were justly reclassified into a higher or lower risk by
the extended model33—was 0.17 (95% CI: 0.08–0.23,

4 | www.md-journal.com
P< 0.001). Additionally, for all-cause death, cardiovascular
death, noncardiovascular death, myocardial infarction and re-
PCI significant, and substantial IDIs and cNRIs (except for

, IQR¼ interquartile range, LVEF¼ left ventricular ejection fraction,
n, SD¼ standard deviation; UAP¼ unstable angina pectoris.
noncardiovascular death, P¼ 0.059) were calculated, thus
demonstrating to provide improvement of prediction for a
diversity of adverse outcomes.

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.



improved follow-up of patients at highest risk and treatment of

TABLE 2. Baseline Values of Hematological Parameters, Stratified by the Occurrence of MACE During Follow-Up

No MACE MACE P Value

n 1392 368
Leukocyte count (109/L) 7.31 [5.97, 9.13] 7.64 [6.38, 9.56] 0.017
Lymphocyte count (109/L) 1.84 [1.42, 2.31] 1.77 [1.37, 2.25] 0.141
Monocyte count (109/L) 0.60 [0.47, 0.76] 0.65 [0.52, 0.79] 0.001
Eosinophil count (109/L) 0.14 [0.08, 0.23] 0.16 [0.09, 0.26] 0.038
Basophil count (109/L) 0.04 [0.02, 0.05] 0.04 [0.02, 0.06] 0.026
Lymphocyte % (% of leukocyte count) 25.96 [19.94, 31.74] 24.09 [18.03, 30.16] 0.002
Monocyte % (% of leukocyte count) 8.07 [6.69, 9.77] 8.32 [6.88, 9.90] 0.207
Hemoglobin (g/dL) 13.88 [12.83, 14.81] 13.35 [12.32, 14.39] <0.001
% RBC> 120 fL (%) 1.46 [0.90, 2.10] 1.63 [0.92, 2.54] 0.040
RDW (% CV) 11.99 [11.55, 12.51] 12.41 [11.72, 13.46] <0.001
MCHC (g/dL) 0.34 [0.34, 0.35] 0.34 [0.34, 0.35] 0.004
Plateletcrit (ml/L) 0.17 [0.15, 0.21] 0.18 [0.16, 0.21] 0.054
Mean platelet volume (MPV) (fL) 7.77 [7.22, 8.42] 8.00 [7.34, 8.62] 0.002
Platelet distribution width (10(GSD)) 16.17 [15.76, 16.61] 16.12 [15.71, 16.58] 0.119
Reticulocyte count (109/L) 65.57 [52.04, 80.02] 68.03 [53.96, 83.02] 0.097
Mean neutrophil cell size (AU) 145.94 [139.48, 151.33] 146.96 [142.31, 151.97] 0.020
Mean neutrophil complexity (AU) 135.65 [131.62, 139.01] 135.09 [130.94, 138.61] 0.052
Mean neutrophil granularity/lobularity (AU) 28.33 [26.29, 30.88] 27.87 [25.54, 30.10] 0.004
Mean neutrophil red fluorescence (AU) 70.34 [68.99, 71.58] 70.74 [69.52, 71.93] 0.001
CV of neutrophil cell size (%) 2.55 [2.30, 2.87] 2.52 [2.27, 2.78] 0.094
CV of neutrophil complexity (%) 3.49 [3.20, 3.78] 3.43 [3.17, 3.74] 0.065
CV of neutrophil lobularity (%) 7.73 [6.00, 9.09] 8.01 [6.23, 9.33] 0.121
CV of neutrophil granularity/lobularity (%) 15.08 [14.08, 16.01] 15.24 [14.32, 16.02] 0.145
CV of neutrophil red fluorescence (%) 7.91 [6.95, 8.75] 7.77 [6.82, 8.62] 0.096
Mean lymphocyte cell size (AU) 100.57 [98.07, 103.08] 100.52 [97.81, 103.40] 0.937
Mean lymphocyte complexity (AU) 75.71 [74.17, 77.32] 75.87 [74.06, 77.57] 0.620
CV of lymphocyte cell size (%) 4.88 [3.97, 5.84] 4.62 [3.78, 5.77] 0.025
CV of lymphocyte complexity (%) 4.83 [4.21, 5.47] 4.81 [4.16, 5.48] 0.438
CV of platelet size and complexity (%) 17.01 [16.40, 17.61] 17.06 [16.50, 17.64] 0.201
CV of platelet lobularity (%) 13.24 [12.72, 13.90] 13.54 [12.98, 14.21] <0.001
Mean RBC 78 scatter RETC (AU) 181.31 [178.59, 182.58] 181.06 [178.65, 182.97] 0.345
Mean RBC FL1, RNA, RETC (AU) 83.69 [81.20, 86.20] 84.00 [81.54, 86.38] 0.278
CV of RBC 78 scatter RETC (%) 1.67 [1.54, 1.84] 1.68 [1.52, 1.83] 0.675
CV of RBC FL1, RNA, RETC (%) 11.16 [9.70, 12.71] 11.26 [9.87, 12.73] 0.534
CHCr (fmol) 30.53 [29.58, 31.39] 30.09 [29.15, 30.96] <0.001
Hemoglobin distribution width RBCs (%) 7.23 [6.69, 7.90] 7.32 [6.72, 8.02] 0.144
Reticulated platelet count (% of platelet count) 1.93 [1.49, 2.50] 1.93 [1.52, 2.50] 0.728

All measurements are shown as medians and interquartile ranges. AU¼ arbitrary units, CHCr¼ reticulocyte mean corpuscular hemoglobin,
CV¼ coefficient of variation (corresponds to standard deviation), GSD¼ geometric standard difference, MACE¼major adverse cardiovascular

red

Medicine � Volume 94, Number 45, November 2015 Mortality Prediction With Hematological Parameters
Association of Patient Characteristics With RDW
RDW was predictive of 4 of 6 outcome measures. In order

to better understand the patient groups in which this parameter
is elevated we evaluated baseline patient characteristics by
quartiles of RDW (supplemental Table 1, http://links.lww.
com/MD/A515). We found that RDW was positively associated
with age, BMI, diabetes, and hypertension prevalence, a history
of CABG, PAD, kidney failure, use of beta-blocker, and
diuretics. RDW was negatively associated with LVEF. Multi-
variable adjusted survival by RDW quartile is depicted in
Figure 2.

event, MCHC¼mean corpuscular hemoglobin concentration, RBC¼
absolute concentration.
DISCUSSION
In this study, we showed that the addition of readily

available hematological parameters to a clinical model could

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
significantly improve prediction of death and adverse events in
coronary angiography patients. Efforts should be pursued to
translate our findings into a clinically applicable risk score.
More accurate identification of high-risk patients can lead to

blood cell, RDW¼ red cell distribution width, RETC¼ reticulocyte
those who will benefit most, thereby lowering the burden of
cardiovascular morbidity and mortality.

Predictive Properties of Hematological
Parameters

Among the hematological parameters tested in our study

for their predictive value, RDW was most abundant. The RDW
is routinely measured by dividing the SD of the mean corpus-
cular volume (MCV) distribution by the mean of the MCV and
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TABLE 3. Multivariable Adjusted Hazard Ratios Derived From Backward Stepwise Cox Regression

Outcome Hematological Parameter Origin
�

HR (95% CI) P Value

MACE RDW E 1.19 (1.08–1.32) <0.001
Basophil count L 1.13 (1.05–1.23) 0.002

CV of neutrophil red fluorescence L 0.87 (0.78–0.98) 0.020
All-cause death Leukocyte count L 1.33 (1.18–1.49) <0.001

Mean RBC fluorescence E 1.57 (1.19–2.07) 0.001
CV of neutrophil red fluorescence L 0.69 (0.55–0.87) 0.001

Lymphocyte % L 0.70 (0.56–0.87) 0.001
Mean RBC complexity E 0.40 (0.21–0.76) 0.005

Monocyte % L 1.28 (1.08–1.53) 0.005
Reticulocyte mean MCHC E 0.66 (0.49–0.89) 0.006

RDW E 1.25 (1.04–1.49) 0.016
CV-death CV of neutrophil red fluorescence L 0.44 (0.31–0.63) <0.001

Reticulocyte count E 1.59 (1.20–2.11) 0.001
Lymphocyte % L 0.57 (0.38–0.85) 0.006

Reticulocyte mean MCHC E 0.62 (0.42–0.92) 0.017
Non-CV death Leukocyte count L 1.22 (1.10–1.35) <0.001

Large RBC % (>120fL) E 1.19 (1.05–1.36) 0.006
Mean RBC fluorescence E 1.52 (1.03–2.25) 0.034

RDW E 1.24 (1.01–1.54) 0.043
MI RDW E 1.43 (1.19–1.71) <0.001

Basophil count L 1.38 (1.10–1.75) 0.006
CV of neutrophil complexity L 0.72 (0.56–0.93) 0.012

Monocyte count L 2.06 (1.10–3.86) 0.024
Monocyte % L 0.52 (0.28–0.97) 0.038

Re-PCI Mean lymphocyte complexity L 1.29 (1.07–1.55) 0.007
CV of neutrophil cell size L 0.75 (0.61–0.93) 0.009

CV of lymphocyte complexity L 1.25 (1.05–1.50) 0.014
Eosinophil count L 1.16 (1.02–1.33) 0.024

For 6 outcome measures the hematological parameters that could predict outcome significantly and independently are displayed. The hazard ratios
are the results from backward stepwise Cox regression analysis containing the 10 best predictive hematological parameters, correcting for: age, sex,
diabetes, indication for angiography, angiographic CAD severity, history of PCI, history of ACS, history of PAD, kidney failure, treatment following

ficie
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then multiplying it by 100 to provide a percentage.34 High RDW
thus reflects a higher variation in RBC volumes, also referred to
as anisocytosis. Traditionally, RDW is measured to aid differ-
ential diagnosis of anemias. However, ours and other studies

angiography (conservative, PCI, or CABG) and diuretic use. CV¼ coef
RBC¼ red blood cell, RDW¼ red cell distribution width.�

Hematological origin: E¼ erythrocyte, L¼ leukocyte.
have shown that higher RDW is associated with poorer
outcome for traumatic injuries,35 sepsis,36–38 stroke,39,40 myo-
cardial infarction,12,41–43 PCI,44–46 heart failure,47–51 and in the

TABLE 4. Measures of Prediction Improvement (IDIs and cNRIs)

Outcome IDI (95% CI) P Va

MACE 0.02 (0.01–0.03) <
All-cause death 0.07 (0.03–0.12) <
Cardiovascular death 0.06 (0.01–0.15) <
Noncardiovascular death 0.04 (0.00–0.12) <
MI 0.02 (0.01–0.06) <
Re-PCI 0.03 (0.01–0.09) <

The IDIs and cNRIs were calculated for the comparison of a clinical model
comprised: age, sex, diabetes, indication for angiography, angiographic CAD
treatment following angiography (conservative, PCI, or CABG), and diuretic
parameters as displayed in Table 2.

6 | www.md-journal.com
general population.13 In the current study, we confirmed that
RDW independently or in combination with other hematologi-
cal parameters predicts mortality and secondary adverse events
in a coronary angiography population. In addition to prior

nt of variation, MCHC¼mean corpuscular hemoglobin concentration,
studies, we demonstrated that the addition of hematological
parameters to clinical data can indeed improve risk prediction
using modern statistical techniques (IDI32 and cNRI33).

Upon Addition of Hematological Parameters

lue IDI cNRI (95% CI) P Value cNRI

0.001 0.17 (0.08–0.23) <0.001
0.001 0.28 (0.18–0.42) <0.001
0.001 0.40 (0.18–0.56) <0.001
0.001 0.16 (�0.03–0.36) 0.059
0.001 0.11 (0.02–0.25) <0.001
0.001 0.27 (0.13–0.36) <0.001

with a clinical model plus hematological parameters. The clinical model
severity, history of PCI, history of ACS, history of PAD, kidney failure,

use. This clinical model was extended with the significant hematological

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
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In addition to RDW, we found predictive potential for
several leukocyte parameters; the CV of neutrophil red fluor-
escence (for MACE, all-cause death and MI), basophil counts
(MACE and MI), lymphocyte % (for all-cause death and CV-
death), monocyte % (for all-cause death and MI), mean RBC red
fluorescence (for all-cause death and non-CV death), and leuko-
cyte count (for all-cause death and non-CV death). Some of these
parameters, leukocyte, monocyte, and lymphocyte counts, have
been described before,9,52 but the predictive values of the CV of
neutrophil red fluorescence and basophil counts are largely

FIGURE 1. ROC curves of models for a clinical model with and
between the area under the curve (AUC) of the clinical model plus
model only (gray line). The hematological parameters added to t
uncovered in the current literature. To our knowledge, the CV
of neutrophil red fluorescence has not been mentioned in the
context of cardiovascular disease before. However, in a patient

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
group with symptomatic PAD, basophil count was not an inde-
pendent predictor of MACE53 and also among community-dwell-
ing elderly, basophil count was not significantly associated with a
history of cardiovascular disease (odds ratio 1.21 [0.98–1.50]).54

Possibly, these populations were too homogeneous for basophil
counts to offer additive discriminative value. One can imagine
that within the general population basophil counts are low, with
little variation. The same could apply to a very sick population
(like symptomatic PAD patients53), who would have high baso-
phil counts with little variation. In our study population, patients

out hematological parameters P values are given for difference
matological parameters (black line) as compared with the clinical
model are as stated in Table 3.
with angiographic CAD severity ranging from no CAD or minor
CAD to triple vessel disease are enrolled, thus representing a
relatively heterogeneous population.

www.md-journal.com | 7



FIGURE 2. Multivariable adjusted MACE-free survival by RDW
quartiles MACE-free survival plot by RDW quartiles. The results
are derived from Cox regression analysis adjusting for age, sex,

Gijsberts et al
Red Blood Cells and Cardiovascular Disease
Several mechanisms relate cardiovascular disease to

changes in RBC characteristics. First, atherosclerosis is hall-
marked by oxidative stress. Upon oxidative stress, RBCs adopt
a more irregular and heterogeneous conformation.55 RBCs can
encounter oxidative stress by passing through jeopardized
tissues or microenvironments, such as atherosclerotic plaques.56

The oxidative changes can cause an increase in RBC degra-
dation and turnover, resulting in a higher proportion of small
RBCs and thus increased anisocytosis (higher RDW).

Second, inflammation is a keystone of atherosclerosis and
several proinflammatory cytokines (eg, IL-657) have been
related to increased RDW. Inflammatory cytokines such as
interferon-g and tumor necrosis factor, which are elevated in
CAD,58 suppress erythropoiesis and stimulate phagocytosis of
senescent RBCs, thereby increasing anisocytosis.59

Third, CAD is frequently accompanied by some degree of
kidney function impairment.60 Erythropoietin (EPO) is a hor-
mone produced in the renal cortex promoting erythropoiesis and
erythrocyte maturation. Disturbances in EPO production34 and
responsiveness61 have been related to increased RDW. As EPO
levels decrease upon inflammation,62 a disturbed erythropoiesis
and thereby an increase in RDW can be observed.63

Secondary Risk Prediction Improvement in
Clinical Practice

In the current study, we showed that risk estimation
following coronary angiography can be significantly improved
by addition of hematological parameters. These parameters are
readily available in the vast majority of medical centers as they
are measured with every differential blood count on automated
hematology analyzers. Clinical risk prediction rules therefore
might be effortlessly extended with a panel of hematological
parameters, resulting in more accurate identification of high-
risk individuals. These high-risk individuals need to be ident-

diabetes, smoking, indication for coronary angiography, angio-
graphic severity of CAD, history of PCI, history of ACS, history of
PAD, kidney failure, treatment of CAD, and diuretic use.
ified in order to justly provide expensive secondary prevention
therapies with limited availability, such as the soon-to-come
PCSK9 inhibitors.

8 | www.md-journal.com
While our results are promising, external validation is
warranted in order to establish the clinical usefulness of hem-
atological parameters in the context of risk prediction.

Limitations
In our cohort lipid levels were not available. Therefore,

established secondary risk prediction scores as the PROCAM,
Framingham, SCORE, or SMART-score64 could not be applied.

Also, the duration of symptoms and the delay between
acute onset of chest pain and the moment of coronary angio-
graphy might affect the levels of hematological parameters.
However, the majority of our cohort consists of stable CAD
patients (55%) without acute symptoms. Hence, such effects on
RDW are very unlikely. In patients with>1-day delay between
symptom onset and angiography, we investigated the possible
correlation between the delay and RDW, which yielded no
significant result (P¼ 0.399). A study conducting repetitive
measures would be necessary for evaluating changes of hem-
atological parameters throughout the course of CAD, such as
the BioMarcs65 program.

In the current analyses, we did not consider interaction
terms for, for example, sex. It is possible in the light of differing
reference values for hematological parameters that different
coefficients need to be applied to men and women. Future
research has to evaluate the need for sex interaction terms in a
clinically applicable risk prediction model.

CONCLUSIONS
Hematological parameters, particularly the RDW, can

significantly improve the prediction of secondary adverse
events in a coronary angiography population. This will help
identify high-risk patients more accurately and tailor secondary
prevention based on individual risk. The clinical potential of a
risk score extended with hematological parameters needs to be
evaluated further.
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