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The detection of single nucleotide polymorphisms (SNPs) is of great significance in the
early diagnosis of diseases and the rational use of drugs. Thus, a novel biosensor based on
the quenching effect of fluorescence-embedded SYBR Green I (SG) dye and graphene
oxide (GO) was introduced in this study. The probe DNA forms a double helix structure with
perfectly complementary DNA (pcDNA) and 15 single-base mismatch DNA (smDNA)
respectively. SG is highly intercalated with perfectly complementary dsDNA (pc-dsDNA)
and exhibits strong fluorescence emission. Single-base mismatch dsDNA (SNPs) has a
loose double-stranded structure and exhibits poor SG intercalation and low fluorescence
sensing. At this time, the sensor still showed poor SNP discrimination. GO has a strong
effect on single-stranded DNA (ssDNA), which can reduce the fluorescence response of
probe DNA and eliminate background interference. And competitively combined with
ssDNA in SNPs, quenching the fluorescence of SG/SNP, while the fluorescence value of
pc-dsDNA was retained, increasing the signal-to-noise ratio. At this time, the sensor has
obtained excellent SNP resolution. Different SNPs detect different intensities of
fluorescence in the near-infrared region to evaluate the sensor’s identification of SNPs.
The experimental parameters such as incubation time, incubation temperature and salt
concentration were optimized. Under optimal conditions, 1 nM DNA with 0–10 nM linear
range and differentiate 5% SNP were achieved. The detection method does not require
labeling, is low cost, simple in operation, exhibits high SNP discrimination and can be
distinguished by SNP at room temperature.
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INTRODUCTION

Single nucleotide polymorphisms (SNPs) are extremely important genetic variations in human genes
(Martin et al., 2020). SNPs research is closely related to the development of pharmacogenomics and
disease diagnosis, and is an important step toward the application of human genome projects (Li
et al., 2019). At present, there are many methods for detecting SNPs (Uppu et al., 2016; Zhao et al.,
2018; Prezza et al., 2019), including gene sequencing technology (Kim et al., 2016), capillary
electrophoresis technology (Zhao et al., 2019), reversed-phase high performance liquid
chromatography (HPLC) detection (Jones et al., 1999; Tonosaki et al., 2013), gene chip
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technology (Tu et al., 2018), etc. Although these methods can
effectively detect SNPs, most of them PCR technology is required
to amplify DNA (Qing et al., 2019), which is expensive and time-
consuming. Furthermore, the probability of obtaining a false
positive is high and the process is complex (Matsuda, 2017).
Thus, a fast, economical and reliable SG embedded sensor is
introduced to detect SNP. Such as, inserting SG into DNA double
strands, and then immobilizing DNA on the surface of
molybdenum disulfide-gold nanoparticles (MoS2@AuNPs), and
MoS2@AuNPs quenches the fluorescence of SG inserted into the
DNA double strands. So as to clearly distinguish the SNPs in the
DNA sequence. (Yan et al., 2019). Using SG as an electrochemical
indicator, SNP detection is carried out according to the strength
of the SG intercalation between chains and the strength of the
electrocatalytic reaction. SNPs show higher SG intercalation rate
and lower current response. (Vasconcelos et al., 2018). But only
with the participation of SG, it is difficult for the sensor to achieve
high resolution and high accuracy SNP detection.

SYBR Green I (SG) is a dye with green excitation wavelength
that binds to all dsDNA double helix minor groove regions, and
has a very high affinity with dsDNA (Zhou et al., 2019). In the free
state, SG emits weak fluorescence, but once combined with
double-stranded DNA, the fluorescence is greatly enhanced
(Dragan et al., 2012; Yi et al., 2019). Due to this unique
property, SG has been widely used in electrophoresis, real-time
PCR and other forms of DNA qualitative and quantitative
analysis (Morozov et al., 2020; Wang et al., 2020). However,
SG cannot completely distinguish between stable Watson-Crick
structure and unstable structure formed by mismatch, so SG is
rarely used for SNP analysis alone (Maruyama et al., 2003). In
recent years, nano-quenchers have been developed in biosensing.
Graphene oxide (GO) has a large surface-to-volume ratio and
contains hydrophobic hexagonal rings that can interact with
biomolecules (Chen et al., 2017; Mousavi et al., 2019). It is a
good biosensor fluorescence quenching material. SNPs with loose
double-stranded structures have stronger adsorption on the
surface of graphene oxide through hydrophobic interactions
between the bases of DNA and the hydrophobic surface of
graphene oxide than fully complementary double-stranded
DNA (pc-dsDNA) (Tikum et al., 2018). GO can specifically
act on SNP and quench the fluorescence of the SG/SNP
system. (Campbell et al., 2019). The GO-assisted SYBR Green
I assay produced a large difference in fluorescence intensity
between fully complementary DNA and base mismatched
DNA. This improves the detection sensitivity and efficiency of
fully complementary DNA and base mismatched DNA.

In this study, a novel biosensor based on the quenching effect
of fluorescence-embedded SYBR Green I (SG) dye (Hur et al.,
2019) and graphene oxide (GO) (Li et al., 2013; Wan et al., 2017;
Jiang et al., 2020) was constructed. SG was inserted into the
completely complementary DNA and base mismatched DNA
respectively. The completely complementary DNA showed
strong fluorescence, and then GO was added to enlarge the
difference in fluorescence signal between pc-dsDNA and SNPs.
According to the specific changes of the fluorescence signal, a
clear SNP distinction is achieved. It provides a simple, fast and
accurate strategy to solve the problem of SNP detection.

EXPERIMENTAL

Reagents and Apparatus
DNA oligomers were purchased from Shanghai Biotech
Biotechnology Co. (Shanghai China). All of the DNA
oligomers were purified by high performance liquid
chromatography (HPLC). These sequences are shown in
Supplementary Table S1 and were prepared with 100 μM by
UV3010 (Hitachi, Japan) ready for use. Graphene oxide (GO) was
provided by laboratory of physical biology, Shanghai Institute of
Applied Physics, Chinese Academy of Sciences. All other reagents
were of analytical reagent grade and used directly without
treatment. Milli-Q water (18.2 MΩ) was used throughout the
experiments. SYBR Green I (SG) was made up with DMSO as
10,000 × stock solution. The 10 mM phosphate buffer solution
with 7.4 was prepared by mixing the stock solution of K2HPO4,
NaCl, and KH2PO4 (10 mM PB, 50 mM NaCl, pH 7.4).

Fluorescence emission spectra were performed using a F-4500
fluorescence spectrophotometer (Hitachi, Japan) with a scan rate
at 1,200 nm/min. The slits for excitation and emission were set at
5 nm/5 nm.

Experimental Method
In a typical experiment, 10 μl of probe DNA (10 μM) and 10 μl of
target DNA (10 μM) were hybridized in 20 μl of 10 mM
phosphate buffer (20 mM NaCl, pH 7.4, PBS) for 30 min at
room temperature. The mixture of 4 μl hybridization solution
and 10 μl SG (×10) was placed in a fluorescence colorimetric
plate, and then 986 μl water was added. The resultant solution
was then added 5 μl of graphene solution (500 μg/ml) and was
carried out immediately after mixing to ensure that the detection
time was consistent after each addition of graphene solution,
generally 15 s. During the detection, the excitation wavelength
was 497 nm, and the scanning range was 507–650 nm. Each
sample was measured five times.

RESULTS AND DISCUSSION

Principle of Sensing SNP
The experimental principle of the biosensor is illustrated in
Scheme 1. SG is well embedded in fully complementary
dsDNA and produces high fluorescence. However, a single
matching sequence usually results in unstable DNA’s double
helix, which exhibits poor SG embedding and low fluorescence
(Zipper et al., 2004; Li et al., 2013). Graphene oxide enhances the
unwinding of unstable SNP through strong GO/ssDNA
interactions, thereby quenching the fluorescence from free SG
and SG/SNP. The result is a high signal-to-noise ratio (S/N) and
excellent SNP discrimination.

Biosensor Identification SNP Based on GO
Embedded SG
SG specifically embeds dsDNA, and the fluorescence value of SG/
dsDNA is much higher than that of SG alone. Hence, SG is widely
used in gel electrophoresis and PCR technology. This study

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6319592

Xia et al. DNA Sensor

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


examined 15-base SNPs, and base mismatches occurred every
two bases, as shown in Supplementary Table S1. In Figure 1, the
fluorescence value of the SG/pc-dsDNA group is higher than that
of the SNP group containing mismatched bases. This shows that
the structure of DNA containing mismatched bases is loose and
the amount of SG embedded is small, so the fluorescence value is
low. Supplementary Figure S1 is the fluorescence spectrum of
the sample without GO, which shows that SG can distinguish
between the pc-dsDNA and SNP groups. However, due to the low

sensitivity and weak specificity of SG itself, the discrimination
effect of pc-dsDNA and SNPs is poor. The fluorescence value of
the SNP group is still high; particularly the base mismatch
sequences at positions 2 and 14 have higher fluorescence
values. It is evident that SG can specifically select SNPs.
Because the effect was not ideal, GO was added to optimize
the experimental results. Figure 1A is the fluorescence spectrum
of the sample after adding GO. It is evident that the fluorescence
value of pc-dsDNA is still high, but the fluorescence value of the

FIGURE 1 | Emission spectra of a biosensor consisting of graphene oxide (GO) and SYBRGreen I (SG) that detects single nucleotide polymorphisms (SNPs). (A) FL
intensities of the samples after adding GO. (B) FL intensities as a function of various DNA/SG/GO or DNA/SG. The final concentration: [SNPs] � 10 nM, [probe DNA] � 10 nM,
[pcDNA] � 10 nM, [GO] � 2.5 μg/ml, 10 mM phosphate buffer ( 20 mM NaCl, pH 7.4).

FIGURE 2 | Emission spectra of GO on the detection of SNPs (SNP-8, SNP-5, and SNP-11). The final concentration: [SNPs] � 10 nM, [probe DNA] � 10 nM, [GO] �
2.5 μg/ml, 10 mM phosphate buffer (20 mM NaCl, pH 7.4).
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SNP groups and probe DNA is extremely low. At this time, the
background interference can be almost ignored, and the signal-
to-noise ratio has also been greatly improved. Figure 1B visually
lists the results of sample detection before and after adding GO.
The ordinate is the fluorescence ratio of pc-dsDNA to SNP or
probe DNA. The red band is the result of the experiment before
the addition of GO. The fluorescence value of pc-dsDNA is about
5–15 times that of the SNP group and 20 times that of probe
DNA. Its signal to noise is relatively low. The black band is the
result of the experiment after adding 2.5 μg/ml GO. The
fluorescence value of pc-dsDNA is about 20–120 times that of
the SNP group and about 260 times that of probe DNA. The
signal-to-noise ratio was significantly higher than that of the
experimental group without GO, and the signal-to-noise ratio
was significantly different with the base mismatch positions. The
highest signal-to-noise ratio was at the base 8th position, and the
lowest signal-to-noise ratio was at the base 2nd and 14th
positions. This may indicate that GO can quench the
fluorescence, reduce the background signal, improve the
signal-to-noise ratio, and improve the sensitivity and efficiency
of SNP detection. Moreover, the signal-to-noise ratio varies with
the base position. Thus, the method proposed in this study to
detect SNPs using GO and SG is feasible. According to the
strength of the signal-to-noise ratio, mismatched base
positions can be distinguished.

The Fluorescence Quenching Kinetics of
GO for Various SNPs
This study further analyzed the dynamic changes of fluorescence
values of SNPs with mismatched bases at positions 5, 8, and 11
over time after adding 2.5 μg/ml GO. As shown in Figure 2 and
Supplementary Figure S2, the fluorescence quenching of pc-
dsDNA was about 80% by GO at 3 min, while that of probe DNA

was almost 100% at 15 s, besides, SNP-8, SNP-5, and SNP-11
were completely quenched within 3 min. Supplementary Figure
S2 demonstrates that the fluorescence ratios of pc-dsDNA/SNP-8
were between 70 and 100 at 3 min in the present of GO while that
of pc-dsDNA/SNP-5 and pc-dsDNA/SNP-11 were 30–50 and
20–80, respectively. Therefore, the fluorescence value was
generally detected 15 s after the addition of GO.

Dynamic Changes of Fluorescence Value of
SNPs at Different Salt Concentrations and
Temperatures, Respectively
In order to dramatically distinguish SNPs for this sensor, salt
concentration and temperature were analyzed. Actually, the two
important factors were considered to be closely related to DNA
hybridization, SG’s selective intercalation with dsDNA, and GO’s
preferential strong adsorption with ssDNA (Swathi and
Sebastian, 2009; Liu et al., 2011; Huang and Liu, 2012). The
fluorescence values of the samples were all measured at the
maximum emission peak λ � 525 nm. According to the
detection procedure optimized for salt concentration, the
following results were obtained. The results in Supplementary
Figure S3 show that when the salt concentration was 0.2 mM, pc-
dsDNA was best distinguished from probe DNA, and the
quenching effect of GO on pc-dsDNA exhibited much slower
kinetics and lower efficiency in PBS, and about 80% of the
fluorescence of pc-dsDNA was quenched at 3 min. When the
salt concentration increased, the fluorescence radio of pc-
dsDNA/probe DNA decreased quickly, while The fluorescence
quenching was nearly 100% for probe DNA (15 s) in
Supplementary Figure S1. This indicates that the GO/probe
DNA interaction depends on the concentration of NaCl, and it
also indicated that GO strongly adsorbed ssDNA with high
affinity, not dsDNA. Besides, the influence of NaCl
concentration on GO/SNP interaction was investigated to

FIGURE 3 | Emission spectra of with varying pc-dsDNA/SNP-5-T, pc-
dsDNA/SNP-8-T and pc-dsDNA/SNP-11-A ratios at different temperatures
(25, 30, 35, 40, 45, 50, and 55°C). The final concentration: [SNPs] � 10 nM,
[pc-dsDNA] � 10 nM, [GO] � 2.5 μg/ml, 10 mM phosphate buffer
(20 mM NaCl, pH 7.4). Error bars represented the SD of five experiments.

FIGURE 4 | Fluorescence spectra of SG/pc-dsDNA in the presence of
various concentrations of pcDNA (0, 0.5, 1, 2, 4, 6, 8, 10, 12, and 15 nM, and
the total target DNA containing probe and pcDNA was 20 nM). Other
conditions were same as Figure 1.
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improve SNP discrimination, as shown in Supplementary Figure
S3 that the fluorescence quenching behavior for SNPs (SNP-8,
SNP-5, and SNP-11) also depended on NaCl concentration.
When the salt concentration was 0.2 mM, Fpc-dsDNA/FSNP-8
(>68) were much higher than Fpc-dsDNA/FSNP-5 (<52), which
illustrated that different positions of the smDNAs’ mismatched
bases (Supplementary Table S1) had different discrimination,
middle position mismatched bases of the smDNAs had the best
fluorescence quenching effect within the bases while Fpc-dsDNA/

FSNP-5-T (52) or Fpc-dsDNA/FSNP-5-G (48) was higher than Fpc-
dsDNA/FSNP-5-A (8) at 0.2 mM NaCl. This shows that different
mismatched bases in the same position had also different
discrimination. Therefore, SNPs from pcDNA could be easily
detected when NaCl concentration at 0.2 mM NaCl, at which
point the good Fpc-dsDNA/FSNPs (>20) was enough for SNP
discrimination (Supplementary Table S1).

Since NaCl concentration had a great relationship of the Tm of
duplex, the detection temperature at certain salt concentration

FIGURE 5 | Fluorescence spectra in the presence of different allele frequency [pcDNA/(pcDNA + smDNA) was 0, 5, 10, 20, 40, 60, 80, and 100%, and the total
target DNA containing pcDNA and smDNA was 20 nM]. Other conditions were same as Figure 1.

SCHEME 1 | SNP assay sensor composed of graphene oxide (GO) and SYBR Green I (SG)
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(0.2 mM) was investigated. Supplementary Figure S4 shows the
fluorescence values of the samples at different temperatures. SNP-
8-T, SNP-5-T, and SNP-11-A were selected as the representatives
of the SNP group. It was discovered that the fluorescence value of
SNPs did not change much as the temperature increased. Also,
the fluorescence value of pc-dsDNA decreased significantly with
the increase of temperature. The difference between the two
fluorescence values was greatest at 25°C. Figure 3 shows the
fluorescence ratio of pc-dsDNA to SNP-8-T, SNP-5-T, and SNP-
11-A at different temperatures. The results show that as the
temperature rises, the fluorescence ratio continues to decrease. At
25°C, the ratio of the two was the largest, indicating that the
signal-to-noise ratio was very high and the discrimination effect
was optimal. These results confirm that the best temperature
condition for this monitoring system is 25°C, which means that
we can easily differentiate pc-dsDNA from SNPs by this GO-
based sensor in a room temperature.

The Sensitivity of the Biosensor
Under the best experimental conditions, the sensitivity of this
method to detect SNPs was analyzed. As shown in Figure 4, with
the increase of pcDNA concentration, its fluorescence value also
increased. When the concentration reached 10 nM, the
fluorescence value hardly changed. Supplementary Figure S5
shows the trend of fluorescence value as a function of pcDNA
concentration. Similarly, when the concentration was 10 nM,
equilibrium was reached, and the fluorescence value was
almost no longer increased. This indicates that enough
pcDNA and probe DNA had been hybridized at this time, and
the reaction was complete. In addition, based on the results of
detection of SNPs reported in previous studies (Supplementary
Table S2; Wei et al., 2016; Xu et al., 2018; Wolfe et al., 2019), this
paper uses graphene oxide-based SYBR Green I fluorescent
intercalating dye-induced sensors to detect SNPs with a low
detection limit (1 nM). The response time is faster (15 s).

Different Allele Frequency Analysis
In the proposed detection system, the final concentration of the
probe DNA was 10 nM, and the total concentration of pcDNA and
the detected smDNA (smDNA-5-T, smDNA-8-T, or smDNA-11-
C) was 10 nM. The ratio of pcDNA/(pcDNA + smDNA) was 0, 5,
10, 20, 40, 60, 80, and 100%. Analysis was performed under
experimental conditions of 25°C and 0.2 mM NaCl concentration,
and the results shown in Figure 5 were obtained. When the ratio of
smDNA was 0%, the detected fluorescence value was the largest. As
the proportion of smDNA increased, the fluorescence value
decreased continuously; when the ratio was 100%, the
fluorescence value was the lowest. The graphs in Supplementary
Figure S6 show the fluorescence values detected when the ratio of
smSNA to target DNA is different with a nice linear gradient, and 5%
of SNP target could be differentiated. Obviously, the fluorescence
value decreases with the increase of the ratio of mismatched DNA in
the target DNA, which fully demonstrates the rationality and
feasibility of this method.

CONCLUSIONS

In summary, a new, fast, simple, ultra-highly sensitive and
selective biosensor for detecting SNPs was developed here. All
above detection results confirm that our biosensor indeed
work as we expect. 1) The sensor requires no fluorescent
labeling, is simple and inexpensive. 2) SG has specificity for
the intercalation strength of each dsDNA, but the specificity is
not high enough. Perfectly complementary dsDNA expresses
high fluorescence emission due to the high intercalation of SG,
while SNP is relatively low. After adding GO, the interaction
between GO and SNP is much greater than that between GO
and pc-dsDNA. The fluorescence emitted by SG/SNP is
quickly quenched by GO, and the fluorescence value is
almost zero. However, the fluorescence of SG/pc-dsDNA is
still high. At this time, the fluorescence ratio of SG/pc-dsDNA
to SG/SNP is up to 120 times, and the signal-to-noise ratio is
very high. 3) Under optimized conditions, we could detect
1 nM DNA with 0–10 nM linear range and differentiate 5%
SNP, with a response time of only 15 s. The sensor is expected
to make a significant contribution to pharmacogenomics and
medical diagnosis.
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