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Abstract

Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present 

membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular 

barriers. Discovered over 40 years ago, ABC transporters have been identified as key players 

in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also 

neurodegenerative diseases, such as Alzheimer’s disease (AD). Most prominent and well-studied 

are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance 

(MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding 

of other ABC transporters is limited, and most of the 49 human ABC transporters have been 

largely neglected as potential targets for novel small-molecule drugs. This is especially true for 

the ABCA subfamily, which contains several members known to play a role in AD initiation and 

progression. This review provides up-to-date information on the proposed functional background 

and pathological role of ABCA transporters in AD. We also provide an overview of small-

molecules shown to interact with ABCA transporters as well as potential in silico, in vitro, and 

in vivo methodologies to gain novel templates for the development of innovative ABC transporter-

targeting diagnostics and therapeutics.
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INTRODUCTION

From MDR to neurodegeneration: ABC transporters in human disease

ABC transporters are membrane-bound transport proteins that are ubiquitously present in 

the human body.1-4 They play a major role in determining the distribution of intrinsic 

and xenobiotic drugs between intra- and intercellular compartments.5,6 The clinical 

relevance of ABC transporters became pronounced when their expression was correlated 

to cross-resistance of cancer cells to antineoplastic agents.3,7-13 This phenomenon is called 

‘multidrug resistance’ (MDR). However, despite enormous efforts and countless clinical 

trials to target these efflux pumps,14-17 MDR is still a major unresolved obstacle in cancer 

chemotherapy. To date, most ABC transporters have been associated with MDR,3,7-9,11,12 

but only a small minority has been studied properly and can be addressed by small-

molecule modulators.18-22 Amongst these are ABCB1,1,18-27 ABCC1,1,18,19,23,24,26,27 and 

ABCG2.18,19,25

Apart from their role in multidrug-resistant cancer, many ABC transporters have been 

identified as key players in neurological disorders. Evidence for this includes their 

high abundance at the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier 

(BCSFB) in the central nervous system (CNS).28-32 Additionally, their expression is 

altered in many pathological conditions in the brain.28-30,33-40 Important players are, 

again, ABCB1,28-30,34-36,39-44 ABCC1,28-30,39,41,43,45 and ABCG228,30,34,36,39-41,43 in 

diseases like AD,28-30,41 amyotrophic lateral sclerosis (ALS),34,36,44 encephalopathy,45,46 

epilepsy,39,40 multiple sclerosis (MS),35 and Parkinson’s disease (PD).42,47 Furthermore, 

ABC transporters were also found to be associated with certain genetic neurological 

and psychiatric diseases such as Huntington’s disease (HD),38 bipolar disorder,48,49 

depression,48 or schizophrenia.48,49 Table 1 summarizes the involvement of ABC 

transporters in neurological diseases.

ABC transporters, Aβ proteins, and AD

Since 2001, ABC transporters have been implicated in AD pathogenesis.28-30,41,43,94,95 

Specifically ABCB1,94 ABCC1,96 and ABCG297 have been suggested to directly transport 

amyloid-β (Aβ) proteins, being involved in Aβ clearance from the brain to the blood 

stream.94,96,97 In light of the failure of the first immunological treatment studies,98 it was 

already proposed that ABC transporter dysfunction could explain the clearance problem 

of Aβ.99,100 Cerebral accumulation of Aβ proteins interferes with neuronal metabolite 

homeostasis and leads to interruption of cortico-cortical circuits and hampered synaptic 

communication. This results in an irreversible atrophy and degeneration of specific brain 
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regions, which further causes behavioral, cognitive, and visuospatial impairments in the 

progression of AD.101

The most prominent ABC transporter subfamily involved in AD is the ABCA subfamily 

of cholesterol and phospholipid transporters, in which particularly ABCA1, ABCA2, 

ABCA5, and ABCA7 have been associated with AD.28-30,41,43,95,102 For ABCA1,28,41,95,103 

and specifically for ABCA7,28,41,95,104-107 genetic variant28,41,108-111 and genome-wide 

association studies (GWAS)28,41,106,107,112 have suggested that these transporters are risk 

factors in AD. These discoveries give the members of the ABCA subfamily a special 

standing within the group of AD-related ABC transporters.

Cholesterol metabolism in the context of AD has been discussed extensively 

before.95,102,104,105,113-116 The contribution of cholesterol and phosphilipid transport 

to membrane constitution, composition, fluidity, and lipid raft formation mediated by 

ABCA transporters has already been proposed,6 presenting a putative pharmacological 

target.117 Targeting cholesterol and lipid distribution impacts Aβ production by differential 

activities between α-, β-, and γ-secretases, but also amyloid precursor protein 

(APP) processing106,118-122 and Aβ degradation.106,119,123-126 A contribution of ABCA 

transporters to Aβ clearance from the brain was also proposed,103,106,119,124,127 but not 

through direct Aβ transport.128,129

Although ABCA transporters have been reviewed for the last two decades,3,130,131 little is 

known about their specific contribution to AD pathogenesis and their mode of action. This 

is mainly due to a lack of small-molecules that can be used to track, study, and impact the 

function of these under-studied ABC transporters.

The present review consists of two parts: PART I provides the status quo of ABCA 

transporters in AD and small-molecule modulators – in particular intrinsic substrates, natural 

compounds, pharmacological drugs, and synthetic molecules – that have been reported to 

influence ABCA transporter function and expression; PART II outlines the necessary drug 

development pipeline for the discovery of novel lead structures as potential innovative 

diagnostics and therapeutics against AD. This pipeline includes cutting-edge in silico 
methodologies, established in vitro cell assays, and necessary in vivo models.

Collectively, this review contributes to a deeper understanding of small-molecule ligands 

that influence ABCA transporter function, potentially leading to the development of novel 

AD diagnostics and therapeutics.

PART I: STATUS QUO

ABCA transporters: Physiological function and implications for AD

ABCA transporters are ubiquitously present in the human body,3,10,13 although differentially 

expressed.10 All of the 12 subfamily members have been associated with cholesterol and/or 

phospholipid transport and homeostasis,3,13,132 except for ABCA4, which is primarily a 

transporter of retinoids.133-138
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In addition to the diseases listed in Table 1, ABCA transporters have been described as key 

proteins in several other human disorders, including neonatal respiratory distress syndrome 

(ABCA3),139 chronic interstitial lung disease (ABCA3),140 cataract-microcornea syndrome 

(ABCA3),141 hypertrichosis terminalis (ABCA5),142 or Harlequin ichtyosis (ABCA12).143

However, one major clinical implication for ABCA transporters, particularly ABCA1, 

ABCA2, ABCA5, and ABCA7, relates to AD.28,50,52,63 Their suggested roles in this 

major burdensome neurodegenerative disease as well as general physiological aspects are 

summarized in the following sections.

ABCA1—ABCA1 is the prototype of the ABCA subfamily,144 was first identified in 1994, 

and is located on human chromosome 9.145 The complete genomic sequence of human 

ABCA1 was reported in 2000. The ABCA1 gene spans 149 kb comprising 50 exons, and the 

resulting protein is 2261 amino acids long.146 ABCA1 is located in the plasma membrane 

and is also present intracellularly in the endoplasmic reticulum and Golgi apparatus, where 

it mediates the efflux of cholesterol and phospholipids from intracellular compartments to 

extracellular lipid-free apolipoproteins, mainly apolipoprotein A1 (APOA1) and to a lesser 

extend APOA2 and APOE, to form high-density lipoprotein (HDL) particles.3,147,148 The 

lipidation of APOA1 is preceded by ABCA1 dimerization.149 ABCA1 thus represents the 

first and rate-limiting step in the reverse cholesterol transport pathway, which removes 

excess cholesterol from peripheral tissues via HDL and delivers it to the liver for conversion 

into bile acids and subsequent excretion. In contrast to peripheral tissues, the physiological 

role of ABCA1 in the brain, where it is expressed in all cell types, is not well defined.103 

It has been suggested that ABCA1 is required for cholesterol transport from glial cells to 

neurons via APOE, which is secreted by glial cells and serves as the main lipid acceptor in 

the brain.103,125 In vitro and in vivo studies in Abca1 knock-out models demonstrated that 

ABCA1 is essential for normal APOE secretion and lipidation in the CNS.150,151 Glial cells 

deficient for ABCA1 showed reduced lipid efflux with concurrent lipid accumulation as well 

as decreased APOE secretion, with APOE particles being small and poorly lipidated. In 

mice, Abca1 knock-out resulted in dramatically decreased brain levels of APOE. Moreover, 

examination of the hippocampi of Abca1-deficient mice revealed a decrease in neurite length 

and number of neurite segments and branches, pointing to an importance of ABCA1 for 

neurite integrity.152

The major genetic risk factor for sporadic AD is the allelic state of the APOE genotype, 

with inheritance of the APOE4 allele markedly increasing disease risk.153,154 Recently, 

Rawat et al. investigated how APOE4 affected ABCA1 expression and function in vitro 
in astrocytes.155 The authors found that APOE4 decreased ABCA1 plasma membrane 

levels and increased ABCA1 co-localization with late endosomes via activation of ADP-

ribosylation factor 6, thereby reducing cholesterol efflux and lipidation of APOE particles. 

They corroborated their findings in blood-cerebrospinal fluid (CSF) showing that CSF from 

homozygous carriers of the APOE4 allele was less efficient in stimulating ABCA1-mediated 

cholesterol efflux compared to CSF from homozygous carriers of the APOE3 allele.

A recent study assessed cholesterol efflux capacity of CSF by analyzing AD patients, 

non-AD patients, and control subjects.156 The results demonstrated that ABCA1-mediated 
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CSF-cholesterol efflux capacity was markedly reduced in AD but not in non-AD demented 

patients. However, this difference did not depend on APOE4 status. Interestingly, ABCA1-

mediated CSF-cholesterol efflux capacity inversely correlated with total and phosphorylated 

protein tau, suggesting a link between the dysfunction of HDL-like particle in CSF and 

neurodegeneration.

Apart from the indirect link via APOE, a direct link between ABCA1 and AD has 

also been subject to investigation. Expression of hippocampal ABCA1 was elevated on 

both the mRNA and protein levels and was positively correlated with neuropathological 

changes and dementia severity in AD patients.157 The authors of this study suggested that 

the observed upregulation of ABCA1 could be interpreted as a compensatory attempt to 

clear Aβ from the brain. Moreover, a variety of studies investigated associations between 

single nucleotide polymorphisms (SNP) in the ABCA1 gene and the risk for ad,28,108-111 

reporting inconclusive results.95,103 A meta-analysis of several studies identified the ABCA1 
rs2422493 (C477T) polymorphism as a risk factor for AD while no association was found 

for the rs2066718 (V771M) or rs1800977 (C14T) polymorphisms.111 This risk effect for 

rs2422493 was confirmed in a recent genetic variant association study that, in contrast to the 

meta-analysis, also reported an increased AD risk for rs2066718 and a decreased AD risk for 

rs1800977.109 Further genetic association studies and meta-analyses are necessary to search 

for potential associations between ABCA1 polymorphisms and AD risk.

In a recent AD GWAS, the rs1800978 polymorphism in the ABCA1 gene was identified 

as the lead SNP in a new genome-wide significant locus.158 The association of genetic 

variants of the ABCA1 gene with AD risk was confirmed by exome sequencing data 

analysis from 32,558 individuals.158 The study identified around 120 variants that have an 

increased frequency in early-onset AD (EOAD; 1.5%) and late-onset AD (LOAD; 1.1%) 

cases, compared to 0.5% of all controls. The data demonstrated that AD-association was 

mainly explained by extremely rare variants, but also by a smaller number of more common 

variants, e.g., N1800H.159 Intriguingly, loss of function and missense variants in the ABCA1 
gene were respectively associated with a 4.7-fold (95%CI 2.2-10.3) and 2.7-fold (95%CI 

1.9-3.8) increased EOAD risk, and this was lower for LOAD cases suggesting that the 

burden of damaging ABCA1 variants was concentrated in younger AD patients.

Additionally, some long non-coding (lnc) RNAs such as lncRNA LOC286367 have been 

shown to affect ABCA1 expression.160 LncRNA LOC286367 and ABCA1 are located 

on the same chromosome but are transcribed in opposite directions. A recent study 

demonstrated that LOC286367 reduces ABCA1 expression in THP-1 macrophages and 

increases the levels of proinflammatory cytokines.160

The role of ABCA1 in Aβ deposition and clearance as well as in Aβ deposits-related 

memory deficits has been extensively investigated in APP-transgenic mouse models of AD. 

The lack of ABCA1 decreased brain APOE levels and either did not affect or increased 

Aβ load.161-163 A recent study utilizing shotgun lipidomics experiments demonstrated a 

common APOE isoform-specific phospholipid signature between human APOE3/3 and 

APOE4/4 AD brains and lipoproteins isolated from astrocyte-conditioned media of APOE3 
and APOE4 mice.164 Interestingly, the lipoproteins derived from wild-type and Abca1het 
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mice had phospholipid content APOE3 > APOE4 > APOE3het > APOE4het suggesting that 

the combination of ABCA1 insufficiency and APOE4 genotype decreases APOE lipidation 

even further, thus aggravating APOE4 effect. These findings suggest that poorly lipidated 

APOE may promote Aβ aggregation.129,161-163 In contrast, overexpression of ABCA1 in 

an APP-transgenic mouse model resulted in increased lipidation, albeit reduced brain levels 

of APOE and decreased Aβ load, implying that highly lipidated APOE may reduce Aβ 
aggregation propensity.127 This is supported by findings of Deane et al., who showed that 

different APOE isoforms may differentially disrupt Aβ clearance from mice brains.165 A 

stable isotope-labelling kinetic study in an APP-transgenic mouse model either lacking 

ABCA1 or overexpressing ABCA1 demonstrated increased APOE clearance in both Abca1 
knock-out and ABCA1-overexpressing mice, but did not reveal any effect on Aβ clearance 

or production, suggesting that ABCA1 may regulate Aβ deposition by a mechanism 

other than altering Aβ metabolism.166 In contrast, a study assessing the clearance of 

intracerebrally injected 125I-Aβ from the brain reported that Abca1-deficiency decreased 

Aβ clearance in non-APP-transgenic mice.167 Furthermore, knock-out of Abca1 was found 

to augment the dissemination of intracerebrally injected, brain-derived Aβ seeds in APP-

transgenic mice.167 Haplodeficiency of Abca1 led to decreased brain APOE levels and 

increased Aβ oligomer levels but did not affect Aβ deposition in APP-transgenic mice.168 

However, both haplodeficiency and homozygous knock-out of Abca1 aggravated cognitive 

deficits in APP-transgenic mice.152,167,168 Lastly, the lack of one copy of Abca1 exacerbated 

memory deficits, decreased Aβ clearance, and increased Aβ load in APP-transgenic mice 

expressing human APOE4 but not in APP-transgenic mice expressing human APOE3.169

ABCA2—ABCA2 is predominantly, but not exclusively, expressed in the brain, where it 

can be found in glial cells and neurons.170-173 On the subcellular level, ABCA2 is located 

in endo- and lysosomal membranes, facilitating the sequestration of waste substances 

into intracellular vesicles.172 In addition, it is involved in myelin lipid transport, neural 

development, and macrophage activation.30,174,175

Genetic variations of ABCA2 were identified as a risk factor for EOAD and sporadic 

AD.52,176 These two studies showed a strong correlation between rs908832 and AD.52,176 

However, a later study could not find a link between this SNP and any form of AD.177 In 

addition, ABCA2 mRNA expression was upregulated in AD patients compared to controls 

suggesting ABCA2 as a biomarker for differential diagnosis of AD.178 Preclinical studies 

of ABCA2 suggested that this transporter modulates Aβ production via the LDL receptor 

(LDLR).179,180 ABCA2 overexpression increased LDLR density, and LDLR deficiency 

has been described to enhance Aβ deposition.181 Chen et al. reported a co-localization of 

ABCA2 and Aβ as well as Aβ upregulation in cells overexpressing ABCA2. In addition, 

impairment of ABCA2 expression using small interfering RNA (siRNA) was accompanied 

by a decrease in Aβ production.182 Abca2 depletion has been shown to induce a shift from 

β- to α-secretases and thus, a reduction of APP processing by γ-secretase.182 Furthermore, 

ABCA2 has been proposed to play a role in Aβ production as it has been reported to 

upregulate sphingosine in murine cells and, therefore, to induce APP transcription.183 

However, another study in human cells could not confirm the modulation of Aβ production 
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or cholesterol efflux by ABCA2.184 Thus, further research on the role of ABCA2 in AD 

pathogenesis and its potential as a therapeutic target is necessary.

ABCA3—Despite its initial report of exclusive lung expression,185 ABCA3 is also found in 

other tissues including the brain.186,187 Within the brain, the highest levels of ABCA3 were 

found in oligodendrocytes.188

ABCA3 plays a role in producing surfactants in the lung, suggesting that the transporter 

may also be involved in lipid metabolism in the brain, specifically phosphatidylcholine and 

phosphatidylglycerol transport. Interestingly, phosphatidylcholine has also been discussed in 

the context of AD.189 A genetic study revealed that mutations in ABCA3 can also cause 

cataract-microcornea syndrome, a rare congenital malformation of the eye.141 The actual 

implications of the potential connection between altered ABCA3 functionality and AD need 

to be addressed in future studies.

ABCA4—ABCA4 is mainly expressed in the retina with very little presence in other 

tissues of the CNS.190 ABCA4 mutation causes Stargardt disease, characterized by macular 

dystrophy, retinal alterations, and lipofuscin accumulation.60,61,190,191 Other retinal diseases, 

such as fundus flavimaculatus, retinitis pigmentosa, or cone-rod dystrophy, have also been 

associated with mutations of ABCA4.55,57,58,192 ABCA4 is expressed in brain capillary 

endothelial cells, as well.193 However, no link between ABCA4 and AD has been suggested 

to date.

ABCA5—ABCA5 is a little-known member of the ABCA subfamily expressed mainly 

in skeletal muscle with unknown function in the brain.194 Studies in peripheral tissues 

suggest that the function of ABCA5 is associated with cellular lipid metabolism.195 Abca5 
knock-out in mice induced signs of lysosomal storage disease in the heart and the thyroid 

gland.131

In the brain, ABCA5 is expressed in neurons and, to a lesser extent, in microglia, astrocytes, 

and oligodendrocytes.195 Fu et al. showed that ABCA5 stimulated cholesterol efflux in 

neurons and induced a decrease in Aβ production probably affecting APP processing but not 

its expression.195

ABCA6—ABCA6 is ubiquitously expressed with high levels in liver, lung, heart, brain, 

and ovaries. This transporter is probably involved in macrophage lipid homeostasis as it is 

upregulated during macrophage differentiation and is responsive to cholesterol treatment.196 

Although certain missense variants of ABCA6 have been correlated with blood cholesterol 

levels,197 no link between ABCA6 and AD has yet been found.

ABCA7—ABCA7 was first identified in the year 2000, and is located on human 

chromosome 19.198-200 Analysis of ABCA7 mRNA expression levels has shown that this 

transporter is mainly confined to the brain and the immune system.3 Due to its high 

homology to ABCA1 (54%),200 ABCA7 was first hypothesized to play an important role in 

lipid trafficking, mediating cholesterol and phospholipid efflux. ABCA7 actively transports 

phosphatidylcholine, phosphatidylserine, and sphingomyelin from the cytoplasm to the 
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exocytoplasmic leaflet of membranes.198,199,201 However, in contrast to ABCA1, ABCA7 

generates only small HDL particles.202 Recent research has shown that lipid trafficking by 

ABCA7 plays a secondary role. Studies in Abca7 knock-out models have demonstrated that 

ABCA7 is involved in the phagocytotic activity of macrophages and fibroblasts198,203-205 

but not in cell cholesterol release.206-208

In 2011, Hollingworth et al. identified the ABCA7 gene as an AD risk locus.198,209 

In multiple studies, variants of ABCA7 have been associated with an increased risk of 

developing AD.198,210-212 In 2015, Steinberg et al. reported that rare loss-of-function 

variants of ABCA7 confer a risk of AD in Icelanders (odds ratio: 2.12; P = 2.2 · 10−13), and 

found a similar association in study groups from Europe and the United States (combined 

odds ratio: 2.03; P = 6.8 · 10−15).213 In particular, the rare AD-related polymorphism 

rs200538373 was associated with an AD risk odds ratio of 1.9.210 These studies suggest that 

reduced levels of ABCA7 may increase the risk of AD. Nonetheless, it is not clear how these 

polymorphisms affect ABCA7 function and contribute to AD progression. Increased levels 

of ABCA7 expression were described in AD patients and were also positively correlated 

with cognitive decline.198,211 This finding is consistent with Abca7 mRNA transcription 

levels in J20 mice.123 The increase of ABCA7 may be a compensatory defense mechanism 

that is insufficient to stop disease progression. Furthermore, the rs3764650G allele has 

been associated with increased neuritic plaques in human patients198,214 and a limitation 

of the neuroprotective effects of exercise intervention.215 These studies support a potential 

protective role of ABCA7 in AD. To date, three potential roles have been identified for 

ABCA7 contribution to AD: APP processing, immune response, and lipid metabolism.

Chan et al. proposed an inhibitory effect of ABCA7 on Aβ deposition after showing in vitro 
inhibition of Aβ production independent of β-secretase activity.120 Other authors proposed 

that ABCA7 is not directly linked to Aβ production, but rather through lipid metabolism 

as ABCA7 mediates the transport of lipids across the BBB and ABCA7 loss of function 

may alter cholesterol transport by decreasing APOE secretion and ABCA1 expression. This 

alteration in cholesterol metabolism can also contribute to AD development.216 However, 

Abca7 knock-out induced an increase of Aβ load with no difference in clearance rate and 

an increase of β-secretase expression. On the other hand, ABCA7 overexpression led to 

diminished Aβ production and improved cognitive function.217,218

Nevertheless, ABCA7 is highly expressed in phagocytic cells, including macrophages 

and microglia, suggesting a role of the transporter in phagocytosis.188,198 Phagocytosis 

is crucial to maintain brain homeostasis. Indeed, ineffective phagocytosis may induce 

neuroinflammation, which is a risk factor in AD. In addition, microglial cells are involved 

in phagocytosis and degradation of Aβ. Thus, an involvement of ABCA7 in microglial 

phagocytosis of Aβ may explain the contribution of this transporter to AD pathogenesis. In 

AD patients, increased ABCA7 transcription has been found in areas with plaques but not 

in unaltered regions such as the cerebellum.123 This increase in transcription was paralleled 

by microglia recruitment supporting the contribution of ABCA7 to microglia-mediated 

phagocytosis of Aβ. In addition, Abca7 knock-out mice showed a reduced microglia 

response after intracerebral Aβ injection.123 Kim et al. demonstrated an increased Aβ load 

in J20/A7 knock-out mice compared to J20 mice, potentially due to an altered phagocytic 
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function.124,198 Furthermore, it has recently been shown that Abca7 haplodeficiency disturbs 

the microglial immune response and causes enhanced Aβ accumulation in microglia, 

probably due to alterations in endolysosomal trafficking.219

Last, a new hypothesis has emerged recently, assigning ABCA7 a prominent role in the 

altered lipidostasis hypothesis in AD.104 The authors of this study proposed the existence of 

a neurodegenerative lipid that is naturally removed by ABCA7. A loss of ABCA7 function 

due to the described polymorphisms might accelerate accumulation of this lipid, inducing 

Aβ aggregation. In fact, a link between cholesterol metabolism and ABCA7-mediated 

phagocytosis has been reported, which may also explain the protective properties of statin 

treatment in the development of AD.105,198,203,220

Despite recent findings, the role of ABCA7 in AD pathogenesis remains unclear. According 

to in vitro and preclinical research, it may be associated with phagocytic activity by 

microglia, which could be linked to cell cholesterol metabolism.105,198,203 Thus, further 

investigation is required to reveal the role of ABCA7 in AD pathogenesis and its potential 

use as a therapeutic target for this neurodegenerative disease.

ABCA8–ABCA10—So far, no obvious role of ABCA8–10 has been elucidated for AD, 

neurodegenerative diseases, nor any human disease. However, several potential intrinsic 

substrates of ABCA8 have been identified.10,221,222 Furthermore, a significant number 

of ABCA transporter modulators have been identified on this target.222 Hence, ABCA8 

represents a good model system for the development of potential therapeutics targeting other 

ABCA transporters taking the scarce knowledge on this transporter subclass into account.

ABCA12—ABCA12 is expressed predominantly in the epidermis, and its main function 

is the transport of lipids.223 It is hypothesized that ABCA12 plays a role in skin 

lipid homeostasis. Mutations in this gene are associated with lamellar ichthyosis type 

2 and Harlequin ichthyosis.143,224,225 However, a Japanese study investigated common 

polymorphisms of ABCA12 and did not find an association with sporadic AD.226

ABCA13—ABCA13 is the largest ABC transporter with 576 kDa.227 It has been reported 

to be highly expressed in the brain as well as in peripheral tissues.227 A very small study 

found reduced neuroinflammation and altered ABCA13 expression in post mortem analyses 

of brains from patients with Lewy body dementia.64 In addition, increased ABCA13 

expression has been reported after stroke in mice.67 Furthermore, two studies showed 

enhanced ABCA13 mRNA expression in schizophrenic patients after different antipsychotic 

treatments, suggesting a role of this transporter in psychiatric disorders.48,65,66 However, no 

association between ABCA13 and AD has been found.

Modulators of ABCA transporter function, trafficking, and regulation

‘Modulation’ is a widely used term to summarize actions of small-molecules that have been 

reported to alter ABCA transporter function, trafficking, and/or regulation. Modulators can 

be divided into ‘interactors’ and ‘regulators’.
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Interactors summarize compounds that directly bind to ABCA transports, which can have 

either inhibiting or activating effects on the transporters. Substrates are also included in 

this category. In terms of ABCA transporters, however, a direct interaction of these agents 

with their target(s) has in most cases not yet been comprehensively proven. Therefore, 

compounds that are believed to directly interact with ABCA transporters extend the category 

of interactors. Figure 1 represents the most prominent interactors of ABCA transporters and 

provides additional information about their mode of modulation.

Regulators are compounds that change ABCA transporter expression (transcription and/or 

translation) in terms of induction and/or downregulation. In addition, compounds that 

regulate ABCA transporter trafficking can be included into the category of regulators, as 

this effect was often observed as ‘pseudo-protein increase’ at the cell membrane. Figure 2 

depicts the most prominent regulators of ABCA transporters including proposed mode of 

modulations.

It must be stated that the term ‘inhibitor’ and ‘activator’ are often misused in the literature, 

as in most cases studies describe a downregulation or induction. In the present review, 

this mislabeling has been taken into account and the present review and the respective 

compounds have been allocated into the correct groups. As established earlier,23,24 the 

compounds are sorted according to their origin: (i) intrinsic substrates and substrate-like 

molecules, (ii) (other) natural compounds, (iii) pharmacological drugs, (iv) high-throughput 

screening-(HTS)-derived candidates, as well as (v) compounds from synthetic/medicinal 

chemistry approaches. Figure 3 gives a general overview of specific interactors and their 

postulated mode of modulation. Table 2 summarizes all modulators of ABCA1, the most 

studied ABCA transporter, while Table 3 summarizes all known modulators in terms of the 

other ABCA transporters. The stated concentration values are indicators of bioactivities of 

the respective compound and are strongly dependent on the testing system utilized. Hence, 

the respective data must be interpreted with caution.

Small-molecule interactors of ABCA transporters

Endo- and xenobiotic substrates: The most genuine interactors of ABCA transporters are 

intrinsic substrates of these transporters. These include cholesterol (Figure 1) and other 

sterol derivatives,10,221,222,228 but also phospholipids (Figure 1), sphingolipids228,229 and 

retinoids (e.g., all-trans-retinal; Figure 1).133-138 In addition, certain intrinsic molecules 

were demonstrated to interact with ABCA transporters, in particular with ABCA1230 

and ABCA8.10,221,222 α-tocopherol (vitamin E) was demonstrated to be transported by 

ABCA,230 and to interfere with ABCA1 regulation.231 The sterol derivatives estradiol-β-

glucuronide, estrone sulfate, and taurocholic acid (Figure 1), but also the physiological 

substrate leukotriene C4 (LTC4), the natural compound ochratoxin A, as well as the 

chemical p-amino hippuric acid were discovered as (potential) ABCA8 substrates.10,221,222 

Specifically the ABCA8-mediated taurocholate export from various human pancreatic 

cancer cell lines was suggested as the major mechanism behind gemcitabine resistance in 

these cells,221 which was corroborated in HEK293 cells stably expressing ABCA8.10

In addition, a small body of evidence suggests that ABCA2 and ABCA3 contribute to the 

subcellular sequestration of certain antineoplastic agents into endo- and lysosomes.232-235 
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These agents include cytarabine (ABCA3),235 daunorubicin (ABCA3),232,233,235 etoposide 

(ABCA3),235 imatinib (ABCA2 and ABCA3; Figure 1),234,236 mitoxantrone (ABCA3),235 

and vincristine (ABCA3; Figure 1).235 Furthermore, several antineoplastic agents were 

described to have less effect when ABCA2 was overexpressed in vitro171,237,238 and 

in vivo.239 For example, the anticancer drug estramustine (Figure 1) was effluxed from 

ABCA2-overexpressing human ovary carcinoma cells, which were less susceptible to 

estramustine treatment than the sensitive cell line.171,238 Antisense nucleotide treatment 

against ABCA2 re-sensitized the carcinoma cells, further demonstrating a role for 

ABCA2 in mediating drug efflux.238 Furthermore, Abca2 knock-out mice had elevated 

estradiol and estrone levels when treated with estramustine.239 A similar effect in terms 

of susceptibility and resensitization was observed for ABCA3-mediated transport of 

miltefosine in Leishmania,240 doxorubicin resistance in acute myeloid leukemia cells,237 

and cisplatin as well as paclitaxel resistance in several lung cancer cell lines.241

Strikingly, ABCA2 co-localized with the lysosomal-associated membrane protein 1 

(LAMP1) – an endolysosomal marker – as well as the fluorescence probe dansyl-

estramustine. This co-localization indicates a direct sequestration of this antineoplastic 

drug into endo- and/or lysosomes.171 On the other hand, the susceptibility of ABCA3-

overexpressing CCRF-CEM leukemia cells to the antineoplastic agents cytarabine, 

methotrexate (Figure 1), vincristine, but also the anti-inflammatory drug dexamethasone, 

was reduced compared to their parental counterparts.242 Taken together, ABCA2 and 

ABCA3 are contributors to MDR, and the number of potential ABCA2 and ABCA3 

substrates may be even higher than currently suggested.

Interestingly, missense mutations of ABCA4 were associated with chloroquine- and 

hydroxychloroquine-associated retinopathy,243 although contradictory studies exist.244 A 

direct interaction was postulated, however, not proven. Nevertheless, these results suggest 

chloroquine and hydroxychloroquine as potential ABCA4 substrates.

Inhibitors: To date, the number of small-molecules that (are believed to) directly interact 

with ABCA transporters is very low. For example, only 14 inhibitors can be found in 

the literature regarding the most studied prototype of ABCA transporters, ABCA1.245-248 

Only four of these inhibitors are associated with half-maximal inhibition concentrations 

(IC50),245,249 which is the ‘golden surrogate’ to evaluate and judge inhibitory activities 

of small-molecules. The following section will highlight these small-molecules as well as 

inhibitors of other ABCA transporters.

ABCA1

Glibenclamide and 4,4’-diisothiocyano-2,2’-stilbene-disulfonic acid (DIDS): As outlined 

above, ABCA1 is the most studied and understood ABCA transporter, although its particular 

role in neurodegenerative diseases in general51,103 – and in AD in particular – is not 

well understood.28-30,43,95,102 However, over time, several agents were found to impact 

ABCA1 transport function. The most prominent examples are glibenclamide and DIDS 

(both Figure 1), which were first shown to inhibit ABCA1 in 1997.247,248 These drugs 

blocked the ABCA1-mediated 125I efflux from murine peritoneal macrophages247 as well as 
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human ABCA1-transfected Xenopus laevis Oocytes.248 Glibenclamide and DIDS inhibited 

the ABCA1-mediated transport of cholesterol and other sterols as well as phospho- and 

sphingolipids. Thus, these agents became the ‘standard ABCA1 inhibitors’ and have 

frequently been used in ABCA1 studies ever since.229,250-269 Glibenclamide and DIDS 

were preferred over other discovered ABCA inhibitors, such as bumetanide, diphenylamine 

2-carboxylic acid, flufenamic acid, furosemide, and bromosulfophthaleine.248 Specifically 

glibenclamide was rigorously evaluated regarding its mechanism of action. It was 

demonstrated that glibenclamide prevented cross-linking of 125-marked APOA1 to 

ABCA1,267,270 not interfering with ABCA1 location at the cell surface.267 In essence, 

glibenclamide and DIDS may play a significant role in the development of future modulators 

of ABCA transporters in general.

Probucol and cyclosporine A: Less prominent but also well characterized are 

the antilipidemic drug probucol246,271-278 and the immunosuppressant cyclosporine 

A245,249,258,279-281 (both Figure 1). Probucol was demonstrated to reduce the cholesterol 

efflux from different ABCA1-overexpressing murine and human macrophages,275-278 

and total lipid release (cholesterol + phospholipids) from human WI-38 fibroblasts.246 

Vice versa, probucol increased accumulation of free cholesterol, cholesterol esters, 

phosphatidylcholine, and sphingomyelin in human fibroblasts.246 Additionally, probucol 

was reported to prevent cell surface-specific binding of 125I-marked APOA1 to 

ABCA1.246,278 Similarly, this effect has already been demonstrated for glibenclamide 

before.267,270 Interestingly, it was shown that total ABCA1 protein levels were increased 

after exposure to probucol due to decreased degradation.246,275 This qualifies probucol also 

as a stabilizer. However, as its inhibiting effect is far more pronounced, we have included it 

as an inhibitor here.

The immunosuppressant cyclosporine A has been characterized as an ABCA1 inhibitor 

in multiple studies.245,249,258,279-281 This inhibition was shown to be direct through a 

radiolabeled variant of cyclosporine A and purified ABCA1.245 Cyclosporine A not 

only functionally inhibited ABCA1-mediated cholesterol and phospholipid efflux,245,249 

and caused intracellular accumulation of cholesterol,258 but also inhibited the ABCA1-

dependent binding of Alexa 546- or 125I-labeled APOA1,245,249 as demonstrated for 

glibenclamide267,270 and probucol246,278 before. Interestingly, toxicity assays demonstrated 

that cyclosporine A negated the positive effect of an ABCA1 inducer on cell viability when 

cells were exposed to Aβ proteins.280 This was confirmed in vivo in C57BL/6 mice that 

had reduced HDL levels.249 Interestingly, cyclosporine A was shown to decrease ABCA1 

turnover, increasing its presence at the cell surface by a factor of two as demonstrated with a 

GFP-labeled ABCA1 variant,249 suggesting a similar mode of inhibition as for probucol.275 

Thus, as for probucol,246,275 cyclosporine A also appears to have a stabilizer function,275 

but is included in the current section due to its pronounced inhibitory role. Morevover, 

the cyclosporine A analog valspodar (PSC833) inhibited direct binding of radiolabeled 

cyclosporine A to ABCA1, revealing that valspodar also acts as an ABCA1 inhibitor.245,282 

Furthermore, several other calmodulin antagonists inhibited ABCA1-mediated cholesterol 

efflux and binding of APOA1.245 These include pimecrolimus,245 sirolimus,245 and 
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tacrolimus,245 suggesting these molecules as potential scaffolds for the development of 

future ABCA1 modulators.

Other ABCA1 inhibitors: In terms of other small-molecules that were suggested to inhibit 

ABCA1 function, BLT-4 has been demonstrated to inhibit cholesterol and phospholipid 

export from adipocytes and macrophages,255 and to decrease cholesterol efflux from 

ABCA1-transfected HEK293 cells. BLT-4 was also shown to inhibit 125I-marked APOA1-

binding to ABCA1,270 as demonstrated for glibenclamide,267,270 probucol,246,278 and 

cyclosporine.245,249

Other ABCA transporters—While ABCA1 can be considered a less-studied ABC 

transporter with certain knowledge about its function and interfering small-molecules,18 all 

other ABCA transporters belong to the group of under-studied ABC transporters that cannot 

be addressed by small-molecules with very rare exceptions.18

One rare example is ABCA8. Using the Xenopus laevis Oocytes model in vitro testing 

system,248 Tsuruoka et al. reported inhibitors of this transport protein.222 While digoxin, 

probenecid, and verapamil (all Figure 1) could be identified as very weak inhibitors of 

ABCA8-mediated estradiol-β-glucuronide transport, dofequidar (MS-209), ochratoxin A, 

and verlukast (MK-571; Figure 1) were discovered as moderately potent inhibitors.222 In 

addition, glibenclamide was also suggested to (partially) inhibit ABCA8 function.266

Activators: Although activators of ABC transporters have been reported, as for example, for 

ABCB123 and ABCC transporters,23,283-288 these reports are somewhat scarce compared 

with other classified modulators of ABC transporters. In terms of A subclass ABC 

transporters, no small-molecule activators are known. However, it is well established and 

has been extensively demonstrated that ABCA1 activity depends on (co)-administration 

of HDL and/or APOA1.117 HDL and APOA1 are not small-molecules but peptides, and 

therefore fall outside of the scope of the present review. Similarly, it has been shown 

in several reports that HDL-mimics consisting of 26 amino acids are able to increase 

ABCA1-mediated transport.289 Although these molecules are also not small-molecules, the 

scarceness of activators of ABCA transporters warrants the inclusion of these middle-sized 

molecules here.

In 2004, structural elements of APOA1 were discovered to promote ABCA1-mediated 

cholesterol efflux.290 In 2007, Vedhachalam et al. discovered that the C-terminus 

of APOE promoted ABCA1-mediated efflux from murine J774.A1 macrophages.291 

The latter discovery led to the development of two short-length peptides, ATI-5261 

and CS-6253, consisting of 26 amino acids each.289 Their amino acid sequences 

expressed in single-letter code are EVRSKLEEWFAAFREFAEEFLARLKS289 and 

EVCitSKLEEWLAALCitELAEELLACitLKS (Cit = citrulline),292 respectively, which 

is of particular interest for the development of novel lead structures. Both peptides 

increased ABCA1-mediated cholesterol and phospholipid transport in murine and 

human macrophages.289,292 Interestingly, CS-6253 decreased 125I-labed APOA1 binding 

to ABCA1,292 as demonstrated for glibenclamide,267,270 probucol,246,278 cyclosporine 

A,245,249 and BLT-4270 before. However, CS-6253 was shown to compete with APOA1 to 
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promote ABCA1-mediated transport.292 Both ATI-5261 and CS-6253 have a high practical 

relevance regarding AD and other neurodegenerative diseases, as these agents demonstrated 

in vivo efficacy.289,293 ATI-5261 treatment of high fat diet-fed Apoe knock-out mice 

decreased cholesterol levels in both plasma and feces and reduced atherosclerotic lesions.289 

For CS-6253, a reduction of Aβ42 levels and tau protein phosphorylation in transgenic 

humanized APOE4 mice was demonstrated, which was accompanied by improved cognitive 

functions.293 Interestingly, an elevation of ABCA1 protein was also observed in treated 

mice.293 Indeed, a stabilization and/or induction may also have contributed to the observed 

effects. However, the proven direct binding of these agents suggested that activation takes 

place as the major mode of action. Nonetheless, CS-6253 has not been tested in AD mouse 

models so far, and being a peptide, it would not be suitable for oral application in patients.

Small-molecule regulators of ABCA transporters

The herein discussed regulators interfere with ABCA transporter expression and/or 

trafficking. Important representatives are depicted in Figure 2 and additional information 

is given in terms of their mode of modulation. Since many different pathways are involved in 

ABCA transporter regulation, Figure 3 provides a general overview of participating proteins 

and protein families in terms of the most studied ABCA transporter, ABCA1.

Inducers

ABCA1 - LXR and RXR pathways: Given the findings in AD mouse models with 

knock-out of ABCA1/Abca1 or overexpression of ABCA1, upregulating ABCA1 activity 

may be a therapeutic strategy for decreasing Aβ pathology in AD. ABCA1 is under 

the transcriptional control of the nuclear receptors liver-X-receptor (LXR) and retinoid-X-

receptor (RXR),294-296 which can be targeted by small-molecule agonists of LXR and RXR 

to induce ABCA1 expression (Figure 3). Numerous studies reported that treatment of APP-

transgenic mice with LXR or RXR agonists decreased Aβ load126,297-301 and/or improved 

cognitive impairment.126,297,298,300 Other studies reported cognitive improvement without 

significant changes in Aβ load in APP-transgenic mice treated with LXR agonists.302,303 

LXR and RXR agonists have already been described extensively as potential therapeutics in 

the literature, also with respect to AD.304 The present review will focus on those agonists 

that were reported in clear association with ABCA1.

Oxysterols and retinoic acids: 22-(R)-hydroxycholesterol (Figure 2) has 

been established as the natural gold standard for ABCA1/Abca1 induction 

through LXR activation,122,205,249,252,259,262-264,268,277,278,305-315 while 9-cis 
retinoic acid (Figure 2) became the natural gold standard for RXR 

activation.122,245,249,259,262,264,277,278,309,311,313,316 The inducing effects were described 

both on ABCA1/Abca1 mRNA122,205,252,263,264,305,307-311,313,315-317 and ABCA1 protein 

levels.122,252,263,264,306,309-311,316,318

Other oxysterols like 4-hydroxycholesterol, 20-(S)-hydroxycholesterol, 

22-(S)-hydroxycholesterol, 24-hydroxycholesterol, 24-(S)-hydroxycholesterol, 25-

hydroxycholesterol, 27-hydroxycholesterol, and cholesterol itself also induced ABCA1/

Abca1 mRNA205,305,313,315,319-327 and ABCA1 protein levels.321,328 The increase in 
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ABCA1 protein was functionally confirmed by an enhanced cholesterol305,306,313,315,318 and 

phospholipid efflux,311,318 as well as reduced total cholesterol influx.305 Specifically 22-

(R)-hydroxycholesterol and cholesterol induced both LXRA/Lxra and LXRB/Lxrb.310,321 

Additionally, cholesterol also induced murine peroxisome proliferator-activated receptor 

γ (PPAR-γ) mRNA (Pparg),321 which represents an important alternative pathway for 

ABCA1/Abca1 induction. Furthermore, 24-(S)-hydroxycholesterol reduced in parallel 

the sterol regulation element-binding protein 2 (SREBP2) gene expression (Srebp2).323 

The SREB protein family also represents another important pathway in ABCA1/Abca1 
regulation.

The 9-cis-retinoic acid derivative all-trans-retinoic acid (ATRA) significantly increased 

ABCA1/Abca1 mRNA and ABCA1 protein content in murine and human macrophages, 

which was paralleled by increased LXRA mRNA levels in human macrophages.329 This 

increase resulted in a subsequently enhanced cholesterol efflux from murine macrophages. 

ATRA is an agonist of the retinoic acid receptor (RAR),329 which is in close relation to the 

RXR receptor and a potential target of retinoic acid derivatives.

TO901317 and GW3965: The synthetic gold standard and most studied ABCA1/

Abca1 inducer in the literature is TO901317 (often referred to as ‘T0901317’; Figure 

2).205,245,250,252,259,260,262,264,271,272,279,280,282,308,310,317,319,322,324,326,328-345 TO901317 

targeted both the LXR-α250,310,328,330,332,335,337-340,342 and LXR-β pathways,250,310,338,342 

which correlated to ABCA1/Abca1 induction on mRNA and ABCA1 protein 

levels.205,250,279,282,310,319,322,324,326,328,330-335,337-340,342,343 In addition, an induction of 

SREBP1C/Srebp1c has also been observed.336,342 Functionally, TO901317 increased 

cholesterol efflux,250,259,260,262,264,282,319,324,329,331,342 decreased intracellular Aβ content, 

and increased Aβ secretion from different murine brain cells.126,345 Further, it reduced 

Aβ25-35-mediated toxicity toward cells by induction of Abca1.280 In addition, TO901317 

mitigated memory deficits in high-fat diet-fed APP23 mice, reducing both plaque and 

soluble Aβ protein levels.344 Besides, TO901317 reduced methionine-(homocysteine)-

induced atherosclerotic lesions in Apoe knock-out C57BL/6 mice.335 These findings were 

paralleled by an increase of Abca1 mRNA and ABCA1 protein content,335 suggesting a 

potential relevance of TO901217 in AD therapy, although it must be taken into account that 

LXR activators, in particular TO901317, were demonstrated to have severe side effects in 

mice, such as neutropenia, hypertriacylglycerolemia, hepatic triacylglycerol accumulation, 

and hepatic steatosis.271,346,347

The second most common synthetic LXR-α and LXR-β agonist is GW3965 (Figure 

2).255,272,317,319,321,334,348-352 GW3965 increased mRNA317,319,321,348,349,351,352 and 

protein levels255,272,351 in different ABCA1-expressing cells. Functionally, increased Abca1 
mRNA and ABCA1 protein levels correlated with enhanced cholesterol efflux.255,351 

Strikingly, exposure of murine BV2 microglia to GW3965 reduced Aβ42 levels due to 

an enhanced degradation of Aβ,42
126 suggesting that ABCA1 contributes to general Aβ 

degradation. Finally, GW3965 significantly increased Abca1 transcription in C57BL/6 

mice,334,351 and improved contextual memory as well as Aβ pathology in TG2576 mice,126 

emphasizing its high relevance in AD therapy.
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ABCA1 - other LXR agonists and inducers

Sterane and sterane-like natural compounds: Several sterane derivatives were 

demonstrated to target LXR-α and LXR-β activation253,307,310,353 and/or LXRa/

Lxra and LXRB/Lxrb upregulation,330,332,354,355,356,357 resulting in induction of 

ABCA1/Abca1. Celastrol,330,332 digoxin,253 fucosterol,308 certain gypenosides,354 

ouabain,253 platycodin D,355 saikosaponin A,356 24-(S)-saringosterol,307 24-(S)-stigmast-5-

ene-3β,24-diol,307 taxarasterol,353 testosterone,357 and TR1310 increased ABCA1/Abca1 
mRNA307,308,310,330,332,353,354,356,357 and/or ABCA1 protein content310,253,353,354,355,357 

leading to an enhanced efflux of cholesterol in vitro253,308,330,332 and decreased intracellular 

cholesterol and/or phospholipid levels in vitro330,332,354,356,357 and in vivo in mice.253 

The effect of fucosterol was comparable to that of the standard ABCA1/Abca1 inducer 

TO901317.308 A correlation to SREBP1(C) upregulation308,307,357 and SREBP1 protein 

expression357 could be determined in case of fucosterol,308 24-(S)-saringosterol,307 24-(S)-

stigmast-5-ene-3β,24-diol,307 and testosterone.357 In case of celastrol, the regulation of 

intracellular cholesterol was pinned to an activation of autophagy330,332 and lipophagy,330 

which are processes that may be associated with Aβ degradation.

Flavonoids: The flavonoids naringenin,339 quercetin,358 and vitexin359 increased ABCA1/

Abca1 mRNA339,359 and ABCA1 protein levels339,360,358 by induction of LXRA/Lxra 
mRNA358,359 and LXR-α protein.339,360 The effect of naringenin and the standard ABCA1/

Abca1 inducer TO901317 were additive. Naringenin was shown to be dependent on 

the cAMP-activated protein kinase (AMPK) regulation (AMPK), as well as SREBP1C 
regulation.339 The AMPK pathway is another very important regulator of ABCA1 

expression. Functionally, cholesterol efflux from human339,360 and murine360 macrophages 

was increased in the presence of naringenin.339,360 In vivo, naringenin and quercetin induced 

Abca1360 and ABCA1,361,362 as well as ABCA1-mediated cholesterol transport,360 which 

was reflected in reduced atherosclerotic lesions in the aorta of high-fat diet-fed C57BL/6 

mice.360 In terms of quercetin, a protein increase of LXR-α and PPAR-γ was observed.361

Chalcones, the precursors of flavonoid biosynthesis, were also demonstrated to intervene 

with ABCA1 expression. The chalcone derivatives 1h,363 1m,363,364 and 1m-6364 

were demonstrated to increase ABCA1 mRNA and ABCA1 protein levels in THP-1 

macrophages,363,364 which was accompanied by an increase in LXRA mRNA and LXR-α 
protein levels.363 The intracellular lipid content was decreased, while the cholesterol efflux 

was increased after exposure of THP1-cells to 1m-6.364 In addition, SREBP1 mRNA was 

increased by 1m-6,364 and aortic atherosclerotic plaques were reduced in Ldlr knock-out 

C57BL/6 mice.364

Polyphenols and diterpenoid natural compounds: The polyphenols kuwanon G,365 

paeonol,252 the Celtis biondii-derived compound ethyl 2,4,6-trihydroxybenzoate,342 and 

the diterpenoid farnesin366 increased ABCA1/Abca1 mRNA252,342,365,366 and ABCA1 

protein252,342,365,366 content in an LXR-α-252,366 and LXR-β-dependent342 manner, which 

in parallel reduced cholesterol content252 and increased ABCA1-mediated cholesterol efflux 

in various cell lines.252,342,366 In vivo, farnesin increased ABCA1 protein content and 
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cholesterol efflux in Apoe knock-out C57BL/6 mice in primary peritoneal macrophages and 

the aorta, which was reflected in reduced atherosclerotic plaques.366

Other natural compounds: Several other natural compounds induced ABCA1/

Abca1 targeting LXR-α and LXR-β activation256,272,256,349,367 and/or LXRA/Lxra 
and LXRB/Lxrb induction.331,348,350,368,369,370,371,372,373,374 The garlic ingredient 

allicin,350 the alkaloid berberine,256 the coumarin bergapten A,368 certain 

Pestalotiopsis neglecta-derived chromene derivatives,348 the Rheum palmatum-

derived anthraquinone danthron,369 the lacton 1,6-O,O-diacetylbritannilactone,371 

epigallocatechin gallate (EGCG),370 the glycoside geniposide,375 the vegetable 

ingredient phenethyl isothiocyanate,373 the carotenoid lycopene,372 the Pestalotiopsis 
neglecta-derived hydroquinone pestalotioquinoside C,349 the alkaloid rutaecarpine,367 

selenium,374 the macrolactone soraphene A,272 and vitamin D3
331 led to 

increased ABCA1/Abca1 mRNA256,272,331,348,369,256,367,370,372,373 and ABCA1 

protein256,272,331,349,350,368,369,256,367,371,373,374 content in vitro331,349,350,369,375,374 and 

in vivo,368,369,370,371,372,373 enhancing cellular cholesterol efflux256,272,256,367,369 and 

reducing intracellular cholesterol content.331,350,369,256,367,375,372,374 Danthron also 

increased AMPK protein levels,369 while EGCG downregulated Srebp1 mRNA and 

SREBP1 protein content.370 Lycopene induced Ppara mRNA in tobacco carcinogen- and 

cigarette smoke-exposed ferrets,372 while isothiocyanate induced Pparg mRNA as well 

as PPAR-γ protein content in high fat diet-fed C57BL/6 mice.373 The inducing effects 

on ABCA1 expression of vitamin D3 and TO901317 were additive.331 Danthron, EGCG, 

geniposide, and rutaecarpine demonstrated also reduced atherosclerotic lesions in Apoe 
knock-out C57BL/6 mice,369,370,375,367 and isothiocyanate ameliorated the aortic injury of 

the high-fat diet in the same mice.373

Pharmacological drugs: Several pharmacological drugs also demonstrated an induction of 

ABCA1/Abca1 through LXR-α and/or LXR-β, including the a1-blocker doxazosin,376 the 

5-HT3 receptor antagonist ondansetron,279 and the anesthetic propofol.377 Consequently, 

increased Abca1 mRNA279,376 and ABCA1 protein279,376 levels were observed in 

human279,377 and murine279,376 macrophages376,377 as well as astrocytes.279 Functionally, 

ondansetron induced APOE efflux,279 while propofol led to increased cholesterol efflux.377 

In addition, propofol increased PPARG mRNA and PPAR-γ protein content in human 

macrophages.377

Furthermore, certain antineoplastic agents interfered with ABCA1 expression via LXR-α 
and/or LXR-β. Doxorubicin demonstrated an Lxr activation with subsequent induction 

of Abca1 mRNA and ABCA1 protein in vitro and in vivo.250 Functionally, doxorubicin 

elevated cholesterol export in vitro. It was shown that intra- and extracellular levels of 

cholesterol, cholesterol precursors, and several oxysterols were elevated after exposure 

to doxorubicin. These precursors included lathosterol, lanosterol, and desmosterol, while 

the oxysterols included 7-α-hydroxycholesterol, 7-β-hydroxycholesterol, 7-ketocholesterol, 

24-hydroxycholesterol, and 27-hydroxycholesterol. The authors suggested that doxorubicin 

exposure induced cholesterol metabolism subsequently leading to an induction of ABCA1. 

Besides, idarubicin augmented also Abca1 mRNA levels in vitro.
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Synthetic compounds and HTS hits: Other synthetic compounds have been shown to 

induce ABCA1/Abca1 expression by LXR-α and/or LXR-β induction. The polymer 

pyrrole-imidazole-polyamide activated a promoter region for Abca1 expression and thereby 

increased cholesterol and lipid efflux from RAW264.7 cells.376 The authors confirmed 

their findings in vivo, revealing increased Abca1 mRNA and ABCA1 protein content in 

peripheral blood mononuclear cells and the liver in C57BL/6 mice after exposure to pyrrole-

imidazole-polyamide.

In addition, the LXR agonist LXR623 induced ABCA1 mRNA and ABCA1 protein levels 

in two human renal adenocarcinoma cell lines334 as well as Abca1 mRNA levels in vivo 
in C57BL/6 mice.378 This induction was reflected in reduced intracellular cholesterol and 

triglyceride levels.

It must be noted that several other synthetic LXR-α and LXR-β agonists induced Abca1 
expression in vivo: AZ1–AZ9, AZ876, BMS-852927, F1, WAY254011.378 Finally, an HTS 

approach discovered two LXR-α and LXR-β agonists as novel small-molecule ABCA1/

Abca1 inducers: F4 and M2.319

Synthetic approaches: A few synthetic approaches have aimed toward the development 

of ABCA1/Abca1 inducers.271,336,352,379-382 The cholic acid analog 14b,336 the thiophene 

derivative CL2-57,271 as well as derivatives of N-benzothiazolyl-2-benzenesulfonamide,379 

ginsenoside,352 and rutaecarpine,367 all induced ABCA1/Abca1 mRNA336,352,381 and 

ABCA1 protein271,336,379,381 content in vitro271,336,379 and in vivo,271 targeting the LXR-α/

LXR-β pathway352 by activation271 or induction336 of LXR-α/LXRA/Lxra and/or LXR-β/

LXRB/Lxrb. In vitro, cholesterol efflux increased379,381 and intracellular cholesterol as 

well as lipid content were reduced,336,352 while plasma and liver triglycerides levels were 

reduced in vivo in high fat diet-fed C57BL/6 mice.271 Interestingly, 14b induced farnesoid-

X-receptor (FXR) transcription (Fxr),336 and CL2-57 inhibited RXR-β, PPAR-γ, and PPAR-

δ,271

Finally, Singh et al. described highly potent LXR-α and LXR-β agonists with effect at 

concentrations in the nanomolar range.382 The described podocarpic acid derivatives have 

not yet been demonstrated to induce ABCA1. However, these compounds were designated 

as potential ABCA1 inducers by the authors,382 and their high potency makes them 

interesting candidates for further evaluation.

Such synthetic approaches should be highlighted,271,336,352,379-382 as chemical 

derivatization of ABCA1 inducers and elucidation of their structure-activity relationships 

(SAR) have not yet been comprehensively assessed. More reports are needed to gain 

innovative molecules that can be considered clinically for the treatment of various ABCA1-

related diseases.

ABCA1 - other RXR agonists and inducers: In terms of synthetic RXR agonists, the 

4-chromanon derivatives SPF1 and SPF2 increased Abcb1 mRNA and ABCA1 protein 

levels and lowered Aβ25–35-mediated cell toxicity in vitro.280 The same effect was observed 

for the RXR agonist bexarotene,280 an FDA approved drug against T-cell lymphoma-related 
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cutaneous malformations. Bexarotene was used as a standard inducer of ABCA1/Abca1 
via the RXR pathway in several studies.271,272,280,319,380 Induction of Abca1 mRNA and 

ABCA1 protein levels was maximal for bexarotene in combination with TO901317.280 

Bexarotene is of particular practical relevance as a potential treatment against AD due to 

its in vivo effects. In different AD mouse models, bexarotene increased Abca1 mRNA and 

ABCA1 protein levels, but also reduced cerebral load of Aβ and hyperphosphorylated 

protein tau, which is also a histological marker in AD and other dementias.297,383 

This prospect led to synthetic bexarotene derivatives, specifically Z10 and Z36.380 Both 

candidates induced ABCA1 protein expression by RXR-α activation and reduced Aβ burden 

in the hippocampus of female APP/PS1 mice. This coincided with an enhanced ABCA1 

protein expression in BV2 cells.

Moreover, the pan-RAR agonist TTNPB also increased ABCA1 protein content in murine 

macrophages in an RXR-α-dependent manner. However, the effect was generally smaller 

compared to the effect of ATRA.329 Finally, a combination of the LXR and RXR 

agonists RO0721957 and RO0264456 increased ABCA1 mRNA in THP-1 macrophages 

accompanied by increased cholesterol efflux.384 RO0264456 was demonstrated to increase 

ABCA1 protein content in combination with TO901317.260

ABCA1 – protein kinase C (PKC), AMPK, and p38 mitogen-activated protein kinase 
(MAPK): An alternative approach to induce ABCA1 is targeting the PKC pathway (Figure 

3). PKC agonists were extensively used to induce ABCA1/Abca1 mRNA and ABCA1 

protein levels.230,248,249,255,265,266,273,278,289-292,384-387 Prominent PKC agonists include 

cAMP313 as well as synthetic derivatives, such as 8-Bromo-cAMP (8-Br-cAMP; Figure 

2),230,249,255,266,290,292 8-(4-chlorophenylthio)-cAMP (CPT-cAMP),273,291,384 and 

dibutyryl-cAMP.385-387 The observed effects ranged in the same order of magnitude as the 

combination of 22-(R)-hydroxy-cholesterol and 9-cis-retoic acid.313 The increase in 

ABCA1/Abca1 mRNA and ABCA1 protein levels was reflected in an enhancement of 

ABCA1-mediated cholesterol and phospholipid efflux,249,255,386 and increased APOA1 

binding to murine RAW264.7 macrophages.385-387 Similar observations have been made for 

the PKC stimulant phorbol 12-myristate 13-acetate (PMA), which induced ABCA1 protein 

expression and ABCA1-mediated cholesterol and phospholipid release.386 PMA is also the 

standard substance used to differentiate human monocytic leukemia cells into THP-1 

macrophages – a standard host system for ABCA transporter 

evaluation.
231,245,249,256,268,272,275,292,308,310,312-316,321,328,335,338,339,341,342,360,363,364,366,377,384,388-397

Regarding the AMPK pathway (Figure 3), the natural compound curcumin induced ABCA1/

Abca1 mRNA338,388 and ABCA1 protein levels388,394 as well as cholesterol efflux338,388,394 

in THP-1338,388,394 and RAW264.7394 macrophages, which was also mediated through 

LXR-α activation.338 However, these LXR-α activating effects were much more pronounced 

in combination with the gold standard TO901317.338 Other AMPK-targeting agents are 

A-769662 and metformin,398 which induced ABCA1/Abca1,398 LXRA/Lxra,396,398 and 

LXRB/Lxrb396,398 in human398 and murine (primary) macrophages,398 leading to increased 

cholesterol efflux.396
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Concerning the MAPK pathway (Figure 3), the sterane glycoside ginsenoside compound 

K increased Abca1 mRNA and ABCA1 protein levels in murine macrophages, reducing 

intracellular lipid content and promoting autophagy.399 These effects were pinned to a 

negative impact on the MAPK pathway. Finally, a synthetic inhibitor of MAPK, SB203580, 

was shown to induce ABCA1 protein in combination with the above mentioned geniposide 

in vitro in murine macrophages.375

ABCA1 - the PPAR Pathway: Another well-known approach to induce ABCA1 involves 

the PPAR pathway (Figure 3).268,272,295,309,315,321,326,327,337,343,395,400-409 Certain PPAR/
Ppar inducers and/or PPAR activators have been described above, as these modulators also 

have effects on the LXR pathway.321,361,372,373,377

Several natural compounds target the PPAR pathway, such as the flavonoids 

homoeriodictyol,402 hesperetin-7-O-β-D-glucopyranoside,402 scutellarein,403 and the 

antimycotic trichostatin A.410 These compounds increased Abca1402 and Pparg402 mRNA 

as well as ABCA1,402,410 PPAR-α,403 and PPAR-γ402,410 protein levels in vitro402,410 and 

in vivo.403 Decreased intracellular cholesterol levels were also observed.402 Trichostatin A 

reduced aortic atherosclerotic plaques in high-fat diet-fed Apoe knock-out mice,410 and an 

upregulation of ABCA1, PPAR-γ, and LXR-α/β protein levels was observed in aortic cells 

as well as peritoneal macrophages.410

Several drugs and drug-like PPAR agonists were revealed to induce ABCA1/Abca1 mRNA 

and/or ABCA1 protein content, including the PPAR-α agonists fenofibrate,326,400,404 

pemafibrate (K-877),405 Wy14643,268,343 and RPR-5,268 as well as the PPAR-γ 
agonists efatutazone,337 pioglitazone,272,309,326,395,407 pitavastatin,343 prostaglandin J2 (PG-

J2),268,327 rosiglitazone (Figure 2),268,309,315,408,409 troglitazone,268 and GW7845,315 but 

also the broad-spectrum PPAR-α, PPAR-β, and PPAR-γ agonist bezafibrate268,327 and 

the multitarget PPAR-α, PPAR-γ, and PPAR-δ agonist tetradecylthioacetic acid.401 This 

induction was observed for ABCA1/Abca1 mRNA268,315,343,401,405 as well as ABCA1 

protein levels,268,337,343,395,405,409 and was functionally confirmed by increased cholesterol 

efflux.268,315 A connection between the PPAR and LXR pathways has also been 

drawn,268,326,327,337,400 highlighting the importance of both pathways for ABCA1/Abca1 
induction. Furthermore, fenofibrate had a positive impact on both the LXR-α and AMPK 

pathways400 Certain PPAR agonists have been used as standard inducers of Abca1, e.g., 
pioglitazone407 and rosiglitazone.408

Synthetic PPAR agonists were also reported to induce ABCA1.406 The benzothiazole 

derivative E3317 dose-dependently increased ABCA1/Abca1 mRNA and ABCA1 protein 

levels though PPAR-γ activation in several cell lines.406 This was reflected in decreased 

cholesterol efflux and reduced intracellular cholesterol content. Finally, a molecular docking 

approach to discover novel PPAR agonists has yielded GQ-11, which induced Abca1 mRNA 

in livers of C57BL/6 Ldlr knock-out mice.407

ABCA1 - the 3-hydroxyl-3-methyl glutaryl-(HMG)-CoA-reductase pathway: Other 

targets for ABCA1/Abca1 induction are the 3-hydroxyl-3-methylglutaryl-(HMG)-CoA-

reductase and cellular cholesterol synthesis (Figure 3).318,343 Several HMG-CoA-
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reductase inhibitors such as atorvastatin (Figure 2),330,343,362 fluvastatin,312,411 mevastatin 

(compactin),318 pitavastatin,318,343 and simvastatin312,343 increased ABCA1/Abca1 
mRNA312,343 and ABCA1 protein levels,362,411 as well as ABCA1-mediated cholesterol 

efflux.318 These data are surprising, as one might expect the loss-of-function of an enzyme 

in the cholesterol synthesis pathway to induce a decrease of ABCA1, preventing cholesterol 

depletion from cells.314384,412 Conversely, the overproduction of cholesterol leads to the 

opposite effect, as demonstrated for mevalonate, which is a building block of cholesterol 

synthesis413 and has been demonstrated to increase ABCA1/Abca1 mRNA312,314 and to 

abrogate Abca1 downregulation.312 Pitavastatin addressed SREBP-driven promotor regions 

upregulating Abca1 mRNA levels,343 and atorvastatin reduced atherosclerotic plaques in 

Apoe knocked-out C57BL/6 mice by induction of ABCA1 protein content in the murine 

aorta.362

Other ABCA1 inducers

Sterane and sterane-like natural compounds: Several other agents were reported to induce 

ABCA1/Abca1 mRNA and/or ABCA1 protein level(s), with some studies reporting a unique 

mechanism of action for these agents. Such compounds include the sterane derivative 

ponasterone A (ecdysone; ABCA1 protein; ABCA1-mediated cholesterol and phospholipid 

transport),202 and the enoxolone derivative glycyrrhizine (ABCA1 protein).414 In addition, 

the sterane derivative and farnesoid-X-receptor (FXR) activator obeticholic acid induced 

Abca1 mRNA levels in vitro in the ileum of Srb1-deficient C57BL/6 mice.415 In THP-1 

macrophages, the sterane-like maslinic acid induced ABCA1 mRNA levels, paralleled with 

an increased cholesterol efflux from these cells.390 Finally, the Salvia miltiorrhiza-derived 

tanshindiol C was demonstrated to induce peroxiredoxin 1 mRNA (Prdx1) and protein 

(PRDX1) content in murine RAW264.7 cells.416 Prdx1 was demonstrated to regulate Abca1 
mRNA and ABCA1 protein expression. A reduction of intracellular cholesterol levels in 

murine peritoneal macrophages could also be observed.

Flavonoids: The flavonoids daidzein (Figure 2),309 kaempferol,397 and pratensein309 

induced ABCA1 mRNA309,397 and ABCA1 protein levels309 as well as ABCA1-mediated 

cholesterol efflux.397 In addition, hesperetin-7-O-rutinosid (hesperidin) abrogated the 

negative effect of varenicline on ABCA1 protein expression in RAW264.7 macrophages.417 

The authors could underpin their findings with a reduction of aortic atherosclerotic plaques 

in Apoe knock-out C57BL/6 mice along with reduced lipid levels in peritoneal macrophages 

derived from these mice.

Polyphenols and polyphenol-like natural compounds: Several polyphenols and polyphenol-

like compounds induced Abca1 mRNA408,418 and ABCA1 protein393,404 levels in 

murine393,404,408,418 and human393 macrophages, leading to an increased cholesterol 

efflux.404,408,418 These include certain Cannabis sativa-derived stilbenoids404 as well as 

the Tadehagi triquetrum-derived phenylpropanoid glycosides urolithin A418 and urolithin 

B (sulfate).393 In vivo, atherosclerotic plaques were reduced after urolothin B treatment. 

One phenylpropanoid glycoside was demonstrated to increase Lxra, but none of the other 

compounds could confirm these results. Given that the effect of all compounds on ABCA1 
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expression was similar, it is likely that another, yet unknown pathway was the major 

contributor to the observed effects.

Other natural compounds: Sodium butyrate induced Abca1 mRNA and ABCA1 protein 

levels in murine RAW264.7 cells, accompanied by an increased efflux of cholesterol from 

these cells.419 This induction was reflected by increased ABCA1 protein content in vivo, 

reduced plasma cholesterol and triglyceride levels, and reduced aortic atherosclerotic lesions 

and hepatic steatosis in high fat diet-fed Apoe knock-out C57BL/6 mice.

Pharmacological drugs: Several pharmacological drugs induced ABCB1/Abca1 
mRNA309,420,421 and ABCA1 protein,309,391,421 including the anti-obesity drug orlistat,391 

the antibiotic sulfoxaflor,420 the leukotriene receptor antagonist zafirlukast,421 as well 

as the anthracyclines aclarubicin309 and pyrromycin.309 Zafirlukast in particular reduced 

intracellular cholesterol and lipid content in oxidized LDL-(oxLDL)-induced lipid-

overloaded RAW264.7 macrophages, and increased cholesterol efflux from these cells.421

Finally, it should be highlighted that mifepristone has frequently been used in a 

mifepristone-inducible transfection system to stabilize and increase ABCA1 expression in 

ABCA1-transfected baby hamster kidney (BHK)-21 cells. This ABCA1 induction could 

be functionally confirmed by increased ABCA1-mediated cholesterol and phospholipid 

efflux.245,273,422

Synthetic compounds, HTS hits, and synthetic approaches: The purinergic P2Y7 receptor 

antagonists AZ-1, AZ-2, and AZ10606120 increased ABCA1 mRNA and ABCA1 protein 

levels and resulted in enhanced cholesterol efflux from human CCFSTTG1 astrocytoma 

cells.423 The polychlorinated biphenyl quinone 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone 

(PCB29-pQ)424 and the fluorescigenic pyrazoline derivative 5 (FPD5)425 increased Abca1 
mRNA424 and ABCA1 protein425 content in RAW264.7 macrophages and reduced 

cholesterol content in these cells.424,425 In vivo, FPD5 reduced aortic lipid and cholesterol 

content and atherosclerotic lesions in Apoe knock-out C57BL/6 mice.

Inducers of other ABCA transporters

ABCA2 and ABCA3: As detailed above, ABCA2 and ABCA3 are believed to contribute 

to multidrug resistance in cancer.171,232,239,241,242 In human K562 leukemia cells, it was 

demonstrated that the tyrosine kinase inhibitor (TKI) imatinib induced increased levels of 

ABCA2 mRNA and ABCA2 protein.236 Furthermore, the TKIs dasatinib, imatinib, and 

nilotinib increased ABCA3 mRNA levels in various cancer cell lines as well as in TKI-

treated leukemia patients.426 The antimetabolite 5-fluorouracil (5-FU) induced expression of 

ABCA3 mRNA in a cholangiocarcinoma cell line,427 and methotrexate increased ABCA2 
and ABCA3 mRNA in a leukemia cell line.242 Finally, the steroid hormone progesterone,179 

the antibiotic sulfoxaflor,420 and the endosomal cholesterol transport inhibitor U18666A179 

induced ABCA2/Abca2 transcripts420 in Aphis gossypii420 as well as in ABCA2-transfected 

Chinese hamster ovary (CHO) cells and HepG2 cells179

ABCA5 and ABCA6: As discussed earlier, cholesterol and its derivatives 

have been shown to induce ABCA1/Abca1 mRNA and/or ABCA1 protein 
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levels.122,205,249,252,259,262-264,268,277,278,305-315,319-328 Induction by cholesterol has also 

been demonstrated for Abca5 mRNA and ABCA5 protein levels in RAW264.7 

macrophages.321 This effect relied on the induction of Lxra, Lxrb, and Pparg. Consequently, 

several LXR and PPAR agonists increased Abca5 expression, including bezafibrate (PPAR-

α, PPAR-β, and PPAR-γ; Abca5 mRNA and ABCA5 protein), GW3965 (LXR; Abca5 
mRNA), rosiglitazone (PPAR-γ; Abca5 mRNA), and troglitazone (PPAR-γ; Abca5 mRNA) 

in murine RAW264.7 macrophages.321 In addition, the HMG-CoA-reductase inhibitor 

atorvastatin increased Abca5 mRNA and ABCA5 protein levels.321 Interestingly, the 

ABCA1 inhibitor tacrolimus245 showed induction of ABCA5 mRNA in human brain 

microvascular endothelial cells.428

The HMG-CoA-reductase inhibitors lovastatin and mevastatin resulted in an induction of 

ABCA6 mRNA in the human endothelial cell line EA.hy926.429 Finally, in an Abca12 pig 

model of the rare and lethal skin disease Harlequin ichthyosis, it was demonstrated that 

treatment with the synthetic retinoid acitretin leads to a compensatory induction of Abca6 
mRNA.430

ABCA7: Similarly to ABCA1,202 the sterane derivative ponasterone A increased both 

ABCA7 protein expression and ABCA7-mediated transport, mainly of phospholipids, but 

also of cholesterol to a small extent.202

HMG-CoA-reductase inhibitors were described above to interfere with ABCA1/

Abca1312,318,330,343,362,411 and Abca5321 expression. In addition, certain compounds were 

also demonstrated to interfere with Abca7 expression.205,431 These include pravastatin205,431 

and rosuvastatin (Figure 2).431 These agents increased Abca7 mRNA and ABCA7 

protein levels in vitro,205,431 whilst pravastatin had the same effects in vivo in murine 

peritoneal macrophages.431 Surprisingly, this increase of Abca7 mRNA and ABCA7 

protein levels was accompanied by a downregulation of Lxra and upregulation of Srebp2 
in vitro.431 Functionally, pravastatin and rosuvastatin reduced intracellular cholesterol 

content431 and induced phagocytosis in vitro and in vivo.431 These effects occurred in 

response to an ABCA1 downregulation by HMG-CoA-reductase inhibitors as described 

earlier.312,321,384,432,439,429 Due to their functional similarity, the upregulation of ABCA7 

could be a compensatory mechanism to counteract the loss of ABCA1.198 Similarly, the 

observed Lxra down- and Srebp up-regulation may be a compensatory mechanism to 

counteract the loss of intracellular cholesterol.

Finally, as described for ABCA1,422 exposure of ABCA7-transfected BHK-21 cells 

to mifepristone increased ABCA7 protein content and ABCA7-mediated transport of 

phospholipids and, to a much lesser extent, of cholesterol.422

ABCA8: ABCA8 mRNA and ABCA8 protein content were induced by gemcitabine in 

PANC-1 and CFPAC-1 human pancreatic cancer cells.221 In rat liver, an induction of 

Abca8 was demonstrated via microarray analysis of cDNA when the rats were exposed 

to polyethyleneglycol-block-polylactide nanoparticles.433
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ABCA12: Several LXR and PPAR agonists induced ABCA12/Abca12 expression, such as 

22-(R)-hydroxycholesterol (LXR),434 TO901317 (LXR),430,434 ciglitazone (PPAR-γ),434 

GI 251929X (PPAR-γ),434 troglitazone (PPAR-γ),434 ceramide N-hexanoyl-D-erythro-

sphingosine (PPAR-δ),435 and GW610742 (PPAR-δ).434

Interestingly, inhibition of certain enzymes to prevent ceramide processing 

elevated intracellular ceramide content and subsequently ABCA12 mRNA 

levels.435 These enzymes include, for example, the glycosyl-ceramide-transferase 

synthase [D-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-l-propanol (D-PPMP), D-

threo-1-phenyl-2-palmitoyl-3-pyrrolidinopropanol (D-PPPP / P4) and DL-threo-1-phenyl-2-

de-canoylamino-3-morpholino-1-propanol (D-DDMP)], the sphingomyelin synthase 

[tricyclo[5.2.1.02,6]decanyl)ethanedithioic acid (D609 xanthate)], as well as the ceramidase 

[D-erythro-2-tetradecanoylamino-1-phenyl-1-propanol (D-MAPP) and (D-NMAPPD / 

B13)].435

Downregulators

ABCA1

LXR and RXR pathways – intrinsic substrates: The intrinsic metabolite asymmetric 

dimethylarginine (ADMA) reduced Abca1 mRNA and ABCA1 protein levels in human and 

murine J744 macrophages in combination with oxLDL, resulting in increased intracellular 

cholesterol and triglyceride levels.392 This was accompanied by decreased efflux of 

cholesterol from these cells. The authors suggested a negative effect on the LXR-α pathway. 

In this regard, the LXR-α downregulator homocysteine significantly reduced ABCA1/Abca1 
mRNA and ABCA1 protein expression in vitro in THP-1 macrophages as well as in vivo 
in macrophages from Apoe knock-out C57BL/6 mice.335 The cattle metabolite dipeptide 

phenylalanine-proline decreased ABCA1 mRNA and ABCA1 protein levels in human 

colorectal adenocarcinoma-derived CaCo-2 cells.436 The observed downregulation of LXRB 
mRNA could explain the negative impact on ABCA1 expression. In vivo, the jejunal Abca1 
mRNA levels were decreased in Wistar rats.436

The ABCA1 substrate α-tocopherol230 reduced ABCA1/Abca1 mRNA levels in vitro and 

in vivo.231 The same effects were observed for γ-tocopherol in vitro, most likely through 

the same mechanism. The authors suggested a negative impact on the LXR pathway due to 

deprived oxycholesterol derivatives after α-tocopherol treatment both in vitro in Hep3B cells 

and in vivo in rat liver.231

LXR and RXR pathways - sterane and sterane-like natural compounds: 
Cholesterol and its derivatives have extensively been used to induce ABCA1/Abca1 
expression122,205,249,252,259,262-264,268,277,278,305-315,319-328 However, mid-term exposure to 

excess cholesterol decreased ABCA1 expression though a negative impact on Lxra, Lxrb, 

and Pparg expression.321 Similar observations have been made for the sterol derivative 

dexamethasone, which also reduced ABCA1/Abca1 mRNA and ABCA1 protein expression 

in vitro and in vivo by downregulation of LXRA/Lxra mRNA and LXR-α protein levels 

as well as upregulation of Srebp2 and HMG-CoA-reductase gene expression (Hmgcr).437 

Finally, an Abca1 mRNA reduction was observed in murine RAW264.7 macrophages for 
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the Thelenota ananas-derived saponin desulfated holothurin A.438 Interestingly, Hmgcr 
was downregulated after exposure to desulfated holothurin A, which contradicts other 

findings.437

LXR and RXR pathways – other natural compounds: Certain chalcone derivatives also 

caused reduced expression of ABCA1 protein.363 In addition, lipopolysaccharides reduced 

ABCA1 protein content in endometrial endothelial cells from C57BL/6 mice, which was 

accompanied by increased cholesterol levels in these cells.374 A parallel reduction in LXR-α 
protein was also observed. Finally, the carcinogenic agent N-nitrosodiethylamine (NDEA) 

demonstrated in vivo in Wistar albino rats a downregulation of Lxra and Lxrb mRNA as well 

as LXR-α and LXR-β protein levels and, subsequently, ABCA1 protein.368

LXR and RXR pathways – synthetic compounds and HTS hits: In terms of other 

LXR antagonists and downregulators, GSK2033 (Figure 2),272,330,333 5CPPSS-50, 357 and 

SR9243333 reduced ABCA1 mRNA and ABCA1 protein expression.272,330,333,357

HMG-CoA-reductase pathways – intrinsic substrates and pharmacological drugs: 
The peptide hormone angiotensin II reduced cholesterol efflux from murine peritoneal 

macrophages.439 This reduction could be reversed by the angiotensin II receptor antagonist 

losartan. The authors concluded that ABCA1 was not involved in this process, as no 

concurrent change in Abca1 expression was observed.439 However, in another report, 

angiotensin II indeed demonstrated a reduction of ABCA1 mRNA and ABCA1 protein 

levels in human podocytes.440 The authors concluded a contribution of the HMG-CoA-

reductase, SREBP1, and SREBP2.440

Geranylgeraniol pyrophosphate (GGPP; Figure 2), a product of the mevalonate pathway, 

reduced ABCA1 mRNA expression in human macrophages, which was blocked by the 

prenylation inhibitors L836,978 and L-839,867.314 In addition, a reduction of ABCA1-

mediated cholesterol export was observed, which is also true for mevalonate itself.318 GGPP 

was used as a standard ABCA1 downregulator in certain studies.279,354,366

As discussed above, atorvastatin,343 fluvastatin,312 pitavastatin,318,343 and simvastatin312,343 

have been shown to increase ABCA1/Abca1 mRNA levels,312,343 and to enhance 

ABCA1-mediated cholesterol efflux.318 However, atorvastatin,312,321,384 fluvastatin,312 

pitavastatin432 and simvastatin312,384 have also been reported to reduce ABCA1/

Abca1 transcription312,321,384,432 and ABCA1-mediated cholesterol efflux.384,431 These 

observations are in agreement with other reports on HMG-CoA-reductase inhibitors 

that downregulated ABCA1.312,431 In particular, lovastatin,312 mevastatin (compactin),412 

pravastatin,431 and rosuvastatin431,441 reduced ABCA1/Abca1 mRNA312,431 and ABCA1 

protein431 levels. These findings are expected given that the loss of cholesterol by 

interruption of cholesterol synthesis leads to a compensatory reduction of cholesterol 

efflux.314384,412 The contradictory results relating to ABCA1 may be caused by the use 

of variable experimental conditions between studies, such as different cell lines, assay 

methodologies, or small-molecule-related aspects, such as concentration, distribution, and 

protein binding.

Pahnke et al. Page 25

Free Neuropathol. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, a similar interconnection between HMG-CoA and ABCA1 was drawn for the 

antineoplastic agent mitotane, which downregulated ABCA1 mRNA441 and increased 

intracellular cholesterol levels.333,441 However, mitotane in combination with LXR 

antagonists and LXR downregulators had an inverse effect on mRNA regulation, increasing 

ABCA1 expression.327

PKC pathway - intrinsic substrates: Interestingly, it was also demonstrated that 

long-term exposure to low concentrations of 8-Br-cAMP, a standard ABCA1/Abca1 
inducer,230,249,255,266,290,292 led to decreased APOE secretion from human monocyte-

derived macrophages.266 APOE secretion can be considered as a surrogate marker for 

ABCA1-mediated cholesterol transport.

PPAR pathway – pharmacological drugs and synthetic compounds: Regarding the 

important PPAR pathway, it must be noted that troglitazone, indicated above as an ABCA1 
inducer,268 was also reported to downregulate ABCA1 transcription.321 These inconsistent 

effects may be explained partially by the different concentrations used (1 μM vs 10 

μM),268,321 but may also be related to cross-talk between the PPAR, LXR, and mevalonate 

pathways. The PPAR-γ antagonist GW9662 (Figure 2) reduced ABCA1 protein levels.406

Other ABCA1 downregulators – natural compounds: Other small-molecules have been 

reported to act as ABCA1/Abca1 downregulators, acting independently of the previously 

mentioned LXR, RXR, PPAR, and HMG-CoA-reductase pathways. Natural compounds 

such as α,β-unsaturated carbonyl derivative acrolein,442 the polyphenol bisphenol A,443 

and the polyphenol 1,2,3,4,6 penta-O-galloyl-β-D-glucose444 demonstrated an Abca1 
mRNA443,444 and ABCA1 protein442 downregulation in vitro443,442 and in vivo.444 The 

effect of acrolein could be abrogated by 3-hydroxytyrosol,442 an inducer of ABCA1 protein 

content.445

SREBP2 has been demonstrated to be targeted by EGCG in high fat diet-fed transgenic 

SREBP+/+ Wistar rats, resulting in Abca1 mRNA downregulation, while an Abca1 mRNA 

upregulation could be observed under the same conditions in SREBP knock-out Wistar 

rats.446

Other ABCA1 downregulators – pharmacological drugs: Exposure of the human non-

small cell lung cancer lines A549 and H358 to the antiepileptic drug valproate led to 

downregulation of ABCA1 mRNA and ABCA1 protein levels through a histone deacetylase 

2-(HDAC2)-mediated mechanism. In parallel, the authors observed an increased sensitivity 

of these cells to cisplatin.447

The selective estrogen receptor modulators raloxifene, tamoxifen, and toremifene were 

reported to reduce ABCA1 protein content in THP-1 macrophages along with decreased 

cholesterol efflux and increased intracellular cholesterol levels.341 Tamoxifen and raloxifene 

treatment decreased serum HDL-cholesterol levels in mice. In addition, tamoxifen reduced 

cholesterol levels in serum, liver, and feces of mice after injection with cholesterol-loaded 

macrophages.341 Interestingly, the downregulation of ABCA1 protein content by these 
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estrogen receptor modulators could not be demonstrated for murine liver, indicating a 

macrophage-specific effect.341

Varenicline, a drug used in smoking cessation, was shown in vivo to promote aortic 

atherosclerotic lesions in Apoe knock-out C57BL/6 mice.417,448 The authors demonstrated 

that intracellular lipid content in peritoneal macrophages was increased, and a decreased 

ABCA1 protein expression was confirmed in vitro in RAW264.7 macrophages. Finally, the 

antineoplastic agent gefitinib reduced ABCA1 protein content in various non-small cell lung 

cancer cell lines.400

Other ABCA1 downregulators – synthetic compounds: The plasticizer dibutyl phthalate389 

and the PI3K/AKT inhibitor LY294002421 reduced ABCA1 mRNA389 and ABCA1 

protein389,421 expression and increased cellular cholesterol and lipid levels389 in human389 

and murine421 macrophages.

The sphingosine kinase 1 and 2 inhibitor 4-{[4-(4-chlorophenyl)-2-thiazolyl]amino}phenol 

was demonstrated to downregulate ABCA1 protein expression in murine primary 

macrophages, which was dependent on the sphingosine kinase 2 as well as the sphingosine-

l-phosphate receptor.306 This ABCA1 protein downregulation was accompanied by a 

reduced cholesterol efflux.

The acyl coenzyme A cholesteryl acyl transferase (ACAT) inhibitor ATR-101 reduced 

ABCA1 mRNA levels and induced an increase in intracellular cholesterol content in H295R 

cells.251 The authors suggested that this was caused by inhibition of ABCA1 but provided 

no clear proof of direct inhibition of ABCA1. Therefore, this compound was classified as a 

downregulator.

Other ABCA transporters

ABCA2 and ABCA3: Compared to ABCA1, knowledge relating to downregulators of 

the other ABCA transporters is very limited. As discussed above, human leukemia cells 

exposed to imatinib displayed increased ABCA2 mRNA and ABCA2 protein expression.236 

Celecoxib abrogated this effect.236 A similar observation was reported for ABCA3, where 

the anti-inflammatory drug indomethacin and the ABCA1 inhibitor sirolimus245 (Figure 

2) downregulated ABCA3 mRNA in various cancer cell lines.426,449,450 This treatment 

also resulted in a sensitization of these cell lines toward the TKIs dasatinib, imatinib, and 

nilotinib when treated with indomethacin.426

Other compounds were also reported to downregulate ABCA3/Abca3 including the 

flavonoid genistein,451 lipopolysaccharides452 – already demonstrated above as ABCA1 

protein downregulators374 – and the translocator protein ligand PK11195.453 The effect of 

lipopolysaccharides could be abrogated by ascorbic acid (vitamin C).

ABCA5–ABCA9: Interestingly, the ABCA8 inhibitor222 and ABCA1 protein inducer253 

digoxin downregulated Abca5 and Abca7–9 in murine liver.454 The HMG-CoA-reductase 

inhibitors lovastatin and mevastatin downregulated ABCA6 mRNA in human umbilical vein 

endothelial cells.429 The cholesterol derivative 25-hydroxycholesterol, which was introduced 
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above as an ABCA1 mRNA inducer,327 showed the opposite effect on ABCA7 mRNA.324 

This finding is in agreement with a report stating that excess cholesterol reduced ABCA7 

protein content in both human and murine fibroblasts.205

Stabilizers of ABCA transporters—Stabilizers are compounds that promote functional 

activity of ABC transporters through increasing their presence at the site of action (e.g., 
the cell membrane) either without interfering with mRNA or protein levels, or in addition 

to these effects. The categorization is difficult, as the necessary information regarding 

many modulators of ABCA transporters is lacking and the underlying mode of modulation 

cannot be precisely identified. In this section, we consider only those modulators which 

predominantly interfere with ABCA1 trafficking, with relatively minor or no additional 

modes of action/modulation. Stabilizers are of particular interest, as they may represent a 

novel generation of functional ABC transporter activators, expanding treatment options for 

several diseases, particularly AD.

ABCA1: Probucol and cyclosporine A were demonstrated above to decrease ABCA1 

turnover and increasing ABCA1 protein content at the cell membrane.246,275 Arakawa et 
al. demonstrated that the probucol metabolites spiroquinone and diphenoquinone did not 

inhibit ABCA1-mediated transport like their parent compound but rather increased the 

fraction of functional ABCA1 in the cell membrane.275 This stabilization led to increased 

cholesterol and phospholipid efflux. Both effects were observed at very low nanomolar 

concentrations,275 while Abca1 mRNA remained stable.275 Strikingly, spiroquinone and 

diphenoquinone decreased vascular lipid deposits in vivo in cholesterol-fed rabbits,275 

which may be of relevance for AD and potentially other neurodegenerative diseases.

A similar mode of stabilization, albeit with less potency and no in vivo confirmation, has 

been observed for the flavonoid wogonin,254 the olive oil-derived compound erythrodiol,395 

and certain thiol proteinase inhibitors, in particular N-acetyl-Leu-Leu-norleucinal and 

leupeptin.316,386 Finally, the ABCA1 mRNA and ABCA1 protein inducer testosterone was 

demonstrated to promote ABCA1 trafficking to the cell membrane.357

Other ABCA transporters: The cystic fibrosis transmembrane conductance regulator 

(CFTR; ABCC7) correctors C13,455 C14,455 C17,455 genistein,456 and ivacaftor (Figure 

2)456 were demonstrated to rescue ABCA3 mutants by increasing total ABCA3 mutant 

protein levels,455 promoting subcellular targeting of ABCA3 into vesicular bodies,455 and 

improving lipid transport function of ABCA3.456 Furthermore, the correctors lumacaftor 

(VX-809; Figure 2), C3, and C4, and C18 increased the presence of ABCA4 at the 

cell membrane in ABCA4-overexpressing HEK293 cells, indicating promotion of ABCA4 

trafficking to the plasma membrane.457,458 Promotion of trafficking has already been 

demonstrated for other ABC transporters, such as ABCC123,24 and ABCC7.459 Hence, this 

mechanism represents a new potential therapeutic option for ABCA transporter-related AD. 

As proposed for ABCC7,460 the authors suggested a direct binding of the correctors to the 

ABCA4 protein,457 which has not yet been proven.
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In an Abca12 pig model of Harlequin ichthyosis, acitretin (Figure 2) treatment resulted in a 

redistribution of ABCA12 in the skin compared to wild-type pigs, and thus, a higher survival 

rate.430

Destabilizers of ABCA transporters

Natural compounds: In contrast to compounds that promote trafficking of functional 

ABCA1 to the plasma membrane, other compounds that have the opposite effect have 

been named ‘destablizers’. So far, only agents targeting ABCA1 are known. The lactone 

antibiotic brefeldin A (Figure 2) interfered with ABCA1 cell-surface localization, recycling, 

and intracellular trafficking.387,461-463 These effects were at least in part dependent on 

the interaction with brefeldin 1-inhibited guanine nucleotide exchange protein (BIG1).461 

This interference reduced the functional fraction of ABCA1 and, consequently, ABCA1-

mediated cholesterol and phospholipid transport.255 Similar observations have been made 

for the polyether-antibiotics monensin, which reduced ABCA1 turnover and trapped it 

inside endo- and lysosomes. Subsequently, monensin reduced the functional presence of 

ABCA1 at the cell surface,464 lowered cholesterol efflux,463 and increased intracellular 

cholesterol content.463,464 The same was demonstrated for nigericin, another polyether-

antibiotic, which increased intracellular cholesterol concentration,463 and inhibited ABCA1-

mediated cholesterol efflux from RAW264.7 macrophages.385 Inhibition of intracellular 

organelle transport as suggested for brefeldin A387,461-463 and monensin463,464 likely 

applies to nigericin as well.463,465 In addition, the endoplasmic reticulum stress promotor, 

tunicamycin, also reduced ABCA1 protein levels.360,466 This ‘downregulation’ is most 

likely mediated though stress-induced impaired ABCA1 trafficking and/or increased 

ABCA1 degradation.466 However, in terms of selective targeting of ABCA1 in particular, 

or ABCA transporters in general, these agents are less suitable as in vivo agents and serve 

better as in vitro controls.

The palmitic acid derivative 2-bromopalmitate (Figure 2) inhibited trafficking of ABCA1 to 

the plasma membrane and reduced ABCA1-mediated cholesterol efflux.273,467 However, the 

observed effect that ABCA1 did not translocate to the cell membrane in HEK293/ABCA1 
cells467 has not been demonstrated in BHK-21/ABCA1 cells.273

Pharmacological drugs: Interestingly, the experimental anticancer drug serdemetan 

(JNJ-26854165) was demonstrated to induce Abca1 mRNA levels but reduce ABCA1-

mediated cholesterol efflux.468 The Abca1 mRNA induction was due to induction of 

Lxra and Lxrb. The Abca1 mRNA increase was also reflected at the protein level, which 

increased within 48 hours of exposure to serdemetan before a sudden decrease occurred. 

The authors also showed that ABCA1 turnover and degradation were increased. Thus, 

serdemetan can be considered a destabilizer.

Synthetic compounds: Cycloheximide was frequently used to interrupt intracellular 

trafficking of vesicles, including ABCA1 containing endo- and lysosomes.387,464,468

As mentioned earlier, ABCA1 is stabilized by N-acetyl-Leu-Leu-norleucinal.316,386 This 

stabilization could be abrogated by the protein kinase C inhibitor Gö6976, which affected 

not only ABCA1 protein content, but also cholesterol and phospholipid transport.386
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PART II: PIPELINE DEVELOPMENT TO GAIN NOVEL DIAGNOSTICS AND 

THERAPEUTICS

In silico methodologies to predict novel lead structures

Rational drug design is the innovative process of identifying pharmaceutically relevant drug 

candidates. It is based on the information obtained in association with the drug target, e.g., 
ABC transporters. In the following section, we will discuss computational approaches for 

in silico operations that help to identify novel lead molecules for potential diagnostic and 

therapeutic application.

Structure-based drug design—The development of computational methodologies for 

structure-based drug design to understand the relationship between transporter sequence/

structure and function depends on the availability of structural as well as biological 

information. Recent advances in experimental approaches for structure determination have 

facilitated high-quality depictions of the structures of a growing number of ABC transporters 

in different conformational states.469 These experimental approaches include in particular 

X-ray crystallography and cryo-electron microscopy (cryo-EM).

Recently, the cryo-EM structures of human ABCA1470 and human ABCA4471-473 with 

resolutions of 4.1 Å and 3.3–3.6 Å, respectively, were reported. In addition, a cryo-EM 

structure of human ABCA7 has been announced474 on bioRxiv (biorxiv.org), which was, 

however, not published to this date (PDB ID: 7KQC). Nevertheless, a homology model of 

ABCA7 has been recently developed.475 Figure 4 shows the structures of ABCA1, ABCA4, 

and ABCA7 as determined by cryo-EM as well as homology modelling.

Considering the available structural knowledge, a ‘common’ ABCA transporter possesses 

a very long amino acid sequence (>2000 amino acids) and consists of two membrane-

spanning domains (MSD1 and MSD2) each composed of six transmembrane helices 

(TM1–6 and TM7–12). These MSDs are followed by a cytoplasmic region comprising a 

nucleotide-binding domain (NBD1 and NBD2) and a small regulatory (R1 and R2) domain, 

which have been proposed to stabilize the interaction between NBD1 and NBD2470,473 and 

were found to strongly interact with each another in the absence of ATP.471,472

ABCA transporters are ‘type II transporters’ in which the MSDs indeed form a tunnel 

for substrate translocation from the cytosol to the lumen, however, represent separate 

entities without swapping/twisting of the MSDs, as this is the case with classical ‘type 

I transporters’ like ABCB1.476 Most TMs are completely exposed to the hydrophobic 

environment of the membrane, which could promote the attraction and binding of 

fat-soluble cholesterol as well as phospholipids before guidance to and through the 

substrate translocation tunnel, and which hosts several cholesterol and phospholipid binding 

sites.470-474

A unique feature amongst ABCA transporters in comparison to other ABC transporters is 

the existence of two large extracellular domains (ECD1 and ECD2). These domains together 

form a channel embedded in hydrophobic amino acids470-472 and are believed to facilitate 

intermediate storage of cholesterol470 and phospholipids. They have also been suggested as 
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the primary binding site of APOA1,471,477 as indicated by the latest data on ABCA4.471 A 

large gap exists between the ECDs and MSDs, pointing to strong conformational changes 

that are required for ABCA transporter function.470 Another common feature amongst 

ABCA transporters are four intracellular and extracellular helices (IH1–4 and EH1–4), 

which are believed to provide the necessary flexibility for interaction between the MSDs and 

NBDs in the substrate translocation process,478 and were suggested to enable proper folding 

and function of these transporters.471

Of important note is that ABCA1 and ABCA4 share sequential and structural similarities 

with the ABCG family, in particular with ABCG5/ABCG8,470 which is the model type 

II transporter.478 This similarity suggests an evolutionary relevance amongst various ABC 

transporter subfamilies. More importantly, conserved sequential and structural similarities 

also support the translation of knowledge gained on other ABC transporter subfamilies to 

ABCA transporters.470,472 This is of particular interest when novel lead structures for new 

pharmacological targets, in this case under-studied ABC transporters,18 are focused,6,18 and 

specific binding sites located within the MSDs or NBDs are targeted.

Based on the sequence information of ABC transporters within the same family, homology-

modeling techniques are the preferred choice for structure determination and binding site 

elucidation if these subtypes do not yield X-ray or cryo-EM structures. This methodology 

is of particular relevance for closely related homologs with high medical relevance,198 

such as ABCA7 (similarity A1/A7: 54%; similarity A4/A7: 49%).200 The generated 

homology models can be refined further by molecular dynamics simulation, in which the 

transporter movement (‘trajectory’) is simulated to potentially unravel relevant transporter 

conformations. Very recently, potential ABCA1 drug binding sites have been proposed by 

this methodology,479 and an ABCA7 homology model has been developed for molecular 

docking experiments.475

Molecular docking is a very popular method for predicting binding orientations or poses 

of small-molecules within the transporter. Most often, the docking programs account for 

full conformational flexibility of ligands within the binding site, treating the protein as a 

rigid body. Binding site identification is an important prerequisite in the structure-based drug 

design implementation. In terms of ABC transporters, the search for binding hot spots and 

cavities on the entire volume of the protein (e.g., through blind docking) is necessary due to 

the general lack of information on binding sites of ABC transporters.

Recently, in search of highly effective modulators addressing ABCG2-mediated MDR, 

derivatives of quinazolines were synthesized and biologically assessed using a Hoechst 

33342 accumulation assay.480 By utilizing the cryo-EM structure of ABCG2,481 molecular 

docking studies were performed using a fragment-based approach.482 This approach was 

used to gain insights into the molecular determinants involved in the formation of the 

transporter-substrate complex.480 Based on the docking studies, the putative binding site 

of the ABCG2 substrate, Hoechst 33342, and its interaction with the amino acids in the 

binding pocket was proposed.480 The predicted binding pose was rationalized based on the 

mutagenesis data reported in the literature483-487 and further confirmed with kinetic studies 

to determine the mode of inhibition.480 This subsequent structure-based approach led to 
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the discovery of highly potent pyrimidine-based ABCG2 inhibitors,488,489 specifically by 

identifying a novel binding pocket of this transporter.488 In terms of ABCA transporters, 

molecular docking experiments with the newly derived ABCA7 homology model applying 

a set of diverse pan-ABC transporter inhibitors revealed a putative common ‘multitarget 

binding site’ identified within the transmembrane domains of ABCA7. It must be noted that 

the nucleotide binding domains are the most highly conserved regions amongst all ABC 

transporters, and hence, may also represent a(nother) multitarget binding site for certain 

drugs. However, the vast majority of data reported in the past hint to the transmembrane 

domains as the actual venue of bioactivity in terms of ABC transporter modulation.472

These results as described above475,480,488,489 give this methodology a high relevance in the 

drug development process in terms of novel lead molecules in general, and provide the basis 

for rationally designed structure-guided approaches for the identification of modulators of 

ABCA transporters in particular, as recently demonstrated for ABCA7.475

Ligand-based drug design

Similarity search: The analysis of structure-activity relationships using ligand-based 

approaches is an essential component of medicinal chemistry and pharmacology of ABC 

transporters. This becomes evident as X-ray or cryo-EM structures of most ABC transporter 

subtypes are lacking to serve as suitable templates with sufficient similarity for generating 

homology models. Ligand-based approaches establish a correlation between the molecular 

structure of a small-molecule and the triggered biological response of the target. The 

chemical representation of the molecules is often expressed using descriptors, which are 

attributes that conserve the physicochemical information of the molecule. These descriptors 

refer to generic properties such as LogP, molecular weight, polar surface area, rotatable 

bonds, or molar refractivity. Alternatively, structural representations of the molecules can 

form fingerprints that portray existent molecular features of the molecule in a binary 

code. These fingerprints are, for example, path-like,490 or circular-based,491,492 such as 

MACCS or ECFP4, respectively. Utilizing these representations of molecules, similarity-

driven virtual screenings can be applied. Here, molecules are extracted from a virtual 

library of millions or billions of compounds compared to the bioactive template molecule(s) 

according to the similarity principle. The abstract representation of molecules enables 

clustering of compounds, which is a methodology to categorize a diverse set of molecules. 

Moreover, these abstract representations can be used in different machine learning (artificial 

intelligence) approaches.

Pharmacophore modelling: Another common approach is pharmacophore modelling, 

which analyzes a number of ligands with a common mechanism of action. The model is the 

ensemble of common chemical features that are required to ensure the molecular interaction 

of the ligands with the target, such as hydrogen bond donors and acceptors as well as 

aromatic and hydrophobic centers. The pharmacophore models are generated by extracting 

common molecular features through flexible alignment of the active biomolecules.493,494 

This can be achieved by generating all possible conformations of the ligand and aligning 

them to determine the essential chemical features and molecular orientation to construct 
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the pharmacophore model. The conformational flexibility of the ligands representing the 

chemical features is the key factor in the pharmacophore model generation.

Pattern analysis: In addition to these classical computational approaches, similarity search 

and pharmacophore modelling, a pattern analysis approach (‘C@PA’ = computer-aided 

pattern analysis’) has been reported recently.18,19,495 Pattern analysis extracts both basic 

scaffolds and the statistical distribution of substructural elements amongst the template 

ligands. It works similarly to non-physicochemical properties-related fingerprints and 

conserves substructural features as they are present in the molecules. Pattern analysis 

has specifically been derived for the development of novel potent multitarget ABC 

transporter inhibitors. The basic operations were the categorization of bioactive molecules 

according to their inhibitory power against specific ABC transporters and their classification 

according to their selectivity profile. The respective classes can statistically be analyzed 

for both their basic scaffolds and/or their substructural composition to extract the desired 

pharmacological profile and target preferences. The generated model focused multitargeting 

of ABC transporters, and resulted in a biological hit rate of 21.7%.19 Adaption of the model 

(‘C@PA_1.2’) through additional non-statistical and exploratory measures increased the 

biological hit rate to 40%,18 and an additional extension of the model enabled the discovery 

of the ‘outer multitarget modulator landscape’, which represented weak multitarget 

bioactivities (>10 μM) supporting the discovery of a larger number of multitarget agents.495 

The hit rates are impressive considering that this approach takes several targets with 

individual ‘ligand preferences’ into account. Furthermore, as several ABC transporters of 

distinct subfamilies were considered (ABCB1, ABCC1, ABCG2), the resultant multitarget 

agents open up the possibility to explore under-studied ABC transporters,18 in particular 

ABCA transporters in terms of AD.6,14

Combined approaches: Apart from the individual use of these methodologies, combined 

approaches may lead to improved hit rates and better prediction capabilities with respect 

to bioactivity of small-molecules. This has in particular been demonstrated for a combined 

virtual screening approach using similarity search and pharmacophore modelling for the 

discovery of novel ABCC1 inhibitors.493 Also, certain pattern analysis approaches have used 

a data set derived from a similarity search and pharmacophore modelling approach, and 

hence, can also be considered a combined computational approach.18,495

In vitro methodologies to assess novel lead structures

The previous sections have already outlined the diverse testing systems that have been used 

to assess the modulatory effects of effectors toward ABCA transporters. The following 

section will highlight the ABCA transporter-expressing host systems and the related assays 

that can be implemented into the pipeline for the assessment of novel lead molecules as 

potential ABCA transporter diagnostics or therapeutics.

Host system of ABCA transporters—The transporter host system (ABCA transporter 

carrying unit) can be categorized into (i) living-cell-based or (ii) membrane preparation-/

vesicle-based (including isolated and reconstituted proteins). The vast majority of biological 
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investigations used living cells. Here, two different living cell-based transporter host systems 

can be differentiated: (i) native/induced/selected cells and (ii) transfected cells.

Native ABCA transporters-expressing living cells: Native/induced/selected 

cells naturally express the respective ABCA transporter or have 

been exposed to a ‘standard’ inducer, for example, the 

ABCA1 inducers 22-(R)-hydroxy-cholesterol,122,205,249,252,259,262-264,268,277,278,305-315 

TO901317,205,245,250,252,259,260,262,264,271,272,279,280,282,308,310,317,319,322,324,326,328-345 or 

8-Br-cAMP,230,249,255,266,290,292 and overexpress the respective transporter in response (e.g., 
ABCA1). Most commonly, human or murine cells have been used. Table 4 summarizes 

the cell lines used to assess the ABCA transporter modulators discussed in the previous 

sections. It must be noted that the addressed pathways regulate also the overexpression 

of other ABC transporters. In terms of the studies of ABCA1, the co-expression (i.e., 
co-upregulation and co-downregulation) of other members, such as ABCG1, has frequently 

been observed.160,320,335,364,366,402,410,418,421,448

In terms of ABCA1, most studies have been conducted with human 

THP1,
231,245,249,256,268,272,275,292,308,310,312-316,321,328,335,338,339,341,342,360,363,364,366,377,384,388-397

murine J774.A1,252,254,255,259,265,271,278,289-292,384,392,393 or murine RAW264.7 

macrophages.
230,249,312,313,321,336,339,342,352,360,365,367,369,375,376,381,385,399,402,404,406,408,410,416-419,421,424,425,438,442,448

In the set-up of a drug development pipeline, these cell lines are the backbone of the in vitro 
assessment of potential candidates.

Regarding other ABCA transporters, the situation is much more complicated due to the lack 

of cell lines that naturally (and almost exclusively) express the respective ABCA transporter. 

Consequently, these ABCA transporters are much less studied and well-established. 

However, transfected cell lines are of great help to study one particular transporter instead of 

using native cell lines that may co-express several members.

ABCA transporters-transfected living cells: In terms of ABCA1, cell lines 

transfected with human ABCA1 have often been used, e.g., human embryonic 

kidney (HEK) cells (HEK293/ABCA1)171,201,202,249,260,267,270,275,329,352,386,464,467,498,499 

and baby hamster kidney (BHK) cells (BHK-21/ABCA1).230,245,273,292,422 These 

transporter host systems have also been used to study other transporters, ABCA2,498,500 

ABCA3,235,241,498 ABCA4,133-136,201,457,458,501,502 ABCA5,503 ABCA7,201,202,386,422,498 

ABCA8,10 ABCA12,498 and ABCA13.48

Transfected cells often express lower levels of the introduced transporter than native cell 

lines, which is a problem if the host cell lines (e.g., HEK or BHK-21) naturally express other 

ABC transporters as well. However, these transporter host systems are suitable to confirm 

results, and might be the only possibility to address ABCA transporters other than ABCA1.

Isolated ABCA transport proteins: Finally, apart from intact cells, vesicles of enriched or 

purified/reconstituted ABCA transporters have also been used to assess transporter function. 
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Compared with living-cell based assays, this kind of host system is rarely represented 

in the literature regarding ABCA transporters.133-139,201,499-502,504-506 Specifically ATPase 

assays are popular to assess functional ABC transporter modulation.23,24,507-510 While 

transport protein purification and reconstitution in vesicles or nano discs requires 

advanced engineering, and is expensive and resource-consuming, membrane preparations 

of transporters, in particular for ATPase assays, are much more feasible. However, 

this method has been used somewhat scarcely for ABCA transporter function 

assessment.133-135,137-139,201,499-502,504-506

Functional assessment of ABCA transporters—Two groups of tracers have been 

established in terms of ABCA transporter function: (i) radiolabeled 

substrates,
250,272,305,306,338,339,354,364,366,393,395,404,419,511,512,136,222,230,245,249,253,255,259,260,262,264,265,267-270,273,276,278,289-292,311,313,315,318,329,341,367,377,381,384,385,464,467,499,513

and (ii) fluorescent 

substrates.
171,201,238,251,252,254,256,258,261,271,282,308,319,321,330,332,335,342,360,379,389,390,392,397,402,406,455,456,468,514-518

Radiolabeled tracers of ABCA transport function: In terms of radiolabeled substrates, 

cholesterol is by far the most frequently used genuine ABCA1 

substrate,
230,245,249,255,260,264,265,267-270,272,273,276,278,289-292,305,306,313,315,318,329,338,339,354,366,367,381,384,385,393-395,404,408,419,464,467,499,512

followed by phospholipid(-components).249,255,267,269,273,311,464,467,514 However, other 

substrates have also been used. These substrates include mostly molecules with sterane 

scaffold, such as β-sitosterol (ABCA1)262 and estradiol-β-glucuronide (ABCA8).222 

Moreover, lipid-like substrates have attracted attention, like sphingosine-1-phosphate 

(ABCA1),229,496 α-tocopherol (ABCA1),230 and ATRA (ABCA4).136 Notably, radiolabeled 

substrates are very effective in terms of accurate tracing of protein function, as these 

molecules are not changed in their molecular integrity in contrast to fluorescence 

probes.
171,201,238,251,252,254,256,258,261,271,282,308,319,321,330,332,335,342,360,379,389,390,392,397,402,406,455,456,468,514-518

On the downside, conducting these experiments is constrained to regulatory requirements 

and requires extensive staff training as well as expensive safety measures and laboratory 

equipment.

Fluorescent tracers of ABCA transport function: Regarding 

fluorescent derivatives of cholesterol and phospholipids, two 

major types can be differentiated: (i) 7-nitro-2,1,3-benzooxadiazole 

(NBD) derivatives201,251,252,254,256,258,261,308,335,342,360,379,389,390,392,394,397,402,406,408,468 

and (ii) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) 

derivatives.271,282,319,321,330,332,455,456,515-517 Other fluorophore-labeled dyes have been 

reported, too, including the sterane analog dansylestramustine,171,238,518 and propargyl 

choline, which is processed in vitro into propargylated phospholipids.514

In addition to the stated fluorescent tracers of ABCA transport function, several other 

derivatives of other substrates can be proposed. For example, N-3-oxododecanoyl-L-

homoserine lactone (3OC12-HSL) was suggested as ABCA1 substrate, but final proof was 
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missing.519 Thus, it may be a suitable candidate for validation in a new set-up in vitro assay 

for ABCA1 (and potentially other ABCA transporters). Other examples of potential probes 

are fluorescenct dyes that stand in association with cellular cholesterol and phospholipid 

distribution and ABCA1-mediated cholesterol and phospholipid transport.516 These include, 

for example, β-BODIPY FL C5-HPC, β-BODIPY FL C12-HPC, BODIPY TR ceramide, 

and Red/Green BODIPY PC-A2, amongst many others.520-522

Fluorescenct dyes are well-established tracers of ABC transporter 

function,18,19,23,24,284,480,488,489,493,507,523-525 and the knowledge that has accumulated 

regarding the well-studied ABC transporters ABCB1, ABCC1, and ABCG2 can be 

transferred to ABCA transporters as well. However, the added fluorophore changes the 

molecular composition of the tracing molecules. This alteration inheres the potential risk of 

changing affinities and even the binding site(s) of these molecules, undermining functional-

kinetic analyses regarding binding site determination and elucidation of the mode of action. 

Nevertheless, fluorescence probes are – if used and established correctly – extremely 

reliable, and can be used without regulatory restrictions and necessity of special equipment, 

except for microplate readers and/or flow cytometers.

Colorimetric determination of ABCA transport function – ATPase assays: As 

mentioned above, ATPase assays have also been used to functionally analyze ABCA 

transporter function, in particular for ABCA1,201,499,505,506 ABCA2,500 ABCA3139,504 

ABCA4,133-135,137,138,201,501,502 and ABCA7,201 although this methodology has been used 

somewhat rarely compared to other functional approaches. ATPase assays are based on the 

principle that the active transport of any substrate of ABC transporters consumes energy. 

This energy is derived from the cleavage of ATP to ADP and Pi, and can be detected by 

different methodologies.23,24,507-510,526 Table 5 highlights known ATPase modulators of 

ABCA transporters and the associated literature reports.

ATPase assays have been and still are popular in terms of functional ABC transporter 

modulation in general.23,24,507-510 Strikingly, the NBDs of ABC transporters are – in 

contrast to the various binding sites identified within the transmembrane domains of ABC 

transporters475 – highly conserved. This conservation enables targeting of ABCA NBDs 

by known ATPase modulators of other ABC transporters. Therefore, ABCA transporter 

function can be detected by methodologies that have already been established for other 

ABC transporters.23,24,507-510,526 This transfer of knowledge will be of great use to confirm 

obtained results from other functional ABCA transporter analyses.

Colorimetric determination of ABCA transport function – other detection 
methodologies: As a final note, it must be mentioned that other colorimetric analyses were 

also used to quantify the ABCA transporter-mediated function, specifically for transport of 

cholesterol or choline-containing lipids, using commercially available assay 

kits.
202,205,246,251,268,272,275,329-332,334,336,354,365,366,369,372,374-376,386-389,392,405,406,416,418,421,422,424,425,441,511

However these methodologies require time-consuming extraction processes of the lipids, and 

hence, are less suitable to track the function of ABCA transporters in real-time and to 

determine kinetic aspects of their cholesterol and lipid transport.
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In rare instances, the extraction of lipid components was accomplished after incubation with 

a radioactive marker.246 While this is a valid methodology to accurately determine lipid 

components within cells, it increases workload and attracts regulatory constraints.

Gas-liquid chromatography has also been used in some reports.353,355 An extraction-free 

staining of cholesterol inside of cells was also demonstrated (filipin III251,331,333,341,358 or 

Oil Red O staining 330,332,364,366,369,375,388,389,392,393,399,402,410,417,421,425,448

However, these systems are not suitable to track single-cell ABCA-mediated cholesterol or 

phospholipid transport.

Quantification of ABCA transporter regulation: Besides qPCR and western blotting, 

ABCA transporter expression was reported in several studies using fluorimetric 

assays. This was accomplished with either (i) green fluorescent protein-(GFP)- tagged/

labelled ABCA transporters235,241,261,275,386,422,464,504 or (ii) luciferase promotor-(LUC)-

transfected271,309,319,352,367,379,381,405,406,419,436,447 ABCA transporter cells in luciferase 

reporter gene assays.

In vivo assessment of clinical candidates

In vivo models play a key role in drug discovery. Although in vitro and cellular models 

are less expensive and less time consuming, in vivo models are needed to test ABCA 

modulators under physiological conditions. Safety, toxicity, and efficacy of a drug candidate 

must be tested in an in vivo model as a last step before transferring it to clinical evaluation. 

However, these models also have disadvantages. Animal studies are time consuming and 

require advanced personnel training and resources for maintaining the animals. In addition 

although they are closer to humans than in vitro models, there are considerable physiological 

differences between species with respect to drug absorption, metabolism, and excretion, 

which may impede translatability. Furthermore, the use of animals in research has its ethical 

concerns. Thus, in recent years, research has been directed to reduce animal use and increase 

animal welfare.

In vivo models have previously been used to study the role of ABCA transporters in 

physiology and disease as described above. Thus, there are already available animal models 

for testing of ABCA modulators for the most prominent subtypes (Table 6). As stated above, 

these models represent the last step before clinical evaluation of potential small-molecule 

therapeutics in humans. Thus, after in silico identification and in vitro assessment, these in 
vivo models are the third column in the development of novel ABCA transporter diagnostics 

and therapeutics. In the following section, different in vivo models will be described in more 

detail.

Knock-out mouse models—A genetic knock-out mouse model is an animal model in 

which one or more genes of interest have been deactivated or removed by means of gene 

targeting. Knock-out animals allow for direct investigation of the effect of a specific gene 

in an organism, as the loss of gene activity often causes phenotypic changes uncovering the 

function and biological mechanism of the targeted gene.535 Knock-out mice have become 

one of the most useful scientific tools to analyze the human genome and its potential roles 
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in many diseases.535 Thus, knock-out animals are currently essential experimental tools for 

the investigation of genetic disorders and the evaluation of novel drugs.536 Furthermore, 

the current knowledge on genome editing using the CRISPR/Cas9 system makes generation 

of knock-out lines considerably faster than with the use of embryonic stem cells. To no 

surprise, this method has quickly become the most powerful tool for generating genetic 

models.537

Knock-out animal models are designed with two variables in mind: (i) where and (ii) 

when is the gene of interest deactivated. The simplest and most common approach is a 

constitutive, ubiquitous knock-out, i.e., the product protein is absent permanently in all cells 

of an organism. To overcome limitations of this broad approach, more refined models have 

been developed. These conditional models use Cre-Lox recombination to target a gene either 

in specific cell populations, at specific time points, or a combination of both. Here, the target 

gene is modified by inserting two loxP sites. The flanked gene segment can then be excised 

by the Cre recombinase. Cre activity, i.e., gene knock-out, can be limited to certain cell 

populations by appropriate promotor choice and/or linked to a tamoxifen-responsive element 

to control the exact time point at which the knock-out is induced.

Until now, several Abca animal knock-out models have been described, which are 

summarized in Table 6. These models are mainly mouse lines, except for ABCA13 
(monkey).534 These animal models have contributed fundamentally to identifying the role 

of ABCA transporters in physiological conditions as well as in disease pathogenesis. In 

addition, these models can be used for novel drug testing, as they provide information about 

target specificity. If a drug is 100% specific for a transporter, knock-out of this transporter 

should completely abolish the drug’s effects observed in naïve animals. However, gene 

knock-outs often have phenotypical effects per se that need to be taken into account when 

evaluating drug effects.

RNAi models—The use of RNA interference (RNAi) is an alternative to knock-out 

models. This technique is based on post-transcriptional silencing of the targeted gene using 

siRNA molecules that are designed to bind to the target mRNA.538 This process will 

deactivate the mRNA using the cell’s own defense mechanism against pathogens. In contrast 

to standard knock-out models, this silencing is temporary as the siRNA molecule will be 

degraded but the gene transcription continues.527

To avoid this temporal limitation, short-hairpin RNA (shRNA) has been developed. This 

method is based on the use of vectors that incorporate into the cell DNA and encode for 

shRNA. After transcription, these vectors are processed into siRNA. These shRNAs are 

continuously transcribed, increasing reproducibility of results.539

Overexpression models—Similar to knock-out models, overexpression models can be 

used to investigate the function of a gene by evaluating the resultant phenotype. In addition, 

overexpression models have long been used for modeling diseases such as AD540 or PD.541
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In the investigation of ABCA transporters, these models can resemble the effect of chronic 

activation of the transporters and may help to identify its physiological functions by 

evaluating the pathways upregulated in comparison to control animals.127

Humanized ABC transporter mouse models—Before it can be translated into clinical 

practice, each novel drug candidate must be tested in an in vivo model. However, the 

translational value of the animal model largely depends on whether the disease pathway 

under investigation is conserved between the two species. Therefore, replacing the original 

(e.g., murine) gene by the respective human gene likely improves the animal model, 

and thus, is beneficial for evaluating a novel drug’s efficacy and specificity in clinical 

practice.542 With this approach, mice can be used as tools for pre-clinical screening and 

efficacy evaluation of new drugs, given their improved ability to predict human responses to 

treatments.

Our group has previously established a humanized ABCC1 mouse model,543 and an ABCA7 
model is under characterization. Here, we generated knock-in mouse models producing a 

chimeric protein that is completely human except for one amino acid.543 In addition, as this 

gene was flanked by loxP sites, this humanized model can be knocked out in specific cell 

populations and at a specific age.543 Models such as these represent the future of pre-clinical 

drug candidate evaluation.

In addition, Dallas et al. successfully generated a humanized ABCG2 mouse model.544 

However, other models, such as humanized ABCB1 mice, were not successful despite 

multiple attempts.545

Disease models—In addition, all the models described above can also be used to 

study the role of a gene for the pathophysiology of specific diseases. For example, Abca 
knock-out models have been crossed with transgenic mice in order to study their potential 

role in AD.54,123,131,161-163,527 These studies have elucidated potential disease mechanisms 

involving ABCA transporters that cannot be studied in patients.

Moreover, once a drug is developed and its specificity is proven, disease models enable 

evaluation of the role of that specific transporter in the pathophysiology of the disease. At 

the same time, these results may be the first step to evaluate the potential of novel transporter 

modulators as therapy for the respective disease.

Imaging techniques—Lastly, in vivo imaging can be used for the development of 

new drugs. On the one hand, labeling drug candidates with radioactive isotopes can give 

information about the drug distribution, drug target, and drug metabolism in vivo. In 

addition, it can also show whether a drug is able to cross specific natural barriers, such 

as the BBB. In vivo imaging can help to select candidates that appear successful or to 

discard drugs that seem likely to fail.546

On the other hand, drug candidates can also be used to develop new radiotracers (e.g., 
PET tracers) targeting ABCA transporters that could then be used in clinical diagnostics. 

Radiotracers would facilitate the study of the specific gene and/or its product protein in 
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human patients in vivo and in a longitudinal fashion, enabling a much better understanding 

of the role of ABCA transporters in human (patho)physiology.547 In this regard, knock-out 

animals can be used as negative controls for the development of new ABCA radiotracers to 

evaluate the specificity of the radiotracer.548 Furthermore, these very same radiotracers can 

be used in animal disease models, enabling longitudinal studies and reducing the number of 

animals required.549-551

CONCLUDING REMARKS: WHERE DO WE GO FROM HERE?

Several in vivo studies demonstrated that modulators of ABCA transporters, in particular 

ABCA1, have systemic 

effects.
231,249,250,253,271,275,289,293,297,330,335,344,350,361,362,366,368-370,376,378,383,410,415,417-419,425,431,436,448

However, the vast majority of these modulators were 

regulators,
231,250,253,271,297,330,335,344,350,361,362,366,368-370,376,378,383,410,415,417-419,425,431,436,448 

specifically inducers,250,253,271,297,330,344,361,362,366,368-370,376,378,383,410,415,418,419,425,431 

and only very few interactors demonstrated in vivo effects.249,289,293 Mostly emphasizing 

atherosclerosis,249,275,289,366,369,370,378,410,417-419,425,431,448 these regulators were able to 

demonstrate that cellular and plasma lipid content249,271,275,289,330,366,369,378,419,425,431 as 

well as atherosclerotic plaque formation275,289,366,369,370,410,417-419,425,448 could be changed 

compared to controls (enhanced or reduced) after treatment with the respective drug. Only 

very few in vivo approaches targeted for AD.293,297,344,383

Taking the challenge of CNS penetration of these drugs into account, drugs active in 

atherosclerosis models could generally be suggested to also have certain therapeutic 

relevance regarding AD. Nevertheless, so far, none of these drugs has made it into clinical 

evaluation in humans. The underlying cause can be pinned to the fact that the principal 

mechanism by which ABCA transporters contribute to AD is still unknown. While a 

rationale can be found in atherosclerosis (efflux of cellular lipid to APOE and HDL resulting 

in lower lipid burden in the vascular system), the translation of this rationale to AD can 

only be achieved to a very limited extent. Several questions need addressing in future 

evaluations: (i) what is the general function of ABCA transporters in the brain to ameliorate 

(or exacerbate) AD in patients; (ii) when does this development start; and (iii) at which stage 

of development can a pharmacological intervention with ABCA transporter modulators lead 

to a positive therapeutic effect?

In this regard, more in vitro tests are needed with new lead structures that are rigorously 

assessed for their particular mechanism of action – to study vice versa the mechanism of 

action of ABCA transporters in general. One possibility to gain novel lead structures is the 

screening of huge analog compound libraries. However, the number of existing compounds 

is limited, and blind in vitro testing is resource-consuming, especially regarding time and 

funds. Computational methodologies may help to generate novel lead structures based on the 

knowledge of existing modulators of ABCA transporters. This has led to new lead molecules 

in the past.18,19,493,495 Particularly the knowledge on ABCA1 and ABCA8 inhibitors 

and substrates is of interest, because these compounds inherit the molecular-structural 
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information that is critical for direct binding to these transporters. Considering the newly 

developed pattern analysis methodology, C@PA,18,19,495 the scaffolds and substructural 

composition of this set of molecules may reveal the critical necessities for direct interaction 

with ABCA transporters. C@PA is therefore of high relevance because it was specifically 

developed to gain multitargeting pan-ABC transporter modulators18,19,495 – molecules that 

particularly interact with different ABC transporters of different subfamilies. Assuming 

that a conserved multitarget binding site exists as proposed earlier,6,14,475 multitargeting 

may be the key to explore under-studied ABC transporters in general and ABCA 

transporters in particular.6,14,18,19 Several thousands of these molecules have already been 

predicted,18,19,493,495 and the predictions were in part biologically confirmed.18,19,493,495 

Additionally, selected pan-ABC transporter inhibitors were analyzed in molecular docking 

studies, which revealed the potential existence of the multitarget binding site.475 Hence, 

combining the existent knowledge of ABCA transporter modulators with (sub)structural 

elements of these pan-ABC transporter modulators and powerful computational approaches 

(e.g., molecular docking or molecular dynamics simulations) could ultimately lead to the 

successful exploration of ABCA transporters in general, as well as ABCA1 and ABCA7 in 

particular.28,95,103-112

Several drugs and drug-like compounds have already been demonstrated to be pan-ABC 

transporter modulators interacting also with ABCA transporters. These drugs and drug-like 

compounds are, for example, cyclosporine A (9 targets of 4 subfamilies: ABCA1,245 

ABCB1,20 ABCB4,552 ABCB11,553 ABCC1–2,24,554 ABCC10,26 and ABCG1–2555,556), 

glibenclamide (8 targets of 4 subfamilies: ABCA1,270 ABCB11,553 ABCC1,24 ABCC5,557 

ABCC7–9,558-560 and ABCG2554), imatinib (6 targets of 4 subfamilies: ABCA3,426 

ABCB1,561 ABCB11,553 ABCC1,561 ABCC10,561 and ABCG2561), probenecid (8 targets 

of 2 subfamilies: ABCA8,222 ABCC1–6,24,26,562-564 ABCC10565), verapamil (9 targets of 4 

subfamilies: ABCA8,222 ABCB1,20 ABCB4–5,552,566 ABCB11,567 ABCC1,24 ABCC4,568 

ABCC10,565 and ABCG2554), and verlukast (11 targets of 4 subfamilies: ABCA8,222 

ABCB4,552 ABCB11,553 ABCC1–5,24,554,557,564,569 ABCC10–11,26,570 ABCG2554). In 
silico analyses with verapamil and verlukast supported the notion of addressing the 

multitarget binding site in ABCA7.475 Taking their structural peculiarities in a pattern-based 

rational drug design approach into account may yield novel lead structures for functional 

in vitro studies of ABCA transporters. This may ultimately result in the development of 

innovative AD diagnostics and therapeutics.
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Abbreviations

5-FU 5-fluorouracil

Aβ amyloid-β

ABCA ATP-binding cassette transporter subfamily A

ACAT acyl coenzyme A cholesteryl acyl transferase

AD Alzheimer’s disease

ADMA asymmetric dimethylarginine

ADP adenosine-diphosphate

ALS amyotrophic lateral sclerosis

AMPK cAMP-activated protein kinase

APOA1/E3/E4 apolipoprotein A1/E3/E4
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APP amyloid precursor protein

ATP adenosine-triphosphate

BBB blood-brain barrier

BCSFB blood-cerebrospinal fluid barrier

BHK baby hamster kidney

BIG1 brefeldin 1-inhibited guanine nucleotide exchange protein

BODIPY 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

cAMP cyclic adenosine monophosphate

CFTR cystic fibrosis transmembrane conductance regulator

CHO Chinese hamster ovary

CNS central nervous system

CPT-cAMP 8-(4-chlorophenylthio)-cAMP

Cryo-EM cryogenic electron microscopy

CSF cer-ebral spinal fluid

DIDS 4,4’-Diisothiocyano-2,2’-stilbenedisulfonic acid

EC50 half-maximal effect concentration

ECD extracellular domain

ECGC epigallocatechin gallate

ED50 half-maximal effective dose

EOAD early-onset AD

FPD5 fluorescigenic pyrazoline derivative 5

FXR farnesoid-X-receptor

GFP green fluorescent protein

GGPP geranylgeraniol pyrophosphate

GSH reduced glutathione

GWAS genome-wide association study

HD Huntington’s disease

HDAC2 histone deacetylase 2

HDL high-density lipoprotein
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HMG-CoA-reductase 3-hydroxyl-3-methyl glutaryl-coenzyme A reductase

HTS high-throughput screening

IC50 half-maximal inhibition concentration

LAMP1 lysosomal-associated membrane protein 1

LDLR LDR receptor

lncRNA long non-coding RNA

LOAD late-onset AD

LTC4 leukotriene C4

LXR liver-X-receptor

MDR multidrug resistance

mRNA messenger RNA

MS multiple sclerosis

MSD membrane-spanning domain

NBD 7-nitro-2,1,3-benzooxadiazole or nucleotide binding 

domain

NDEA N-nitrosodiethylamine

NEM N-ethylmaleimide

(ox)LDL (oxidized) low density lipoprotein

PCB29-pQ 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone

PD Parkinson’s disease

PDB protein data bank

PG-J2 prostaglandin J2

PMA phorbol 12-myristate 13-acetate

PPAR peroxisome proliferator-activated receptor

PRDX1 peroxiredoxin 1

RAR retinoic acid receptor

RNA ribonucleic acid

RXR retinoid-X-receptor

SAR structure-activity relationships
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shRNA short-hairpin RNA

siRNA small interfering RNA

SNP single nucleotide polymorphism

SR-BI (Srb1) scavenger receptor B1 (also HDL receptor)

SREPB sterol regulation element-binding protein

TKI tyrosine kinase inhibitor

TKI tyrosine kinase inhibitor

TM transmembrane helix
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Figure 1. 
Molecular formulas of prominent interactors of ABCA transporters.
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Figure 2. 
Molecular formulas of prominent regulators of ABCA transporters.
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Figure 3. 
General overview of proteins participating in ABCA1 regulation and interaction.
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Figure 4. 
Available structures of ABCA transporters: the cryo-EM structures of human ABCA1470 

(very left; PDB ID 5XJY) and ABCA4 [left (PDB ID 7LKP, middle (PDB ID 7E7I), and 

right (PDB ID 7M1Q)]471-473 as well as the homology model developed for human ABCA7 

(very right).475 All three transporters are typical ABCA transporters with three crucial 

structural parts: two nucleotide-binding domains (NBDs; intracellular), two membrane-

spanning domains [MSDs (2 x 6 transmembrane helices TMs); inter-membrane space], and 

two large extracellular domains (ECDs; extracellular).
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