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Abstract Previous studies have related pair-bonding in Microtus ochrogaster, the prairie vole,

with plastic changes in several brain regions. However, the interactions between these socially

relevant regions have yet to be described. In this study, we used resting-state magnetic resonance

imaging to explore bonding behaviors and functional connectivity of brain regions previously

associated with pair-bonding. Thirty-two male and female prairie voles were scanned at baseline,

24 hr, and 2 weeks after the onset of cohabitation. By using network-based statistics, we identified

that the functional connectivity of a corticostriatal network predicted the onset of affiliative

behavior, while another predicted the amount of social interaction during a partner preference test.

Furthermore, a network with significant changes in time was revealed, also showing associations

with the level of partner preference. Overall, our findings revealed the association between

network-level functional connectivity changes and social bonding.

Introduction
The prairie vole (Microtus ochrogaster) is a rodent native of North America whose natural behavior

involves pair-bonding, which can be defined as a long-lasting, strong social relationship between

individuals in a breeding pair in monogamous species (Walum and Young, 2018). Pair-bonded voles

will usually display selective aggression towards unfamiliar conspecifics; biparental care, including

paternal behavior and alloparenting; incest avoidance; and reproductive suppression of adult individ-

uals within a family group (Carter et al., 1995). These behaviors make the prairie vole a valuable

model to investigate behaviors associated with a socially monogamous reproductive strategy

(Young and Wang, 2004), social bond disruption, social isolation, and social buffering

(Lieberwirth and Wang, 2016). Being comparable to human-like social interactions, studying the

neurobiology of social behavior in the prairie vole may allow further understanding of human social

bonding, its alterations in psychological disorders, and overall impact on health (Kiecolt-

Glaser et al., 2010).

Pair-bonding-related behaviors in the prairie vole depend on hormonal mechanisms and the acti-

vation of emotional, reward, and sensory brain circuits (Walum and Young, 2018), integrating large

functional networks (Johnson and Young, 2017). Among these, the mesolimbic reward system and

the social decision-making network (SDMN) (Johnson et al., 2017) are the proposed networks to be

involved in pair-bonding, being modulated by steroid hormones, dopamine (DA), oxytocin (OXT),

arginine vasopressin (AVP), g-aminobutyric acid, glutamate, and corticotropin-releasing factor,

López-Gutiérrez et al. eLife 2021;10:e55081. DOI: https://doi.org/10.7554/eLife.55081 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.55081
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


among others (Walum and Young, 2018). A current hypothesis suggests that pair-bonding consists

of two different plastic processes: the formation of a neural representation of the partner, and a

selective preference for the partner, that is the maintenance of the pair-bond (Young and Wang,

2004; Walum and Young, 2018). In this process, an association has to be created between the rein-

forcing properties of sex (mating) and the olfactory signature from the partner (Ulloa et al., 2018;

Young and Wang, 2004). In broad terms, both OXT and AVP are necessary and sufficient for the

formation of the pair-bond (Young and Wang, 2004; Lieberwirth and Wang, 2016), and their

release during social and sexual interactions are the likely triggers and critical modulators of the

mentioned network, since most regions included in the SDMN express their corresponding receptor

binding (Johnson and Young, 2017). DA would also be released in concert with OXT and AVP in

specific regions to modulate the adequate display of behavior and formation of the pair-bond

(Young and Wang, 2004).

While prairie voles of both sexes already display changes in behavior by 24 hr of cohabitation

with mating as a result of pair-bonding (Wang and Aragona, 2004; Williams et al., 1992), the

nucleus accumbens (NAcc), for example, has substantially more D1-like receptor binding 2 weeks

after female exposure, relative to non-pair-bonded males (Aragona et al., 2006), a phenomenon

that is also been observed in female voles (Resendez et al., 2016). This evidence suggests that

long-term plasticity is relevant for pair-bond maintenance. Furthermore, male prairie voles that were

pair-bonded for 2 weeks displayed selective aggression toward conspecific male and female strang-

ers (Gobrogge et al., 2007), and the 2 week time frame has also been found relevant in

bond disruption (Insel and Hulihan, 1995) and partner loss (Tabbaa et al., 2017). While there is a

possibility that these changes in behavior involve the interplay of broad networks, it has not been

directly explored in vivo.

Recently, novel electrophysiologic and optogenetic techniques have been employed to demon-

strate that the functional connectivity between the NAcc and the medial prefrontal cortex (mPFC)

during initial cohabitation in female prairie voles modulates the affiliative behavior with their poten-

tial partner (Amadei et al., 2017), providing exciting data of the relevance of such corticostriatal

interactions for social bonding. However, this approach does not allow the study of the interaction

of multiple brain regions, that is networks, and their relevance of such interactions in the process of

pair-bonding. Neuroimaging methods may provide the alternative to explore such networks in a lon-

gitudinal fashion, since few studies have made use of positron-emission tomography to explore lim-

ited aspects of such longitudinal changes (Bales et al., 2007), providing the first longitudinal

evidence of neurophysiological changes associated with pair-bonding. Potentially, functional mag-

netic resonance imaging (fMRI) may be the ideal tool to explore the longitudinal changes in func-

tional brain networks (Damoiseaux et al., 2006), providing high spatial resolution, wide brain

coverage, and being minimally invasive to explore longitudinal changes. In particular, resting-state

functional magnetic resonance imaging (rsfMRI) explores the low-frequency fluctuations (<0.1 Hz) of

the blood-oxygen-level-dependent (BOLD) signal, which has proven to remain highly synchronized

within the sensory, motor, and associative networks in the brain of humans (Damoiseaux et al.,

2006), non-human primates (Rilling et al., 2007), and rodents (Gozzi and Schwarz, 2016), including

the prairie vole (Ortiz et al., 2018), turning this technique into a promising tool for translational

research. Indeed, functional connectivity explored by means of the correlation of rsfMRI signals of

anatomically separated brain regions (Friston et al., 1993) has demonstrated to be correlated with

neuronal activity (Mateo et al., 2017), and it is subject to change in plastic processes such as learn-

ing and memory in both humans (Jolles et al., 2013) and rodents (Nasrallah et al., 2016). A recent

study found differences in diffusion-weighted imaging and resting-state functional connectivity

between two distinct populations of male prairie voles (Ortiz et al., 2020). Here, we make use of

this non-invasive technique to explore behavioral correlates with brain functional connectivity and its

longitudinal changes associated with pair-bonding in male and female prairie voles.
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Results

Baseline functional connectivity predicts the display of affiliative
behavior
Thirty-two 3-month-old sexually naı̈ve female (N = 16) and male (N = 16) prairie voles (M.

ochrogaster) were used in the study. Prairie voles underwent three magnetic resonance imaging

(MRI) acquisition sessions: a baseline scan before cohabitation, a second scan 24 hr after the onset

of cohabitation, and a third scan 2 weeks after the onset of cohabitation (Figure 1A). The final imag-

ing sample consisted of 90 datasets, with only six subjects missing one session (see Materials and

methods). The day after the baseline scanning session, female and male voles unrelated to each

other were randomly assigned as couples and placed for cohabitation in a new home to promote ad

libitum mating and social interaction. Four days before cohabitation, silastic capsules (Dow Corning

Figure 1. Experimental design and brain regions of interest. (A) Sequence of experiments during a 30 day period:

Female voles were bilaterally ovariectomized before MR and behavioral protocols. After being allowed to recover

from surgery for 10 days, silastic capsules containing E2B (estradiol benzoate) were implanted via s.c. 4 days

before cohabitation for sexual receptivity induction. Once couples went under cohabitation, they were housed

together for the rest of the experiment and were only separated for PPT and MR scanning sessions. OVX:

ovariectomy surgery. MR: magnetic resonance imaging scanning session. PPT: partner preference test. (B) Regions

of interest (ROIs) for network functional connectivity analyses. Antero-posterior coronal slices of the prairie vole

template overlayed with ROI masks with the resolution used in the analysis. Each color represents a different ROI.

ACC: anterior cingulate cortex. AON: anterior olfactory nucleus. BLA: basolateral amygdala. BNST: bed nucleus of

the stria terminalis. DG: dentate gyrus. dHIP: dorsal hippocampus. MeA: medial amygdala. MOB: main olfactory

bulb. LS: lateral septum. mPFC: medial prefrontal cortex. NAcc: nucleus accumbens. PVN: paraventricular nucleus.

RSC: retrosplenial cortex; VP: ventral pallidum. vHIP: ventral hippocampus. VTA: ventral tegmental area. (C) 3D

views of ROI masks embedded within the prairie vole template.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Representative rsfMRI time series.

Figure supplement 2. Average functional connectivity correlation matrices between ROIs in all subjects shown by

MR acquisition sessions: baseline, 24 hr, and 2 weeks.

Figure supplement 3. Representative rsfMRI and anatomical raw data and examples of the registration steps.

Figure supplement 4. Average seed-based functional connectivity maps for each of the 16 ROIs here explored.

Figure supplement 5. Vole temperature during acquisition, discarded images and signal-to-noise ratio.
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Silastic Laboratory Tubing; ThermoFisher Scientific, Pittsburg, PA) containing estradiol benzoate

(E2B; Sigma–Aldrich, St. Louis, MO) were implanted in previously ovariectomized female voles to

enable sexual receptivity and promote mating (see Materials and methods). The first 6 hr of cohab-

itation was video recorded for analysis of social and mating behavior. Mount (M ± SEM: 65.4 ± 31.7

min), intromission (116 ± 35.3 min), and ejaculation (125 ± 34.4 min) latencies were obtained for

male voles (N = 16). Lordosis latency (22.3 ± 13.3 min) was also measured on females (N = 16), and

huddling latencies (69.5 ± 15.8 min) were obtained for each male and female pair. Three of the 16

couples did not mate during the recorded period, but all voles displayed huddling and licking/

grooming behavior with their sexual partner. Once joined, voles remained housed in couples for the

rest of the experiment and were only separated for MRI scanning sessions and behavioral tests.

To explore relationships between socio-sexual behavior and functional connectivity, 16 regions of

interest (ROIs) were defined according to their previously reported relevance in the process of pair-

bond formation and maintenance (Johnson and Young, 2017; Lieberwirth and Wang, 2016;

Walum and Young, 2018), which were the following: anterior cingulate cortex (ACC), anterior olfac-

tory nucleus (AON), basolateral amygdala (BLA), bed nucleus of the stria terminalis (BNST), lateral

septum (LS), medial amygdala (MeA), main olfactory bulb (MOB), medial prefrontal cortex (mPFC),

nucleus accumbens (NAcc), retrosplenial cortex (RSC), paraventricular nucleus of the hypothalamus

(PVN), ventral pallidum (VP), ventral tegmental area (VTA), dentate gyrus (DG), dorsal hippocampus

(dHIP), and ventral hippocampus (vHIP) (Figure 1B,C). For each subject and session, average time

series for each region were extracted from the pre-processed fMRI datasets (Figure 1—figure sup-

plement 1). The latter were used to obtain connectivity matrices, based on the partial-correlation

estimates for all possible pairs of ROIs (Figure 1—figure supplement 2).

The amount and proneness to affiliative behavior has shown reliability in describing the level of

sociability and mating systems in Microtus voles. Through the measurement of huddling, Salo et al.,

1993 were able to distinguish social behavior in four different species of voles by scoring huddling

when the pair was either sitting or lying in bodily contact, with the prairie vole having the highest

huddling accumulation. Other studies in voles have also measured huddling latency to assess levels

of affiliative behavior, since it may influence pair-bond induction and formation (Shapiro and Dews-

bury, 1990; Amadei et al., 2017).

In order to identify potential relationships between behavior and functional connectivity with a

network perspective, huddling latencies during cohabitation in voles of both sexes (N = 28) were

tested as linear covariates of baseline functional connectivity data, that is before cohabitation, with

Network-Based Statistic (NBS) framework, using the NBS Toolbox (Zalesky et al., 2010).

NBS analysis found significant negative linear relationship (p�0.001) with a large network includ-

ing VP, MeA, LS, VTA, RSC, BLA, NAcc, ACC, and the DG (Figure 2A). Our results show that the

higher the connectivity between these regions before cohabitation, the shorter the huddling laten-

cies during cohabitation in voles of both sexes. Additionally, a posteriori Pearson’s correlations con-

firmed the correlation strength between each connection and huddling latencies: VP–MeA (r(26) =

�0.468, p=0.011), MeA–LS (r(26) = �0.372, p=0.051), LS–VTA (r(26) = �0.502, p=0.006), VTA–RSC

(r(26) = �0.586, p=0.001), RSC–PVN (r(26) = �0.382, p=0.044), RSC–BLA (r(26) = �0.362, p=0.058),

BLA-DG (r(26) = �0.420, p=0.025), BLA–NAcc (r(26) = �0.543, p=0.002), and NAcc–ACC (r(26) =

�0.378, p=0.047), (Figure 2B–J). These results show that functional connectivity between these

regions reflect the predisposition to display affiliative behavior in both female and male prairie

voles.

Prairie voles of both sexes show partner preference after cohabitation
Between 48 and 72 hr of cohabitation, partner preference was evaluated on each subject (N = 32) to

assess pair-bonding behavior. This protocol was based on a previously described test

(Williams et al., 1992; Figure 3B, see Materials and methods). The partner preference index

revealed a significant difference between the proportion of time spent on the incentive area related

to the partner (median = 0.63) with the area related to the stranger vole (median = 0.37) for all sub-

jects (U = 378, p=0.0365, effect size r = 0.32) (Figure 3B). No significant differences were found

between males and females in their preference for the partner (U = 121, p=0.81, effect size r = 0.05)

or the stranger voles (U = 118, p=0.72, effect size r = 0.07), and there were also no significant differ-

ences in partner preference between the time periods when PPT tests were performed (48 and 72

hr) (U = 119, p=0.75, effect size r = 0.06) (Figure 3—figure supplement 1).
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Functional connectivity at 24 hr of cohabitation predicted social
interaction during the partner preference test
During the partner preference test (PPT), the proportion of time spent on social incentive areas over

the total recorded time was calculated for analysis in all subjects (see Materials and methods). The

percentage of time spent on social incentive areas over the total time of the test had a mean of

79.70 ± 2.65%. Spearman correlation analyses showed that the amount of time spent on social incen-

tive areas had no relationship with the partner preference index (rs(30) = 0.08912 p=0.6277) (Fig-

ure 4—figure supplement 1). However, we tested if functional connectivity 24 hr after the start of

cohabitation had a relationship with the total time spent on social incentive areas during the test,

regardless if the subject interacted with the partner or stranger stimulus vole (N = 32). Through NBS

Figure 2. Relationships between baseline functional connectivity and affiliative behavior (huddling) during

cohabitation with mating in male and female prairie voles. (A) Representation of a prairie vole brain with regions

(nodes) that constitute the network with a significant negative association with huddling latency. Scatter-plot

graphs (B–J) of the connections in a with best line fit between baseline functional connectivity (Fisher

z-transformed partial-correlation values) and huddling latencies (minutes) during cohabitation. The higher the

connectivity between these regions before cohabitation, the shorter the huddling latencies during cohabitation in

voles of both sexes. ACC: anterior cingulate cortex. BLA: basolateral amygdala. DG: dentate gyrus. LS: lateral

septum. MeA: medial amygdala. NAcc: nucleus accumbens. PVN: paraventricular nucleus. RSC: retrosplenial

cortex. VP: ventral pallidum. VTA: ventral tegmental area.

The online version of this article includes the following source data for figure 2:

Source data 1. Functional connectivity values of edges that correlate significantly with huddling latencies in prairie

voles.

López-Gutiérrez et al. eLife 2021;10:e55081. DOI: https://doi.org/10.7554/eLife.55081 5 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.55081


analysis, a significant positive linear relationship (p=0.013) was found with the following network: LS–

NAcc–mPFC–MeA–VP–MOB–DG (Figure 4A). These findings suggest that the lower the connectivity

between these regions 24 hr after the onset of cohabitation, the longer the subject would interact

with a conspecific of the opposite sex during the PPT, which was evaluated between 48 and 72 hr

after the onset of cohabitation. The correlation strength between each connection of such network

and the percentage of time on social incentive areas was obtained with a posteriori Pearson’s corre-

lations: LS–NAcc (r(30) = �0.369, p=0.037), NAcc–mPFC (r(30) = �0.312, p=0.081), mPFC–MeA (r

(30) = �0.373, p=0.034), MeA–VP (r(30) = �0.376, p=0.033), VP–MOB (r(30) = �0.531, p=0.001),

and MOB–DG (r(30) = �0.404, p=0.021) (Figure 4B–G).

Male and female voles share network-level changes related to social
bonding in different time points
To determine whether cohabitation with mating induced changes in brain functional connectivity

between sessions, longitudinal data was analyzed with linear mixed models (LMM), implemented via

the Network-Based R-statistics package (NBR; Gracia-Tabuenca and Alcauter, 2020), which allows

to implement LMM in an NBS framework (see Materials and methods). NBR analysis yielded signifi-

cant session effects, that is changes between baseline, 24 hr, and 2 weeks of cohabitation

(pFWE = 0.0482), in a network consisting of 10 regions: ACC, BLA, dHIP, LS, mPFC, NAcc, RSC, vHIP,

VP, and VTA. No significant differences were found between male and female voles, a result that led

us to run the analysis without the sex variable. The same network component was obtained

(pFWE = 0.042) (Figure 5A).

Post hoc analyses (false discovery rate [FDR] corrected) identified differential longitudinal changes

among rsfMRI sessions. Specifically, four connections had significant changes 24 hr after the onset of

cohabitation: ACC–vHIP (t(56) = �2.766; p=0.0077), LS–RSC (t(56) = �3.270; p=0.0018), and LS–VP

(t(56) = �2.540; p=0.0138) showed increased functional connectivity, while LS–dHIP (t(56) = 3.004;

p=0.0039) had decreased connectivity in the same period of time. The edges LS–VP, LS–dHIP, and

LS–RSC had no differences between baseline (before cohabitation) and the third session (2 weeks

after the onset of cohabitation), suggesting acute plastic changes related to 24 hr of cohabitation;

however, LS–mPFC (t(56) = �2.856; p=0.0060) and VP–VTA (t(56) = �2.752; p=0.0079) have

increased connectivity, while ACC–LS (t(56) = 3.227; p=0.0020) and NAcc–VTA (t(56) = 2.970;

p=0.0043) had decreased connectivity between the first and third scanning sessions (baseline vs 2

weeks of cohabitation). In addition, four connections reflected differences between 24 hr and 2

Figure 3. Partner preference test. (A) Representative figure showing the design of the arena in which voles were

tested for partner preference test. (B) Between 48 and 72 hr of cohabitation, partner preference was evaluated on

each subject (N = 32). Partner preference index revealed a significant difference between the time spent on the

incentive area related to the partner, with the incentive area related to the stranger vole. Boxplot graphs show

whiskers with 10–90 percentiles; horizontal line inside the box shows data median, and ‘+’ represents data mean.

(*) denotes significance at p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Values of parter preference index obtained from the proportion of time spent on social incentive

areas related to the partner and stranger voles.

Figure supplement 1. Partner preference indexes at two different time points.

Figure supplement 1—source data 1. Partner preference index comparison at different PPT test times (48 vs 72

hr) from the onset of cohabitation.
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weeks after the onset of cohabitation (sessions 2 and 3): ACC–LS (t(56) = 3.675; p=0.0005) and BLA–

NAcc (t(56) = 2.593; p=0.0121) had decreased connectivity, but LS–mPFC (t(56) = �4.013;

p=0.0001) and mPFC–dHIP (t(56) = �2.605; p=0.0117) exhibit increased connectivity after 2 weeks

of cohabitation (third session), suggesting long-term functional changes related to cohabitation

(Figure 5B–K). Overall, the node with the most changes in functional connectivity was the LS.

To control for potential confounders, we selected an independent set of brain structures not

expected to be involved in social behavior and were tested with the same data and analysis methods

than the ROIs mentioned previously. These nine regions were the primary auditory area (AUDp), the

cerebellar cortex (CBX), forceps minor of the corpus callosum (fmi), laterodorsal thalamic nucleus

(LD), primary motor area (MOp), motor-related medulla (MY), supplemental somatosensory area

(SSs), primary visual area (VISp), and ventricle areas (Vent) (Figure 5—figure supplement 1). We

used the same data and analysis methods to test an independent set of brain structures not

expected to be involved in social behavior. Linear mixed models (LMM) implemented via the Net-

work-Based R-statistics package (NBR; Gracia-Tabuenca and Alcauter, 2020), considering sex as a

fixed variable, and session and intercept as random variables, found no significant networks with

Figure 4. Relationships between functional connectivity 24 hr after the onset of cohabitation and social interaction

during partner preference test in male and female prairie voles. (A) Representation of a prairie vole brain with

regions (nodes) that constitute the network with a significant negative association with the amount of social

interaction during the PPT. Scatter-plot graphs (B–G) of the connections in a with best line fit between baseline

functional connectivity (Fisher z-transformed partial-correlation values) and time on social incentive areas during

cohabitation (percentage). The lower the connectivity between these regions at 24 hr of cohabitation, the longer

the time spent on social incentive areas during the PPT. DG: dentate gyrus. LS: lateral septum. MeA: medial

amygdala. MOB: main olfactory bulb. mPFC: medial prefrontal cortex. NAcc: nucleus accumbens. VP: ventral

pallidum.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Values of percentage of time spent on social incentive areas related to the partner and stranger voles.

Figure supplement 1. Relationships between social behaviors in the prairie vole.
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Figure 5. Network-wide changes in time in brain functional connectivity of female and male prairie voles. (A) NBR

analysis via Linear mixed models (LMM) analysis results represented in a prairie vole brain with regions (nodes)

comprising the brain network that undergoes significant changes in functional connectivity (Fisher z-transformed

correlation values) after cohabitation with mating. Interregional connectivity (edges) is shown by color code. Red:

increase of functional connectivity; blue: decrease of functional connectivity. ACC: anterior cingulate cortex. BLA:

basolateral amygdala. dHIP: dorsal hippocampus. LS: lateral septum. mPFC: medial prefrontal cortex. NAcc:

nucleus accumbens. RSC: retrosplenial cortex. vHIP: ventral hippocampus. VP: ventral pallidum. VTA: ventral

tegmental area. (B–K) Functional connectivity values in violin plots showing full distribution of data and median.

Connecting lines track longitudinal data of each subject between regions through specific MR acquisition

time points (Session): Baseline, 24 hr, and 2 weeks of cohabitation. Color codes for data points and connecting

lines distinguish male (cyan) from female subjects (pink). False discovery rate (FDR) post hoc significant differences

are shown: *<0.05, **<0.01, ***<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Functional connectivity values that changed significantly across sessions (Ses; 1, 2, and 3) in male

and female prairie voles (females: F; males: M).

Source data 2. Estimated marginal means (EMM) post hoc comparisons values obtained from the longitudinal

analysis of functional connectivity data (edge), via linear mixed models with NBR.

Figure supplement 1. Control regions for the longitudinal analysis of rsfMRI data.

Figure supplement 2. Ten components gICA.
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differences between sessions (pFWE = 0.1568), or sex*session interactions (pFWE = 0.619 and

pFWE = 0.3554), suggesting that in both female and male prairie voles, cohabitation with mating and

social bonding do not influence changes in functional connectivity in these regions between any ses-

sion (baseline, 24 hr, and 2 weeks after the onset of cohabitation).

Group-independent component analysis (gICA) was also performed to address the exploration of

large-scale functional brain networks and potential differences between sessions. The gICA revealed

five components associated with sensory and motor cortices, putative default-mode, and salience

networks, a striatum-centered component, and two components with relevant connectivity of the

ventral hippocampi, with a degree of lateralization found in some of the latter (Figure 5—figure

supplement 2). These results are strikingly similar to other networks reported previously in the male

prairie vole (Ortiz et al., 2018), although this is a larger sample also including female voles and an

optimized anesthesia protocol for the detection of rsfMRI networks in rodents (Grandjean et al.,

2020). In order to evaluate whether networks found through gICA maps had significant changes

between sessions, dual regression was applied and group differences across sessions were assessed

using two-sample paired t-tests (see Materials and methods). However, the obtained FWE-corrected

p statistics found no significant differences between sessions. Being a voxel-wise method, it may not

be sensitive enough to detect punctual, region-specific changes in brain functional connectivity.

Specific network connections that undergo changes during cohabitation
with mating correlate with partner preference in male and female voles
Although several regions were found to change significantly after cohabitation and social bonding,

we tested if any specific connection of the detected network component (Figure 5A) could have a

relationship with the partner preference index obtained between 48 and 72 hr after the onset of

cohabitation, which was used to evaluate the level of pair-bonding in each subject. Two-tailed Pear-

son’s correlation tests revealed a significant positive relationship in LS–VP baseline functional con-

nectivity (r(26) = 0.435, p=0.020) with the partner preference index, suggesting that the higher the

baseline functional connectivity between these regions, the higher the partner preference index

would be (Figure 6A). Also, significant negative relationships were found between the partner pref-

erence index and BLA–NAcc functional connectivity at 24 hr of cohabitation (session 2) (r(30) =

�0.464, p=0.0074), and in LS–RSC functional connectivity at 2 weeks of cohabitation (session 3) (r

(28) = �0.437, p=0.015), which may suggest that the lower the connectivity between these regions

at the specified time points, the higher the partner preference index (Figure 6B,C).

Figure 6. Relationships between relevant network connections and partner preference index during cohabitation

with mating in male and female prairie voles. Scatterplots (A–C) that show significant correlations (with best line fit)

between functional connectivity (Fisher z-transformed partial-correlation values) and partner preference index in

network connections that undergo longitudinal changes. BLA: basolateral amygdala. LS: lateral septum. NAcc:

nucleus accumbens. RSC: retrosplenial cortex. VP: ventral pallidum.

The online version of this article includes the following source data for figure 6:

Source data 1. Functional connectivity values of edges that correlate significantly with partner preference index of

prairie voles in each session: session 1 (s01), session 2 (s02), and session 3 (s03), which correspond to baseline, 24

hr, and 2 weeks after the onset of cohabitation, respectively.
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Discussion
Several studies have described the relevance of different brain regions involved in pair-bond induc-

tion and maintenance in prairie voles (Johnson and Young, 2017; Walum and Young, 2018). How-

ever, longitudinal explorations of the brain before and after pair-bonding are scarce (Bales et al.,

2007), especially from a network perspective. Here, by using rsfMRI, we were able to detect a brain

network in which baseline functional connectivity (before cohabitation) predicted the latency for hud-

dling behavior during the first hours of cohabitation, providing the potential neurofunctional sub-

strate for the variability in affiliative behavior and further extending the recent findings that the

corticostriatal electric activity modulates social bonding in prairie voles (Amadei et al., 2017). A rela-

tionship between functional connectivity and social interaction was also found, in which a network

detected from data obtained 24 hr after the onset of cohabitation predicted the amount of social

interaction during the PPT. Finally, our results reflected significant longitudinal changes in functional

connectivity of prairie voles after pair-bonding. Post hoc analyses revealed differential short- and

long-term connectivity changes mainly involving the lateral septum (LS), with three network connec-

tions correlating with the level of partner preference in different sessions. We further discuss the

potential neurophysiological basis and implications of our findings.

Correlations between network functional connectivity and social
behavior
Although each of the identified networks would likely act as a whole or possess emergent proper-

ties, in the following text, we mention previous evidence in rodents that may aid in their functional

interpretation, and each component will be dissected in segments to better understand node rela-

tionships and their putative role in social bonding and related behavior.

Even though it has been reported that in prairie voles, 24 hr of cohabitation or 6 hr of ad libitum

mating is sufficient for a pair-bond to be developed (Williams et al., 1992), a considerable amount

of evidence has shown that other factors influence its development and maintenance. Specifically,

AVP (Ophir et al., 2008) and OXT receptor gene expression and density (King et al., 2016), pater-

nal nurturing (Ahern and Young, 2009), and neonatal isolation (Barrett et al., 2015) have shown to

produce variability in the exhibition of prairie vole social behavior. Though they were under the

same experimental conditions, subjects from both sexes in this study showed a wide behavioral vari-

ability not only during their sexual encounters in the first hours of cohabitation, but also in their

bonding behavior evaluated between 48 and 72 hr after the onset of cohabitation. It is likely that the

sum of previously mentioned factors gives each subject a distinctive brain network configuration that

ultimately relates to bonding behavior. Hence, we hypothesized that there may be individual differ-

ences in functional connectivity that could explain the variability in socio-sexual behavior.

Correlation with huddling latencies
Indeed, we identified a network for which the functional connectivity at baseline was negatively

related to huddling latencies during the first hours of cohabitation. In other words, baseline func-

tional connectivity predicted how quickly subjects would begin affiliative huddling with an opposite-

sex conspecific. Huddling is a measurable affiliative behavior in prairie voles and a useful indicator of

social receptiveness (Salo et al., 1993). The network included the following connections: VP–MeA–

LS–VTA–RSC–PVN, PVN–RSC–BLA–NAcc–ACC–NAcc, and BLA–DG (Figure 3A). This network has

regions reported to be involved in social salience, social memory and recognition, spatial memory,

and reward-seeking mechanisms. Therefore, it is possible that subjects that exhibited huddling at an

earlier time found it more rewarding than those who did not.

The VP plays a major role in reward and motivation (Smith et al., 2009). Since MeA activity in

rodents is necessary for social recognition (Ferguson et al., 2001) and responds to sex-specific che-

mosensory cues (Wang and Young, 1997; Yao et al., 2017), increased MeA-VP connectivity may

improve the rewarding response of sex-related social interaction. Additionally, DA neurons are

reported to modulate VP responses evoked by amygdala stimulation (Maslowski-Cobuzzi and Nap-

ier, 1994). The LS is a structure involved in social recognition and retrieval of relevant social informa-

tion (Bielsky et al., 2005), in addition that it is known to be anatomically interconnected with

regions involved in social behavior, including the hippocampus and the MeA (Risold and Swanson,

1997). In rats, it has been shown that OXT release in the LS is required for the maintenance of social
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memory and may also be modulated by the MeA according to the relevance of the social stimulus

(Lukas et al., 2013). It is likely that MeA-LS connectivity further integrates social information. LS–

VTA–RSC functional connections, through the VTA, may contribute to linking contextual information

with the midbrain DA system and regulate motivational behaviors (Luo et al., 2011; Maeda and

Mogenson, 1981), since the RSC is known to be involved in the processing of spatial and contextual

memory in rodents (Todd and Bucci, 2015).

Connectivity between PVN–RSC–BLA may be related to an association of a spatial context with a

socially salient stimuli. While OXT projections from PVN may probably influence the regulation of

social salience in the whole network (Johnson et al., 2017), it is also reported to be sensitive to

external stimuli (Anacker et al., 2014; Liu et al., 2001) that can impact OXT synthesis and release

(Smith and Wang, 2014). The BLA may act as an associative site for stimulus-outcome representa-

tions (Cardinal et al., 2002), which would allow an appropriate response according to previous

social encounters, information that possibly requires hippocampus-associated memory (BLA-DG)

(Frey et al., 2001; Tashiro et al., 2007).

In a previous report, the BLA and the ACC were found relevant in coordinating brain activity

when social interaction is initiated and in the formation of social recognition memory through gene

expression (Tanimizu et al., 2017). The NAcc is known to translate reward-predictive information

from the amygdala (BLA–NAcc) to promote cue-evoked, reward-seeking behavioral responses in

rodents (Ambroggi et al., 2008), while the ACC has been considered an important region in the

decision-making process between sensory perception, motivation, and final motor performance

(Assadi et al., 2009). Thus, input from the ACC (NAcc–ACC) may be necessary for a social decision-

making process. It is important to note that a recent study demonstrated this particular circuit may

be unique in prairie voles (Horie et al., 2020), and in female prairie voles, the functional connectivity

of the prefrontal cortex and NAcc after the first encounter predicts affiliative huddling toward a part-

ner, and the activation of such circuit biases later preference toward a partner (Amadei et al.,

2017). Our results extend such findings, showing that a larger network including similar corticostria-

tal connectivity, measured even before the exposure to a potential partner, predicts affiliative behav-

ior. Moreover, such relation is consistent for both males and females, and the circuit includes the

amygdala and hippocampus, as predicted by Amadei et al., 2017. Overall, the functional connectiv-

ity of this network may indicate the predisposition of a prairie vole to engage in prosocial behavior,

which might be influenced by previous experience and other factors mentioned beforehand.

Correlation with amount of social interaction
A network component detected at 24 hr after the onset of cohabitation, LS–NAcc–mPFC–MeA–VP–

MOB–DG, was negatively correlated with the amount of social incentive a subject would have during

the partner preference test, a test in which it interacted with two conspecifics of the opposite sex,

one being the partner and the other a stranger vole. Interestingly, this component includes five

regions from the huddling network previously described, and all but two nodes (MeA–VP) are

related differently when comparing it with the former network.

Regardless of the level of preference for the partner, prairie voles of both sexes had a differential

interest in engaging socially. While the huddling network is related to pre-pair-bonding affiliative

behavior, this network is necessarily related to post-bonding behavior, since it was only detected 24

hr after the onset of cohabitation. It is possible that functional connectivity of this component is asso-

ciated with the modulation of a behavioral response, that is approach or avoidance, according to

social olfactory cues that may be rewarding according to previous experience. Besides its social rec-

ognition role, in rodents the LS is reported to modulate reward response by decreasing neuronal

activity in the NAcc through AVP release (Gárate-Pérez et al., 2021). The NAcc–mPFC pathway has

been widely characterized as modulating reward-seeking, goal-oriented behavior (Gill et al., 2010),

and the mPFC and the amygdala are extensively interconnected and tune the expression of fear and

anxiety (Liu et al., 2020; Marek et al., 2013). The involvement of the MeA–VP hints modulation of

sex-related social interaction, particularly via chemosensory stimuli (MOB-DG) (Castro et al., 2020;

Liu et al., 2014).

Our data suggests that functional connectivity 24 hr after the onset of cohabitation has a relation-

ship to the level of sociability, reflecting a phenotype independent of pre-bonding behavior and

partner preference (Figure 4—figure supplement 1). Further investigation of this network would be

necessary to understand the impact of sociability in other behaviors, such as mate-territory guarding
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and parental nurturing. Apparently, its change in modulation is on a short term, since a correlation

at 2 weeks of cohabitation was not found and other regions or networks may play this role on a

long-term basis.

Longitudinal changes in functional connectivity after pair-bonding
It has been proposed that pair-bonding results from the convergence of the mesolimbic DA reward

circuit and social discrimination circuits (Walum and Young, 2018). The results here presented are

consistent with this model, by demonstrating both short- and long-term changes in a brain network

including regions largely associated with reward/motivation (ACC, VTA, NAcc, VP) and the social

decision-making network, specifically related to sensory contextualization (BLA, LS, RSC, dHIP),

saliency processing (LS, ACC, VTA), and memory formation and retrieval (vHIP, dHIP, mPFC, RSC).

Changes in functional connectivity after 24 hr after the onset of cohabitation may result from

familiarization of a new spatial context that also implies a novel social context, that is exposure to

new housing and to a novel, opposite-sex conspecific stranger. During this process, subjects are

exposed to novel stimuli and engage in their first socio-sexual interactions, forming new memories

of the partner and after-bonding behaviors such as mate and territorial guarding may appear. As

mentioned earlier in this section, functional connectivity changes detected at 2 weeks after the onset

of cohabitation may be related to long-term modulation of behavior as a result of social bonding, in

which the partner and its associated cues become salient/rewarding and the pair-bond enters a

maintenance phase. In general, these temporally dynamic functional connectivity changes may be

related to the modulation of socio-sexual interactions with the partner and add a level of complexity

that can be glimpsed due to the longitudinal analysis of the data. While the nodes here identified

are interconnected into a larger network and their precise contribution to complex social behavior

remains elusive to our methods, their potential role will be discussed based on previous results and

the connectivity patterns here identified.

The lateral septum (LS) strikes as a relevant region in the modulation of social behavior, appearing

as a hub that may integrate or relay spatial, contextual, and reward information between the ventral

striatum and limbic regions, with cortical areas and hippocampal structures (Wirtshafter and Wilson,

2020). The hippocampus may also participate as an important relay region, being anatomically con-

nected to the DG, RSC (Sugar et al., 2011), VTA (Gasbarri et al., 1994), and the prefrontal cortex

(Preston and Eichenbaum, 2013). Twenty-four hours after the onset of cohabitation, the LS showed

a decrease of functional connectivity with the dHIP; in mice, silencing this circuit decreases social

aggression (Leroy et al., 2018). At the same period, an increase of connectivity between the LS and

the RSC was also identified, which may be related to contextual memory acquisition (Opalka and

Wang, 2020) and possibly associate social information with a spatial context. This change of connec-

tivity may involve relay from the hippocampus, since anatomical projections between them are

known (Risold and Swanson, 1997). In regard to the VP, it has been reported that its stimulation

increases c-fos expression in regions including the LS and could be mediating reward processes

(Panagis et al., 1997). The increase of connectivity between the latter regions seems to be on a rela-

tively short term.

Social interaction would necessarily require new memory consolidation and, possibly, formation

of the neural representation of the partner. Our data showed functional connectivity changes

occurred in the hippocampus 24 hr after the onset of cohabitation (ACC–vHIP, LS–dHIP; Figure 5),

which has demonstrated to be critical in encoding spatial and mnemonic information in rodents

(Lin et al., 2017). ACC–vHIP activity has been associated with the regulation of fear in novel environ-

ments and in contextual fear generalization in rodents (Bian et al., 2019). However, the vHIP has

also shown to contribute in social memory processing (Chiang et al., 2018), and the ACC is pro-

posed to integrate new information to modify future behavior (Kolling et al., 2016). Increased

ACC–vHIP connectivity could be related to social memory formation, but it may also be related to

higher anxiety triggered by a new spatial and social environment.

In regard to functional connectivity changes 2 weeks after the onset of cohabitation, a long-term

increase of connectivity was detected between the LS–mPFC, while a decrease was found in ACC–

LS connectivity. It is enticing to propose that the LS is necessary for conspecific recognition and sub-

sequent modulation of behavior, since AVP administration enhances pair-bond formation in prairie

voles (Liu et al., 2001), and male voles exposed to females have increased Fos-immunoreactive cells

in the LS (Wang et al., 1997). In rats, OXT release in the LS is also required for the maintenance of
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social memory, modulated by the relevance of the social stimulus (Lukas et al., 2013). Conse-

quently, LS connectivity changes might be related to long-term social recognition and behavior

modulation, mediated by afferents from prefrontal structures, that is the mPFC and the ACC (ACC–

LS–mPFC). The aforementioned ACC may have a role in saliency regulation and in decision-making

processes, while the mPFC is proposed to have a role in the initiation, maintenance, and modulation

of social attachment and behavior in rodents (Ko, 2017; Tanimizu et al., 2017).

We also observed a decrease of connectivity between NAcc and VTA by the 2 week period. Con-

sidering the NAcc is densely innervated by VTA DA neurons (Steinberg et al., 2014), the after-

bonding decrease of connectivity between these two regions may reflect the plasticity events neces-

sary for pair-bond maintenance, in which D1-like receptor upregulation induces a long-term behav-

ioral state in which stranger voles are attacked or avoided (Aragona et al., 2006). In mice, VP

neuron activity drives positive reinforcement through projections to the VTA (Faget et al., 2018).

The long-term increase of functional connectivity between these two regions suggests they may play

a role in the maintenance of the bond through positive reinforcement.

Functional connectivity between the mPFC and the dHIP was increased. The dorsal region of CA2

has been characterized as a hub for sociocognitive memory processing in rodents, specifically for

social memory encoding, consolidation, recall (Meira et al., 2018), and social recognition (Hitti and

Siegelbaum, 2014). Also, the mPFC has been proposed as a critical region for remote memory

retrieval and for memory consolidation, reportedly relying on the hippocampus (Euston et al.,

2012). Therefore, their increased interaction could support the integration of new memories into

pre-existing networks (Preston and Eichenbaum, 2013) and, potentially, in the incorporation of the

partner into long-term memory representations. Indeed, OXT receptor activation in dHIP promotes

the persistence of long-term social recognition memory in mice (Lin et al., 2018).

Lastly, we detected a decrease of BLA–NAcc connectivity between 24 hr and 2 weeks of cohab-

itation. It has been proposed that these regions regulate social reward processing in rats

(Ambroggi et al., 2008) and may facilitate pair-bonding in prairie voles (Horie et al., 2020). Our

results suggest that these regions may encode the reward-predictive cue, that is the partner, during

bond establishment, but other regions could be involved in the maintenance of the bond, such as

VP–VTA and NAcc–VTA.

Although both AVP and OXT have been proposed to have sex-differentiated roles in pair-bond

formation (Young and Wang, 2004), the functional connectivity here explored showed no significant

differences between sexes or significant sex-session interactions. Sexual dimorphism may still be

present in a structural level, but the outcome of brain functional connectivity could remain similar

between sexes.

Even though our results show ample individual variability in display of behavior as much as in

brain functional connectivity, our analysis was able to capture group-wise consistent changes for

both female and male prairie voles, suggesting these could be crucial in modulating social behavior

after cohabitation with mating independently of the strength of the pair-bond. We propose that the

long-term functional connectivity changes observed in the network are related to social bonding and

may lead to pair-bonding induction and maintenance.

Concerning gICA, the obtained FWE-corrected P statistics found no significant differences

between sessions. This being a voxel-wise type of analysis that implies multiple comparisons with its

respective correction, gICA maps may not be sensitive enough to detect punctual, region-specific

changes in brain functional connectivity. While ICA in rsfMRI is a valuable method with advantageous

properties for identifying spatio-temporal signal sources that are not well-characterized or well-

understood, different methods of analyses such as NBS seem more suitable for the aim of our study,

which was to investigate the relationship between social behavior and functional connectivity, as well

as the exploration of changes of connectivity in specific regions as a consequence of social bonding.

Correlation of brain functional connectivity with partner preference
While consistent longitudinal changes in connectivity were present in our data, we wanted to explore

whether some of these nodes had a relationship with the level of partner preference, which captures

the strength of the pair-bond (Williams et al., 1992), which was evaluated between 48 and 72 hr

after the onset of cohabitation.

Positively, our results highlight the role of functional circuits in individual variability of social

behavior, in which regions previously associated with reward processing are most relevant in
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determining bonding behavior. These correlations are dynamic in time, and each may contribute to

the encoding and behavioral outcome of the pair-bond.

LS–VP baseline connectivity positively predicted the level of partner preference. It has been

reported that AVP receptor overexpression in VP induces partner preference in socially promiscuous

meadow voles (Lim et al., 2004). Twenty-four hours after the onset of cohabitation, a negative cor-

relation was found between BLA–NAcc connectivity and partner preference. Variation in OXT recep-

tor density in the NAcc relates to partner preference in prairie voles (King et al., 2016). Two weeks

after the onset of cohabitation, LS–RSC negatively correlated with partner preference. Previous work

demonstrated that AVP receptor expression in the RSC predicts sexual fidelity and territorial behav-

ior in male prairie voles (Ophir et al., 2008) and may reflect different mating tactics, that is ‘wan-

derer’ or ‘resident’, in which resident voles maximize mating success through mate guarding and

reduced territory space, in contrast to wanderers that overlap many home ranges to increase oppor-

tunistic mating (Getz et al., 2005). Our findings suggest that the baseline state of reward circuits

(LS–VP) may influence initial bond development that will be encoded and established by BLA–NAcc,

but long-term pair-bond maintenance may be modulated by social-reward, context-related regions

(LS–RSC). In general, network functional connectivity variability may also reflect behavioral diversity

influenced by genetic and environmental factors.

The prairie vole has proven to be a valuable model that has enabled the characterization of the

neurobiological mechanisms behind complex socio-sexual behaviors, potentially useful to under-

stand human social bonding and its alterations in psychological disorders. To our knowledge, this is

the first study to demonstrate correlations between social bonding with brain functional connectivity,

as well as time-dependent changes of multiple interacting brain regions (networks) of male and

female prairie voles in cohabitation with mating. However, there are some limitations related to the

use of rsfMRI. First, the animals were scanned under anesthesia, which may potentially alter the brain

functional connectivity. Yet, we have used an anesthesia protocol that practically preserves the func-

tional interactions as in the awake state (Grandjean et al., 2014; Paasonen et al., 2018) and that

has not been reported to significantly alter rsfMRI and BOLD response in longitudinal sessions

(Adamczak et al., 2010; Weber et al., 2006; Zhao et al., 2008). Although functional neuroimaging

of awake prairie voles is possible, the acclimation process may induce significant stress and even

increase the risk of physical harm (Yee et al., 2016), limiting the longitudinal design and the inter-

pretation of the results.

Second, unlike male voles, female voles were subjected to surgical procedures and hormonal

treatment before the MR scanning sessions. Although male voles are not precise controls for

females, no significant differences were identified between male and female voles, behavior-wise or

in rsfMRI connectivity. Also, since no significant longitudinal changes in functional connectivity were

found in brain structures not expected to be involved in social behavior, the observed changes may

be mostly related to social bonding and behavior. However, a control group with no behavioral pro-

tocols and same hormonal conditions as the ones reported in this study is desirable to confirm

that there are no confounding effects in the longitudinal analysis.

Third, the precision in the definition of the ROIs is limited by the shape and the size of the voxels,

being hard to assure that the defined regions specifically and uniquely include signal from the ana-

tomical ROIs. Nevertheless, we are certain that the defined ROIs include the actual ROIs, and at the

least, the changes here reported are related to those areas and their surrounding tissue. It is impor-

tant to note that functionally connected nodes may not necessarily have direct axonal projections to

each other, and the interaction between nodes could be mediated or relayed through other struc-

tures (Friston et al., 1993). Also, contrary to other electrophysiological or neuropharmacological

methods, functional MRI captures an indirect measure of neuronal activity (Kim and Ogawa, 2012).

However, it poses the great advantage that it allows the longitudinal exploration of the brain, with

the best spatial resolution and wider coverage that any imaging method can achieve non-invasively.

The consistency of our results with recent findings using direct electrophysiology readings

(Amadei et al., 2017) further supports their relevance in identifying the neurophysiology of complex

social behaviors. With evidence from previous reports as support, ROIs analyzed in this study consti-

tute at least three different networks and have multiple roles in the development, establishment,

and maintenance of social bonding. Additional research is required to increase understanding on

their precise role in prairie vole behavior.
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In conclusion, our findings suggest the existence of several functional brain networks involved in

the modulation of social bonding in the prairie vole. Network-based statistics revealed a network

involving cortical and striatal regions in which its functional connectivity predicted the onset of affilia-

tive behavior, and another overlapping network was associated with the amount of social interaction

after pair-bonding. Furthermore, a network with significant changes in time was revealed, with the

lateral septum playing a role as a central hub that connects prefrontal and cortical regions with

regions from the limbic system and the ventral striatum. Additionally, the retrosplenial cortex-lateral

septum, lateral septum-ventral pallidum, and basolateral amygdala-nucleus accumbens functional

connectivity correlate with the level of partner preference. In summary, brain functional connectivity

allows exploring the mechanisms that underlie individual variability in the expression of socio-sexual

behavior, enabling its prediction, and sexual experience and long-term cohabitation induce network-

wide changes in socio-sexual relevant circuits. Overall, these results provide a novel approach and

analyses to further investigate the neurophysiology of complex social behaviors displayed in the prai-

rie vole.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm Network-Based Statistic
Toolbox

PMID:20600983 RRID:SCR_002454

Software, algorithm Network-Based
R-Statistics

doi: 10.1101/2020.11.07.373019 RRID:SCR_019114

Software, algorithm nlme CRAN RRID:SCR_015655

Software, algorithm FSL PMID:21979382 RRID:SCR_002823

Software, algorithm ANTS – Advanced
Normalization ToolS

PMID:20851191 RRID:SCR_004757

Software, algorithm ggplot2 CRAN RRID:SCR_014601

Software, algorithm GraphPad Prism GraphPad RRID:SCR_002798

Software, algorithm MATLAB MathWorks RRID:SCR_001622

Chemical
compound, drug

Dexmedetomidine Zoetis PubChem CID:
5311068

s.c. bolus dose:
0.05 mg/kg

Chemical
compound, drug

Isoflurane PiSA PubChem CID: 3763

Chemical
compound, drug

b-Estradiol 3-benzoate Sigma PubChem CID: 222757 Dose: 0.5 mg/mL
dissolved in corn oil

Other Dow Corning Silastic
Laboratory Tubing

ThermoFisher Scientific Length of tubing
for capsule: 1.7 cm

Animals
Thirty-two 3-month-old sexually naı̈ve female (N = 16) and male (N = 16) prairie voles (M.

ochrogaster) were used in the study. The animals were housed in a temperature (23˚C) and light

(14:10 light–dark cycle) controlled room and provided with rabbit diet HF-5326 (LabDiet, St. Louis,

MO) oat, sunflower seeds, and water ad libitum. These voles were previously weaned at 21 days,

housed in same-sex cages, and were descendants of voles generously donated by Dr. Larry J. Young

from his colony at Emory University. The number of subjects per group is comparable to the largest

sample sizes using rsfMRI in rodents (Bajic et al., 2016; Christiaen et al., 2019; Grandjean et al.,

2014). All surgical, experimental, and maintenance procedures were carried out in accordance with

the ‘Reglamento de la Ley General de Salud en Materia de Investigación para la Salud’ (Health Gen-

eral Law on Health Research Regulation) of the Mexican Health Ministry that follows the National

Institutes of Health’s ‘Guide for the Care and Use of Laboratory Animals’ (NIH Publications No.

8023, revised 1978). The animal research protocols were approved by the bioethics committee of

the Instituto de Neurobiologı́a, UNAM.
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Surgical procedures
Fourteen days before the experimental protocol, female voles were bilaterally ovariectomized. After

recovery, silastic capsules (Dow Corning Silastic Laboratory Tubing; ThermoFisher Scientific, Pitts-

burg, PA) containing estradiol benzoate (E2B; Sigma–Aldrich, St. Louis, MO) dissolved in corn oil

(0.5 mg/mL of E2B) were implanted via s.c. to induce sexual receptivity 4 days before cohabitation

protocol and remained implanted during the entire experimental protocol. Females in Microtus spe-

cies are induced ovulators and do not show cyclic changes (Taylor et al., 1992), and for the purpose

of this experiment, estrogen-in-oil capsule implantation allowed a stable and equal hormonal dose

in all female subjects. The corresponding dose and procedure reliably induced sexual receptivity

(Ingberg et al., 2012).

Anesthesia for image acquisition
Animals were anesthetized to avoid stress and excessive movement during scanning sessions. Isoflur-

ane at 3% concentration in an oxygen mixture was used for induction and positioning in the scanner

bed, in which the head was immobilized with a bite bar and the coil head holder. Once voles were

securely placed in the scanner bed, isoflurane anesthesia (Sofloran; PiSA, Mexico) was adjusted at a

2% concentration and a single bolus of 0.05 mg/kg of dexmedetomidine (Dexdomitor; Zoetis, Mex-

ico) was administered subcutaneously. Five minutes after the bolus injection, isoflurane anesthesia

was lowered and maintained at 0.5%. MRI acquisition started when physiological readings were sta-

bilized (~15 min after bolus injection). The use of both anesthetics has been reported as optimal for

rsfMRI acquisition in rodents and closely resemble an awake condition (Grandjean et al., 2014;

Paasonen et al., 2018), yet the mentioned combination of dose and administration route were pre-

viously standardized for this specific protocol in prairie voles (unpublished data). Body temperature

was maintained with a circulating water heating pad within the scanner bed, respiration rate was

monitored with an MR-compatible pneumatic pillow sensor, and blood oxygen saturation was mea-

sured with an MR-compatible infrared pulse-oximeter (SA Instruments Inc, Stony Brook, NY). After

the scanning sessions, animals were monitored until fully recovered and transferred back to their

housing.

Image acquisition
MRI acquisition was conducted with a Bruker Pharmascan 70/16US, 7 Tesla magnetic resonance

scanner (Bruker, Ettlingen, Germany), using an MRI CryoProbe transmit/receive surface coil (Bruker,

Ettlingen, Germany). Paravision-6 (Bruker, Ettlingen, Germany) was used to perform all imaging pro-

tocols. Before running the fMRI sequence, local field homogeneity was optimized within an ellipsoid

covering the whole brain and skull using previously acquired field maps. rsfMRI was acquired using a

spin-echo echo-planar imaging (SE-EPI) sequence: repetition time (TR) = 2000 ms, echo time

(TE) = 19 ms, flip angle (FA) = 90˚, field of view (FOV) = 18 � 16 mm2, matrix

dimensions = 108 � 96, yielding an in-plane voxel dimensions of 0.167 � 0.167 mm2, and slice thick-

ness of 0.7 mm, total volumes acquired = 305 (10 min and 10 s). EPI bandwidth was 288,461.5 Hz,

the number of slices was 25, pi pulse (refocusing pulse) duration was 1.5455 ms with 2200.0 Hz

bandwidth, and pi/2 (excitation pulse) was 1.9091 ms and 2200.0 Hz, respectively. After the rsfMRI

sequence, an anatomical scan was obtained using a spin-echo rapid acquisition with refocused ech-

oes (Turbo-RARE) sequence with the following parameters: TR = 1800 ms, TE = 38 ms, RARE fac-

tor = 16, number of averages (NA) = 2, FOV = 18 � 20 mm2, matrix dimensions = 144 � 160, slice

thickness = 0.125 mm, resulting in isometric voxels of size 0.125 � 0.125 � 0.125 mm3.

Cohabitation and behavior analysis
Female and male voles unrelated to each other were randomly assigned as couples and placed for

cohabitation in a new home cage with fresh bedding to promote ad libitum mating and social inter-

action. The first 6 hr of cohabitation was video recorded for subsequent analysis of social and mating

behavior: mount, intromission, and ejaculation latencies from male voles; lordosis latency from

females; and huddling latencies for each male and female pair. In male voles, mount latency was

scored if it straddled the female from behind with pelvic thrusting, a continued mount behavior with

repetitive thrusting was scored as intromission latency, and ejaculation latency was scored if after

intromission and deeper thrusting an evident period of male inactivity was followed. Lordosis latency
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was scored if the female vole adopted an immobile posture with concave back flexion, neck exten-

sion, elevation of the hindquarters, and tail deviation to facilitate male mounting and intromission.

Some females displayed lordosis reflex as pre-mounting behavior and were scored for lordosis

latency. Since the onset of behaviors such as grooming or licking involve social contact and may

overlap with huddling (Burkett et al., 2016), in this study huddling latency was only scored if there

was continuous, side-to-side bodily contact for at least 10 s. Once joined, voles were housed in cou-

ples for the remaining of the experiment and were only separated for MRI scanning sessions and

behavioral tests.

Partner preference test
Subjects underwent a 3 hr PPT to evaluate pair-bond formation. This protocol was based on a

previously described test (Williams et al., 1992) and was performed in custom-built, three-cham-

bered clear plastic arenas divided by perforated clear plastic barriers that allowed visual, audi-

tory, and olfactory contact, but not physical interaction or mating behavior between subjects. In

the central chamber, the vole being tested could roam freely, and time spent in the incentive

areas at opposite sides of the chamber was recorded. The incentive areas were defined as the

proximal space next to the chambers with its ‘partner’ or with an opposite-sex, novel ‘stranger’

vole. All stranger voles were unrelated to subjects in the test and had the same age and hor-

monal condition than the sexual partner. On each test, partner or stranger voles were randomly

and alternately positioned on the opposite chambers of the arena. Each subject was tested only

once in the PPT, either at 48 hr or at 72 hr after the onset of cohabitation. If a vole had PPT

(assigned randomly and alternately) at the 48 hr period, its partner was tested at the 72 hr

period to enable rest between tests and avoid excessive stress. PPT data analysis was per-

formed with UMATracker software (Yamanaka and Takeuchi, 2018), which allowed quantification

of the proportion of time spent with each of the stimulus voles. The percentage of time spent

on the area related to the partner and of the area of the stranger were obtained. From this

data, a partner preference index was calculated for each subject, consisting of the proportion of

time spent on the area related to the partner divided by the proportion of time spent on both

social incentive areas (time with partner plus time with stranger vole).

Imaging data pre-processing
Imaging data pre-processing was performed with FMRIB’s Software Libraries (FSL; Jenkinson et al.,

2012) and Advanced Normalization Tools (ANTs; Avants et al., 2011) for spatial registration. To

avoid initial signal instability, the first five volumes of each functional series were discarded. The

slice-timing correction and motion correction were applied, using the first non-discarded volume as

reference. The reference volume was also taken to determine the deformable transformation to the

corresponding anatomical image. The resulting transformation was combined with a non-linear trans-

formation to a prairie vole brain template obtained from previously published work (Ortiz et al.,

2018; Figure 1—figure supplement 3). Functional images were later warped to the brain template

and resampled to a resolution of 0.16 � 0.16 � 0.7 mm3. To minimize physiological confounds, the

first five eigenvectors (time series) within the combined non-gray matter mask were obtained

(Behzadi et al., 2007), since recent findings have shown that vascular, ventricle, and white matter

signal regression enhances functional connectivity specificity from rsfMRI data (Grandjean et al.,

2020). These eigenvectors and the six motion parameters (three rotations, three displacements)

were regressed out from each subject’s functional series. Datasets were band-pass filtered to retain

frequencies between 0.01 and 0.1 Hz (Gorges et al., 2017). Finally, smoothing was applied with a

box kernel with size of three voxels, using FSL.

Functional connectivity analysis
Regions of interest (ROIs) were manually defined on the anatomical prairie vole brain template, visu-

ally guided with the Allen Mouse Brain Atlas (Lein et al., 2007), to select the minimum possible num-

ber of voxels that included/covered the respective region. Connectivity matrices were calculated

using MATLAB (Mathworks, Natick, MA) as follows: first, the average time series for each region

were extracted from the pre-processed fMRI datasets and then, partial-correlation estimates were

obtained for all possible pairs of ROIs, partialing out the remaining time series. Before analysis,
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correlation values were Fisher z-transformed. For each region, seed-based functional connectivity

maps (Figure 1—figure supplement 4), as well as signal-to-noise ratio values, were generated for

the assessment of data quality (Figure 1—figure supplement 5C).

Due to technical problems, two subjects missed the baseline MRI acquisition (session 1), and two

subjects missed the 2 week cohabitation MRI acquisition (session 3). Additionally, two baseline data-

sets showed signal loss in the dorsal cortex (Figure 1—figure supplement 5). The final imaging sam-

ple consisted of 90 datasets, with only six subjects missing one session.

Correlations between behavioral data and functional connectivity were assessed with the NBS

framework, using the NBS Toolbox (Zalesky et al., 2010), which estimates the statistical significance

of clusters of connections (networks) by comparing their strength with a null distribution of such

property obtained with 5000 permutations of the original data. Since the NBS Toolbox is restricted

to general linear hypothesis testing, the longitudinal data was analyzed with linear mixed models

(LMM), implemented via the Network-Based R-statistics package (NBR; Gracia-Tabuenca and

Alcauter, 2020), which allows to implement LMM in an NBS framework. Also, NBR restricts the per-

mutation of within-subject data based on the random variables. Specifically for functional connectiv-

ity longitudinal analysis, LMM were fitted for each connection (edge) considering sex (male, female)

as a fixed variable, and session (baseline, 24 hr, and 2 weeks of cohabitation) and intercept as ran-

dom variables. Those edges with significant (p<0.05) sex, session, or interaction effects at this level

were used to identify sets of connected nodes, that is components or networks, and their statistical

strength (sum of their statistical estimates, Z-values) were compared with a null distribution of the

largest clusters from the statistical tests of the permutated data (5000 permutations), this being the

NBS framework (Zalesky et al., 2010).

Group-independent component analysis
gICA was applied using FSL’s melodic (FSL; Jenkinson et al., 2012) on the same pre-processed

images previously used in this study, only the female and male prairie voles that underwent all three

MR scanning sessions were included on the analysis (n = 26), each subject having three different pre-

processed images (n = 78). The number of components was set to 10, as described in previous work

in prairie voles by our own group (Ortiz et al., 2018). To identify connected voxels over back-

ground, gICA maps were scaled to Z-scores and thresholded voxel-wise at Z � 2.3 based on a

Gaussian/Gamma mixture model and an alternative hypothesis testing approach. These gICA maps

were visually inspected and labeled according to their anatomical distribution and location of their

maximal regions, with additional visual guidance from the Allen Mouse Brain Atlas (Lein et al.,

2007).

Statistical analysis
Data in the study is presented as mean ± standard error of the mean unless otherwise noted. Partner

preference was explored with one-tailed Mann–Whitney U tests given that Shapiro–Wilk normality

tests revealed that such data was not normally distributed. Behavioral data was analyzed with Graph-

Pad Prism 5 (GraphPad Software, La Jolla, CA).

The NBS Toolbox was used with a level of significance of p<0.05 to identify networks (sets of con-

nections) with significant linear associations with behavioral data. Correlation matrices were not

thresholded for NBS analyses, but a fixed threshold of T > 1.7 was used to define the connections

with significant associations, for both the actual test and the corresponding tests for the permuted

data (5000 permutations). A posteriori Pearson’s two-tailed correlation tests were obtained for each

edge within the significant networks and were depicted with R software package ggplot2 (ggplot2;

Wickham, 2016) to better describe the relationships between specific connections and the associ-

ated behavior.

Implementation of LMM in NBR relies on the ‘nlme’ R package (nlme; Pinheiro et al., 2017)

to fit LMM at the edge level and integrate them with the permutation tests required for the

NBS framework. Since the degrees of freedom in LMM may vary for each variable (e.g., F(1,30)

for Sex vs F(2,56) for Session), the edge-wise threshold was defined at p<0.05. Similar to the

GLM-based NBS, no initial threshold was applied to the connectivity matrices prior to LMM-

based NBS. To better describe the differences between sessions for each edge in the significant

López-Gutiérrez et al. eLife 2021;10:e55081. DOI: https://doi.org/10.7554/eLife.55081 18 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.55081


networks, estimated marginal means post hoc comparisons were used for LMM and were cor-

rected for an FDR q < 0.05.

In order to evaluate whether networks found through gICA maps had significant changes

between sessions, dual regression was applied on the spatial maps from the group-average analysis

to generate subject-specific associated time series and the corresponding spatial maps

(Beckmann et al., 2009; Nickerson et al., 2017). First, for each subject, the group-average set of

spatial maps was regressed into the subject’s 4D space-time dataset, obtaining a set of subject-spe-

cific time series, one per group-level spatial map. Next, those time series were regressed into the

same 4D dataset, resulting in a set of subject-specific spatial maps, one per group-level spatial map

(n = 10). Group differences across sessions were assessed using FSL’s randomize permutation-test-

ing tool (Winkler et al., 2014), in which two-sample paired t-tests were used (session 1 vs session 2,

session 1 vs session 3, and session 2 vs session 3, respectively), given that an adequate anova version

is not available in randomize for this experimental design.
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López-Gutiérrez et al. eLife 2021;10:e55081. DOI: https://doi.org/10.7554/eLife.55081 19 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.55081


National Institutes of Health P51OD011132 Larry J Young

Consejo Nacional de Ciencia y
Tecnologı́a

600922 M Fernanda López-Gutiérrez
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López-Gutiérrez et al. eLife 2021;10:e55081. DOI: https://doi.org/10.7554/eLife.55081 25 of 25

Research article Neuroscience

https://doi.org/10.1037/0735-7036.106.4.366
http://www.ncbi.nlm.nih.gov/pubmed/1451419
https://doi.org/10.1155/2015/414173
https://doi.org/10.1016/j.yhbeh.2017.10.015
http://www.ncbi.nlm.nih.gov/pubmed/29111331
https://doi.org/10.1038/s41583-018-0072-6
http://www.ncbi.nlm.nih.gov/pubmed/30301953
https://doi.org/10.1016/S0006-8993(97)00617-3
https://doi.org/10.1016/S0006-8993(97)00617-3
http://www.ncbi.nlm.nih.gov/pubmed/9367264
https://doi.org/10.1016/j.physbeh.2004.08.024
http://www.ncbi.nlm.nih.gov/pubmed/15488548
https://doi.org/10.1016/S0165-3806(97)00138-7
https://doi.org/10.1016/S0165-3806(97)00138-7
http://www.ncbi.nlm.nih.gov/pubmed/9466721
https://doi.org/10.1016/j.neuroimage.2005.08.028
https://doi.org/10.1016/j.neuroimage.2005.08.028
http://www.ncbi.nlm.nih.gov/pubmed/16223588
https://doi.org/10.1016/0018-506X(92)90004-F
https://doi.org/10.1016/0018-506X(92)90004-F
http://www.ncbi.nlm.nih.gov/pubmed/1398553
https://doi.org/10.1016/j.neuroimage.2014.01.060
http://www.ncbi.nlm.nih.gov/pubmed/24530839
http://www.ncbi.nlm.nih.gov/pubmed/24530839
https://doi.org/10.7554/eLife.55252
http://www.ncbi.nlm.nih.gov/pubmed/32452763
https://doi.org/10.1242/jeb.182469
http://www.ncbi.nlm.nih.gov/pubmed/29954834
https://doi.org/10.7554/eLife.31373
http://www.ncbi.nlm.nih.gov/pubmed/29231812
https://doi.org/10.1016/j.neuroimage.2016.05.046
http://www.ncbi.nlm.nih.gov/pubmed/27238726
https://doi.org/10.1038/nn1327
https://doi.org/10.1038/nn1327
http://www.ncbi.nlm.nih.gov/pubmed/15452576
https://doi.org/10.1016/j.neuroimage.2010.06.041
http://www.ncbi.nlm.nih.gov/pubmed/20600983
https://doi.org/10.1016/j.neuroimage.2007.07.063
https://doi.org/10.1016/j.neuroimage.2007.07.063
http://www.ncbi.nlm.nih.gov/pubmed/17904868
https://doi.org/10.7554/eLife.55081

