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mast cells are known effector cells in allergic and inflammatory diseases, but their precise 
roles in intestinal inflammation remain unknown. Here we show that activation of mast cells in 
intestinal inflammation is mediated by ATP-reactive P2X7 purinoceptors. We find an increase 
in the numbers of mast cells expressing P2X7 purinoceptors in the colons of mice with colitis 
and of patients with Crohn’s disease. Treatment of mice with a P2X7 purinoceptor-specific 
antibody inhibits mast cell activation and subsequent intestinal inflammation. similarly, intestinal 
inflammation is ameliorated in mast cell-deficient KitW-sh/W-sh mice, and reconstitution with 
wild-type, but not P2x7 − / −  mast cells results in susceptibility to inflammation. ATP-P2X7 
purinoceptor-mediated activation of mast cells not only induces inflammatory cytokines, 
but also chemokines and leukotrienes, to recruit neutrophils and subsequently exacerbate 
intestinal inflammation. These findings reveal the role of P2X7 purinoceptor-mediated mast 
cell activation in both the initiation and exacerbation of intestinal inflammation. 
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Both active and quiescent immunity occur simultaneously to 
achieve immunological homoeostasis in the harshest of envi-
ronments—namely, the intestine. Aberrant immune responses 

in the gut lead to the development of intestinal immune diseases 
such as colitis and food allergies1,2. Mast cells (MCs) are generally 
recognized as major effector cells of type 1 allergic diseases, as well 
as of inflammation, host defenses, innate and adaptive immune 
responses and homoeostatic responses3–5. Histological analyses 
of patients with, and murine models of, colitis have implicated the 
involvement of MCs in intestinal inflammation4,6, but the factors 
responsible for MC activation are not fully understood.

Several lines of evidence have demonstrated that release of extra-
cellular ATP and ADP from injured, dying or activated cells acts 
as a danger signal by modulating various cellular functions via the 
activation of P2 purinoceptors7,8. P2 purinoceptors comprise P2X 
(P2X1–7) and P2Y receptors (P2Y1, 2, 4, 6, 11–14). P2X1–7 receptors 
are ATP-gated ion channels and specific for ATP, whereas P2Y 
receptors are G protein-coupled receptors that are specific for ADP, 
UTP and ATP7,8.

Stimulation by ATP or ADP through the P2 purinoceptors of 
macrophages and dendritic cells (DCs) results in the production of 
inflammatory cytokines; this can lead to the development of asthma, 
contact hypersensitivity or graft-versus-host disease9–11. MCs also 
express several P2 purinoceptors and release histamine, cytokines 
and chemokines upon nucleotide stimulation12. Although MCs 
are thought to be involved in intestinal inflammation, it is unclear 
whether extracellular nucleotides are required for this process.

Here, we used a newly established anti-MC monoclonal anti-
body (mAb) to identify activated MCs and found that extracellular 
ATP mediates MC activation through P2X7 purinoceptors to initi-
ate and amplify intestinal inflammation. Consequently, obstruction 
of the ATP-P2X7 purinoceptor cascade could be used to inhibit gut 
inflammatory diseases.

Results
Activated MCs in intestinal inflammation. Using a 2,4,6-
trinitrobenzene sulphonic acid (TNBS)-induced colitis model, 
we first examined whether MCs were involved in intestinal 
inflammation. To assess MC activation in vivo, we established an 
mAb (clone: 5A9) specific for CD63, a marker of activated MCs13. 
We confirmed that our anti-CD63 mAb was reactive specifically to 
MCs activated by immunoglobulin (Ig)E plus relevant allergen or 
a calcium ionophore, and not to naïve and CD63-knocked down 
MCs (Supplementary Fig. S1). In the colons of TNBS-treated mice, 
increased numbers of CD63 + -activated MCs were noted until 
day 3 post administration; the numbers then gradually decreased 
and reached a basal level on day 6 (Fig. 1a,b), indicating that 
MC activation was associated with the initiation phase of colitis 
development, as previously reported in a murine model and in 
patients with inflammatory bowel disease6,14. It has generally been 
accepted that the mechanistic basis of ulcerative colitis (UC) and 
Crohn’s disease (CD) are different. Indeed, the pathogenic cytokines 
involved in the development of UC and CD are different2 and the 
genetic polymorphisms specific for UC and CD are also different15. 
In addition, the cytokines required for the development of MCs 
differ between humans (stem cell factor) and mice [interleukin 
(IL)-3 and stem cell factor]4. Thus, these different pathological 
environments may have led to differences in the requirement for, 
and involvement of, MCs in the development of inflammation. 
Therefore, we analysed MC numbers in both UD and CD patients, 
although we focused on the TNBS-induced colonic inflammation 
model. We detected increased numbers of MCs in the colons of 
patients with CD or UC (Fig. 1c,d). Thus, increased numbers of 
MCs in the colon is a characteristic of intestinal inflammation.

To directly show the involvement of MCs in the development of 
intestinal inflammation, we used MC-deficient KitW-sh/W-sh mice. We 

confirmed that immunological and inflammatory symptoms induced 
by TNBS treatment were identical in KitW-sh/ +  heterozygous and 
Kit + / +  homozygous mice; however, inflammatory symptoms, such 
as body weight loss, massive inflammatory cell infiltration and colon 
shortening, were restored in KitW-sh/W-sh mice but not in KitW-sh/ +  
heterozygous and Kit + / +  homozygous mice (Fig. 1e–h). Similarly, 
our histological and immunological analyses revealed that destruc-
tion of the colonic epithelial layer and infiltration by inflammatory 
cells—especially neutrophils, which were stained neutral pink and 
had lobulated nuclei,—were reduced in KitW-sh/W-sh mice (Fig. 1f,h,i). 
Moreover, inflammatory signs were ameliorated in KitW-sh/W-sh mice 
when we used other well-known inflammatory bowel disease mod-
els, such as the dextran sodium sulphate (DSS) colitis model (Fig. 
2a–c). As the use of KitW-sh/W-sh mice as an MC-deficient model is 
controversial16,17, we also used the MC-specific enhancer-mediated 
toxin receptor-mediated conditional cell knockout (TRECK) system 
(Mas-TRECK mice)18. We confirmed that specific depletion of MCs 
ameliorated the inflammation in this DSS-induced colitis model 
(Fig. 2d–h). Our data indicate that activated MCs participate in the 
aggravation of intestinal inflammation.

Establishment of an inhibitory MC-specific mAb. IgE plus a 
relevant allergen induces MC activation; however, Rag-1 − / −  and 
Tcrβ − / − δ − / −  mice showed inflammatory responses comparable 
to those in TNBS-induced intestinal inflammation (Supplementary 
Fig. S2a–d)19 and had increased numbers of CD63 + -activated MCs 
in their colons (Supplementary Fig. S2e), suggesting that T and B  
cells are not involved in MC activation during colitis. We also  
found no increase in CD63 expression on MCs after stimulation 
with IL-18 and IL-33, which are known to be involved in colitis 
(Supplementary Fig. S2f)20,21.

We next tried to establish an anti-MC mAb that could ameliorate 
activated MC-mediated intestinal inflammation. We immunized rats 
with purified murine-activated colonic MCs, established hybrido-
mas, performed flow cytometry to select hybridomas that produced 
mAbs that preferentially recognized colonic MCs and examined the 
hybridomas’ ability to inhibit ovalbumin-induced food allergy22 or 
TNBS-induced intestinal inflammation (Supplementary Fig. S3). 
Among 2,000 clones, we obtained an anti-MC mAb (designated 
clone 1F11; rat IgG2b) that was strongly reactive to colonic MCs 
(Fig. 3a; Supplementary Fig. S3). In addition to colonic MCs, 1F11 
mAb bound efficiently to peritoneal cavity-, lung- and bone marrow 
(BM)-derived MCs, but not to skin MCs (Fig. 3a). When tested with 
other immunocompetent cells in the colon, 1F11 mAb was weakly 
reactive to some CD3 +  T cells, CD11c +  DCs and F4/80 +  macro-
phages, but was not reactive to Gr-1 +  granulocytes, IgA +  plasma 
cells or epithelial cells (ECs) (Fig. 3b).

To show the inhibitory function of 1F11 mAb in intestinal 
inflammation, mice were given 1F11 mAb (0.5 mg day − 1 in a single 
dose) for 3 days, beginning 1 day before intrarectal administration 
of TNBS. 1F11 mAb treatment reduced the intestinal inflammation 
(Fig. 3c–g) and decreased the number of CD63 + -activated MCs in 
1F11 mAb-treated mice (Fig. 3h).

Targeting P2X7 receptors reduces intestinal inflammation. Mass 
spectrometry analyses of immunoprecipitants of MC cell lysates 
with 1F11 mAb showed that the P2X7 purinoceptor is recognized 
by 1F11 mAb (Supplementary Fig. S4a). The specificity of 1F11 
mAb for the P2X7 purinoceptor was confirmed by its specific reac-
tivity to cells transfected with P2X7 receptors but not with other 
types of P2X receptor (for example, P2X1 and P2X4; Supplemen-
tary Fig. S4b). MCs derived from P2x7 − / −  mice, however, were not 
recognized by 1F11 mAb (Supplementary Fig. S4c). Western blot 
and flow cytometric analysis showed that, among the several vari-
ants of P2X7 purinoceptors23, 1F11 mAb bound to variant a (full-
length; Supplementary Fig. S4d,e). In contrast, variant c (possessing 
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the ATP-binding portion but lacking the C-terminal region) was 
detected by western blot, but its surface expression was not detected 
by flow cytometry because of its defect in extracellular expression 
(Supplementary Fig. S4d,e)24. In addition, neither western blot nor 
flow cytometry detected variant d (lacking the ATP-binding por-
tion; Supplementary Fig. S4d,e). These data strongly suggest that 
1F11 mAb recognizes P2X7 receptors, specifically the ATP-binding 
portion. We also confirmed that 1F11 mAb had similar reactivity 
to that of a commercially available anti-P2X7 mAb (clone: Hano43; 
Supplementary Fig. S4f,g).

To evaluate whether 1F11 mAb directly affects MCs during ATP-
mediated activation, we treated MCs with ATP in the presence of 
1F11 mAb in vitro. 1F11 mAb treatment reduced the number of 
CD63 + -activated MCs induced by ATP in a dose-dependent man-
ner (Fig. 4a). High concentrations of extracellular ATP increased the 

cell permeability of the MCs12. Thus, uptake of Lucifer yellow was 
observed in ATP-stimulated MCs but was substantially impaired in 
1F11 mAb-treated and P2x7 − / −  MCs (Fig. 4b,c).

As many cell types (MCs, T cells and DCs) express P2X7 recep-
tors (Fig. 3b), we then asked whether the P2X7 receptors on MCs 
were responsible for the MC-mediated intestinal inflammation  
in vivo by analysing MC-deficient KitW-sh/W-sh mice reconstituted 
with P2x7 + / +  or P2x7 − / −  MCs. We confirmed that reconstituted 
MCs were present in the colon and maintained P2X7 expression 
(Supplementary Fig. S5). Like wild-type mice, KitW-sh/W-sh mice 
reconstituted with P2x7 + / +  MCs showed severe inflammatory 
responses when treated with TNBS. However, these inflammatory 
responses were ameliorated when KitW-sh/W-sh mice were reconsti-
tuted with P2x7 − / −  MCs; the amelioration included inhibition of 
neutrophil infiltration and MC activation (Figs 1 and 5a–f).
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Figure 1 | Role of activated intestinal MCs in the development of intestinal inflammation. (a) CD63 expression on colonic mCs was examined with 
flow cytometry. Cells were gated on c-kit +  and FcεRIα +  cells. (b) The percentage of CD63 +  mCs in all c-kit +  FcεRIα +  mCs was determined with flow 
cytometry at various time points after TnBs administration (n = 3 for day 6, n = 5 for day 3, n = 7 for intact, EtoH, day 1 and 2, n = 14 for day 4). Control 
mice were analysed 4 days after EtoH administration (EtoH; n = 7). Data are shown as means ± s.e.m. (c) Colonic tissue sections from a healthy 
volunteer (HV) and uC and CD patients were stained with 4′,6-diamidino-2-phenyl indole (blue) and mC tryptase (red) or haematoxylin and eosin 
(H&E) (bottom). scale bars, 100 µm. (d) Tryptase-positive mCs were counted in the fields of the tissue sections (four fields for each section). Data are 
means ± s.e.m. (n = 6). (e) Body weight changes were monitored after TnBs administration to Kit W-sh/W-sh mC-deficient mice (Kit W-sh/W-sh EtoH; open 
triangles: n = 4, Kit W-sh/W-sh TnBs; closed triangles: n = 9), Kit  + / +  control mice (Kit  + / +  EtoH; open diamonds: n = 4, Kit  + / +  TnBs; closed diamonds: 
n = 13) and Kit W-sh/W +  control mice (Kit W-sh/W +  EtoH; open squares: n = 4, Kit W-sh/W +  TnBs; closed squares: n = 11). Data are shown as percentages of 
baseline weights and are means ± s.e.m., *P < 0.0001 (two-tailed student’s t-test); **P = 0.0024 (two-tailed student’s t-test). (f) The colon was isolated 
4 days after TnBs treatment for H&E staining. Data are representative of at least three independent experiments. scale bars, 100 µm. (g) Colon length 
was measured 4 days after colitis induction. EtoH, closed column; TnBs, open column. *P < 0.0001 (two-tailed student’s t-test), **P = 0.0024 (two-tailed 
student’s t-test). Data are shown as means ± s.e.m. (h) The percentage of CD11b +  Gr-1high cells in the colonic lamina propria was calculated, as measured 
with flow cytometry. EtoH, closed column; TnBs, open column. *P = 0.0003 (two-tailed student’s t-test), **P = 0.0029 (Welch’s t-test) and ***P < 0.0001 
(Welch’s t-test). Data are shown as means ± s.e.m. (i) Colonic mononuclear cells were isolated 4 days after TnBs administration and stained with anti-
CD11b and anti-Gr-1 antibodies. CD11b +  Gr-1high cells were sorted and then stained with may-Giemsa stain. scale bar, 20 µm. Data are representative of 
three experiments.
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We next analysed whether the MCs in UC or CD patients 
expressed P2X7. Although increased number of MCs were observed 
in the colons of both UC and CD patients (Fig. 1c,d), P2X7 purino-
ceptors were expressed by the MCs in CD patients but not by those 
in UC patients or healthy volunteers (Fig. 5g,h). Thus, it is likely 
that P2X7 purinoceptor-mediated MC activation also occurs in the 
human colon, especially in CD patients.

To examine whether ATP was extracellularly released at high 
concentrations at inflammatory sites, we next measured ATP release 
from inflammatory colonic tissues. An elevated level of ATP release 
from the colon tissue was noted in TNBS-treated mice (Fig. 6a). 
In addition, intrarectal administration of non-hydrolyzable ATP 
(adenosine 5′-O-(3-thio) triphosphate and O-(4-benzoyl)benzoyl 
adenosine 5′-triphosphate) led to MC activation in the colonic tis-
sue, similar to the effect of TNBS treatment (Fig. 6b). In contrast, 
intrarectal administration of other P2Y receptor agonists did not 
increase colonic MC activation (Fig. 6b). These findings indicate 
that inflammatory stimuli induce the extracellular release of ATP, 
which in turn leads to P2X7-dependent MC activation in the colon 
and subsequent exacerbation of intestinal inflammation.

P2X7 signalling activates the caspase-1 inflammasome to induce 
the production of IL-1β and IL-18 (ref. 25). IL-1β production is 
also mediated by MC proteases, such as chymases26. We therefore 
examined whether MCs produced IL-1β via P2X7 receptor activa-
tion, and if so whether this production was caspase-1-dependent. 
IL-1β production was decreased when P2X7-deficient MCs were 
stimulated with ATP, whereas substantial amounts of IL-1β were 
produced in caspase-1-deficient MCs (Supplementary Fig. S6), 
indicating that IL-1β production was P2X7-dependent but cas-
pase-1-independent. In line with this finding, body weight changes 
were noted in KitW-sh/W-sh mice reconstituted with caspase-1 − / −  

MCs (Fig. 5a). These results suggest that MC-dependent inflamma-
tion through P2X7 purinoceptors is not dependent on caspase-1- 
mediated IL-1β or IL-18 production.

An autocrine loop of ATP conversion mediates MC activation. In 
addition to ATP, other nucleotides (for example, extracellular ADP) 
act as signals to induce inflammatory responses27. We confirmed 
that MCs are activated by high concentrations of ADP and ATP 
(Fig. 7a,b). Extracellular ATP is hydrolysed by ectonucleoside tri-
phosphate diphosphohydrolases (CD39) to ADP and AMP; it is then 
further hydrolysed by ecto-5′-nucleotidase (CD73) to adenosine, 
which has anti-inflammatory functions27. Colonic MCs expressed 
CD39 but not CD73 (Supplementary Fig. S7a,b), indicating that 
MCs can convert ATP to ADP but not to adenosine. We therefore 
examined the involvement of ADP-reactive P2Y purinoceptors and 
found that P2Y1 and P2Y12 were highly expressed on colonic MCs 
(Fig. 7c). However, inhibitors of P2Y1 and P2Y12 receptors, as well 
as knockdown of the P2Y12 receptor, had no effect on the induction 
of CD63 + -activated MCs (Fig. 7d,e; Supplementary Fig. S8a). Simi-
larly, intestinal inflammation, as well as activation of colonic MCs, 
was unaffected in clopidogrel (a P2Y12 receptor inhibitor)-treated 
mice (Supplementary Fig. S8b–d). These data indicate that although 
P2Y1 and P2Y12 were expressed on MCs neither P2Y1 nor P2Y12 
purinoceptors mediate ADP-dependent CD63 +  MC induction.

It is generally accepted that P2X7 purinoceptors specifically 
recognize ATP7, but we found that they were also involved in 
ADP-mediated MC activation. Indeed, no activation was noted in 
P2x7 − / −  MCs when they were stimulated with ADP (Fig. 7f), lead-
ing us to hypothesize that ADP promotes ATP release from MCs and 
their subsequent stimulation. To test this hypothesis, we measured 
the expression of pannexin-1, connexin 43 and connexin 32, which 
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are ATP-releasing hemichannels, during cell activation28,29. The 
hemichannels were rarely expressed on the colonic MCs (Fig. 7g), 
and no inhibitory effect was observed when the MCs were treated 
with ADP in the presence of hemichannel inhibitors (flufenamic 
acid and carbenoxolone). However, cell activation was inhibited by 
P2X7 antagonists [oxidized ATP (OxATP), pyridoxal-phosphate-6-
azophenyl-2′,4′-disulfonate and 4,4′-diisothiocyanatostilbene-2,2′-
disulfonic acid disodium salt hydrate] (Fig. 7h). To further exclude 
the possibility that ADP triggers ATP release, we stimulated MCs 
with another P2Y ligand (UTP); we found that UTP did not induce 
MC activation (Fig. 7b).

We then tested whether ADP was converted to ATP by ATP-
converting enzymes such as ecto-adenylate kinase, ATP synthase 
and nucleoside diphosphokinase30. To test the involvement of these 
enzymes, we used inhibitors of ecto-adenylate kinase (diadenos-
ine pentaphosphate; AD2P5), ATP synthase (oligomycin; oligo) 
and nucleoside diphosphokinase (UDP), and we found that inhi-
bition of ecto-adenylate kinase and ATP synthase, but not nucle-
oside diphosphokinase, reduced ADP- as well as ATP-dependent 
MC activation (Fig. 7h,i). Neither AD2P5 nor oligo inhibited MC 
activation induced by the crosslinking of IgE with relevant allergen 
(Fig. 7i). Among the adenylate kinases, adenylate kinase 1 (AK1) 
and AK2 were expressed in colonic MCs, and the expression of AK2 
was much higher than that of AK1 (Supplementary Fig. S9a). As 
with AD2P5 treatment, knockdown of AK2, but not AK1, led to the 

inhibition of both ADP- and ATP-mediated MC activation (Supple-
mentary Fig. S9b). These results indicate that P2X7 purinoceptors 
have an important role in the activation of MCs by ATP, including 
ATP derived from ADP by the action of ecto-enzymes such as ATP 
synthase and AK2.

Neutrophil infiltration by MC-derived mediators. Evaluation of 
MC activation on the basis of CD63 expression is an important cri-
terion13; however, degranulation is not absolutely associated with 
cytokine production31. Therefore, we measured MC production of 
an array of inflammatory cytokine, chemokine and lipid mediators 
to additionally elucidate the role of P2X7 purinoceptor-mediated 
MC activation in the development of intestinal inflammation. Stim-
ulation of MCs with ATP induced the production of inflammatory 
cytokines such as IL-6, tumour necrosis factor (TNF)α and oncos-
tatin M32; this induction was not observed in P2x7 − / −  MCs or in 
wild-type MCs treated with 1F11 mAb (Fig. 8a,b).

We showed that neutrophil infiltration into the colon was medi-
ated by MC activation (Fig. 1h,i), and a previous study suggested 
that neutrophil infiltration is a potential target in colitis treatment33. 
Consistent with these findings, ATP stimulation induced MCs, but 
not P2x7 − / −  MCs, to produce leukotrienes (LTs; LT C4/D4/E4), 
which are associated with the translocation of 5-lipoxygenase (5-
LO) into the nucleus—an important step for LT synthesis in MCs34 
(Fig. 8c,d). Also, chemokine gene array analysis demonstrated that 
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Figure 3 | Amelioration of colitis by treatment with intestinal MC-reactive 1F11 mAb. (a) mCs in the colonic lamina propria, peritoneal cavity (PerC), 
skin and lung, as well as Bm-derived mCs, were stained with 1F11 mAb. Control staining with rat IgG2b is shown in grey. (b) Cells were isolated from 
colonic lamina propria and epithelium. CD3 +  T cells, IgA +  plasma cells (PCs), F4/80 +  macrophages, CD11c +  DCs, Gr1 +  granulocytes and ECs were 
gated and their reactivity to 1F11 mAb examined. Control staining with rat IgG2b is shown in grey. (c) C57BL/6 mice were treated with TnBs and their 
body weights were monitored for 4 days; 0.5 mg of 1F11 or the control mAb was intraperitoneally administered. Data from 9 (EtoH; open squares), 
19 (TnBs with control mAb; closed triangles) and 12 (TnBs with 1F11 mAb; closed diamonds) mice. *P = 0.0066 (Welch’s t-test). Data are shown as 
percentages of baseline weights and are means ± s.e.m. (d,e) Representative images of haematoxylin and eosin staining and colon tissue from 1F11 mAb-
treated mice. scale bars, 100 µm. (f) Colon length was measured 4 days after TnBs administration. *P = 0.0445; **P = 0.0073 (two-tailed student’s 
t-test). (g) neutrophils (CD11b +  Gr-1high) were quantified as percentages and numbers of cells. Data are shown as means ± s.e.m. (n = 6), *P < 0.0001, 
**P = 0.0047 (two-tailed student’s t-test). (h) Percentage of CD63 +  mCs in all c-kit +  FcεRIα +  mCs was determined with flow cytometry. Data are shown 
as means ± s.e.m. (n = 6) *P = 0.0202; **P = 0.0284 (two-tailed student’s t-test).
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ATP stimulation of MCs induced the expression of chemokines, 
including CCL2, CCL7 and CXCL2 (Fig. 8e–g), and 1F11 mAb 
treatment or P2X7 deficiency resulted in decreased CCL2 pro-
duction from MCs activated by ATP but not by IgE plus allergen  
(Fig. 8g). Furthermore, KitW-sh/W-sh mice showed decreased levels 
of both CCL2 and IL-1β in the colon tissue, but the production lev-
els of these molecules recovered when the mice were reconstituted 
with wild-type MCs (Supplementary Fig. S10a). As neutrophils 
express the corresponding chemokine receptors, it is likely that 
ATP-dependent MC activation induced inflammatory neutrophil 
infiltration into the colon from the peripheral blood (Supplemen-
tary Fig. S10b,c), given the high level of TNFα production by the 
neutrophils (Supplementary Fig. S10d). These results indicate that 
ATP-dependent MC activation has key roles in the induction of 
inflammatory responses (by inducing inflammatory cytokines) and 
in the exacerbation of inflammatory responses (by inducing LTs and 
chemokines to recruit TNFα-producing neutrophils to the colon).

Discussion
Here, we showed that MCs have a critical role in the severity of 
colitis through their interaction with ATP and P2X7 purinocep-
tors. These interactions not only induce MC-mediated inflamma-
tory responses but also exacerbate them by promoting neutrophil 
infiltration. Indeed, MC-deficient mice reconstitution with wild-
type, but not P2x7 − / − , MCs resulted in neutrophil infiltration and 
severe inflammatory responses, together with increased production 
of IL-1β, LTs and CCL2 (Figs 5 and 8, and Supplementary Fig. S10). 
KitWsh/Wsh mice spontaneously show elevated levels of neutrophils 
in their spleens35; however, we confirmed that the neutrophil levels  

were the same as those in the colons of Kit + / + , KitWsh/ +  and  
KitWsh/Wsh mice under naïve conditions (Fig. 1h,i). To exclude the 
possible involvement of other immunological defects in KitWsh/Wsh 
mice, such as the involvement of the Corin gene, which is associ-
ated with type II transmembrane serine protease35, we further con-
firmed the amelioration of intestinal inflammation in conditional 
MC-deficient mice (Fig. 2d–h). These findings strongly suggest that 
P2X7 on MCs has a pivotal role in the development of murine and 
human intestinal inflammation.

P2X7 purinoceptors are expressed on T cells, DCs, macrophages 
and ECs9–11,25,36. In a recent study, ATP/P2X7-mediated signal-
ling inhibited the generation and function of regulatory T cells 
and ATP stimulation led to their conversion into Th17 cells via an  
IL-6-dependent pathway; thus, the P2X7 antagonist OxATP  
inhibited colitis37. In that study, ATP/P2X7-mediated regulation of 
regulatory T cells was involved in the chronic phase of intestinal 
inflammation, which takes about 4 weeks for disease development37. 
Similarly, ATP-mediated DC activation occurs in the chronic phase 
of intestinal inflammation through the preferential induction of 
Th17 cells, although whether this is mediated by P2X7 remains to 
be seen38. In contrast, ATP/P2X7-mediated MC activation in our 
model was important in the development of T-cell-independent 
acute colitis, which occurs within 1 week. Thus, our study and those 
of others37,38 complement each other by reflecting the complicated 
pathological aspects and kinetics of the acute and chronic phases of 
intestinal inflammation mediated by ATP and P2X7.

We also found that the expression level of P2X7 receptors dif-
fered depending on the tissue and animal species. First, colonic 
MCs expressed high levels of P2X7, but skin MCs did not  
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(Fig. 3a). Second, in contrast to MCs, some macrophages (for 
example, microglia and RAW264.7 cells) expressed higher lev-
els of P2X7 than did colonic macrophages (Fig. 3b and data not 
shown). Third, among the several types of immunocompetent cell 
in the colon, MCs expressed the highest levels of P2X7 (Fig. 3a,b). 
Fourth, we found P2X7 expression on human colonic ECs, but not 
on murine colonic ECs (Figs 3b and 5g). In addition, as reported 
previously36, P2X7 expression on ECs was downregulated in the 
colons of CD patients; instead, CD patients showed increased 
numbers of P2X7 +  MCs in their colons (Fig. 5g,h). It is impor-
tant to note that, like murine MCs, human lung MCs express 
functional P2X7 (ref. 39). Therefore, although we must recognize 
the similarities and differences between mouse and human intes-
tinal inflammation and MC distribution, ATP/P2X7-mediated  
MC activation seems to have a major role in the development of 
intestinal inflammation.

We found elevated levels of extracellular ATP in the colons of 
TNBS-treated mice (Fig. 6a). This high ATP concentration was most 
likely achieved by a combination or cascade of several ATP produc-
tion pathways (for example, cell injury or lysis7, pattern recognition 
receptor-mediated activation of monocytes40 and commensal bac-
teria38). In our tissue culture system, we detected elevated release  
of ATP (40 µM) in the inflamed colon compared with the control 
(Fig. 6); however, at least 100 µM ATP was required for MC activation  

in vitro in the single cell culture system (Fig. 7b). This disparity likely 
reflects the differences in the culture conditions. Unlike in the single 
cell culture system, the concentration of secreted ATP in the tis-
sue culture system could have been diluted in the culture medium, 
or ATP could have been consumed rapidly by activated inflamma-
tory cells in the tissue. Alternatively, a lack of commensal bacteria-
derived ATP in the tissue culture system as a result of the inclusion 
of antibiotics may have reduced the ATP level. Another possibil-
ity is that the abundant endogenous ATP-degrading enzymes (for 
example, CD39) in the colon tissue may have degraded some of  
the ATP. In support of this idea, a suppressive role for CD39 in  
intestinal inflammation has been reported41.

We found that ADP-reactive P2Y1 and P2Y12 receptors were 
expressed on colonic MCs (Fig. 7c), but inhibition or knockdown 
of these receptors did not suppress the CD63 expression (Fig. 7d,e; 
Supplementary Fig. S8a). In previous studies, stimulation of MCs 
with ADP (0.05–50 µM) has led to calcium influx via the P2Y1- but 
not the P2Y12-mediated pathway42, whereas our results indicate 
that CD63 expression required a higher concentration of ADP and 
was not suppressed by a P2Y1 inhibitor (Fig. 7b,d). This finding 
indicates that P2Y purinoceptors are not involved in the induction 
of CD63 + -activated MCs that is mediated by high concentrations 
of ADP. However, we found that adenylate kinase and ATP synthase 
converted ADP back to ATP, which subsequently induced P2X7 
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Figure 5 | Inhibitory targeting of P2X7 purinoceptors on MCs leads to amelioration of colonic inflammation. KitW-sh/W-sh mC-deficient mice 
reconstituted with P2x7 + / + , P2x7 − / −  or caspase-1 − / −  Bm-derived mCs were applied to a TnBs-induced colitis model. (a) Body weight changes were 
monitored in TnBs-treated KitW-sh/W-sh mice reconstituted with P2x7 + / +  (closed squares; n = 9), P2x7 − / −  (open squares; n = 7) or caspase-1 − / −  (open 
triangles; n = 4). Bm-derived mCs were used for TnBs treatment, and P2x7 + / +  Bm-derived mC-reconstituted KitW-sh/W-sh mice receiving EtoH served  
as controls (closed triangles; n = 3). *P = 0.0264 (two-tailed student’s t-test), **P = 0.0058 (two-tailed student’s t-test). Data are shown as percentages  
of baseline weights and are means ± s.e.m. (b) Representative images of haematoxylin and eosin staining are shown. scale bars represents 100 µm.  
(c) Representative images of whole colons are shown. (d) Colon length was measured 4 days after TnBs administration. Data are shown as means ± s.e.m. 
(n = 3 for P2x7 + / +  EtoH, n = 9 for P2x7 + / + TnBs, n = 7 for P2x7 − / −  TnBs), *P < 0.001 (two-tailed student’s t-test). (e) Representative flow cytometric 
data of infiltrated neutrophils (CD11b + Gr-1high) in the colon from three individual experiments. *P = 0.00741, **P = 0.0009 (two-tailed student’s t-test). 
Data are shown as means ± s.e.m. (f) The percentage of CD63 +  mCs in all c-kit +  FcεRIα +  mCs was determined with flow cytometry. Data are shown 
as means ± s.e.m. (n = 3–9), *P = 0.007 (Welch’s t-test), **P = 0.0234 (Welch’s t-test). (g) Colonic tissue sections from a healthy volunteer (HV) and 
from uC and CD patients were stained with 4′,6-diamidino-2-phenyl indole (blue), mC tryptase (red) and P2X7 (green). scale bars, 100 µm. (h) Cells 
expressing both P2X7 and mC tryptase were counted in the fields of the tissue sections (four fields for each section). Data are means ± s.e.m. (n = 6).
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purinoceptor-dependent MC activation. A similar conversion of 
ADP to ATP has been reported for endothelial cells27. Among ade-
nylate kinases, AK2 was highly expressed on MCs and had a pivotal 
role in the conversion of ADP to ATP (Supplementary Fig. S9a,b). As 
another P2Y ligand (UTP) did not induce MC activation (Fig. 7b),  
our findings suggest that ADP could be converted into ATP by 
AK2 and ATP synthase, and that this ATP subsequently activates 
MCs through P2X7 purinoceptors. In addition, colonic MCs do 
not express ecto-5′-nucleotidase (CD73), an enzyme that degrades 
ADP into adenosine, which has anti-inflammatory effects in intesti-
nal inflammation43. Therefore, our study indicates that MCs express 
CD39, adenylate kinases and ATP synthase, but not CD73, to pref-
erentially convert ADP to ATP for the exacerbation of inflammatory 
responses through P2X7 purinoceptors.

Here, we showed that colitis aggravated by P2X7-mediated acti-
vation of MCs was independent of the inflammasome pathway, and 
that P2X7-mediated activation of MCs promoted TNFα production 
by effector cells to further promote intestinal inflammation44. Our 
findings also suggest that MCs exacerbate inflammation by recruit-
ing neutrophils to produce abundant TNFα, but less IL-10 than is 
produced by other cells (for example, eosinophils, DCs and macro-
phages; Supplementary Fig. S10d). This neutrophil recruitment was 
mediated by the production of IL-1β, LTs and chemokines, which 
are potential targets for the treatment of colitis. Mice with experi-
mentally induced colitis that lack CXCR2 or 5-LO (a key enzyme 
for converting arachidonic acid to LTs), as well as mice treated with 
inhibitors of CCR2, CXCR2 or 5-LO, show reduced inflammation 
and less neutrophil recruitment in their colons33,45,46. Moreover, 
given that ATP promotes neutrophil migration47, it is possible that 
P2X7-dependent LT and chemokine production, as well as ATP 
generation via AK2 and ATP synthase from MCs, could amplify 
neutrophil infiltration of the colon. These data collectively indicate 
that MCs are key factors in the induction of intestinal inflammation 
and also recruit neutrophils to heighten inflammatory responses. 
P2X7-dependent MC activation could, therefore, be a target for the 
treatment of intestinal inflammation.

Methods
Mice and human samples. Female C57BL/6 mice were purchased from CLEA 
Japan. Rag1 − / −  and P2x7 − / −  mice were obtained from Jackson Laboratory  
(Bar Harbour, ME, USA). MC-deficient KitW-sh/W-sh mice were obtained from  
Dr H. Suto (Atopy Research Center, Juntendo University, Japan). For the condi-
tional MC-deficient analysis, Mas-TRECK tg mice were injected intraperitoneally 
with 250 ng of diphtheria toxin for 5 consecutive days and then with 150 ng every 
other day18. Caspase-1 − / −  mice were backcrossed with C57BL/6 mice; F5 mice 
were used for this experiment48. All mice were maintained under specific- 
pathogen-free conditions at the Experimental Animal Facility of the Institute  
of Medical Science, the University of Tokyo. All experiments were approved  
by the Animal Care and Use Committee of the University of Tokyo.

MC reconstitution was performed as described previously49. Briefly,  
BM-derived MCs were obtained from P2x7 + / + , P2x7 − / −  or caspase-1 − / −  mice  
as described previously22. BM-derived MCs (5×106) were intravenously transferred 
to Kit W-sh/W-sh mice at two time points (0 and 14 days). The reconstituted mice 
were used 3 months after the last transfer.

Colon specimens from UC and CD patients and healthy volunteers were 
obtained by endoscopic biopsy at Osaka University Hospital. All subjects provided 
written informed consent, and the study protocol was approved by the Ethics  
Committee of Osaka University Graduate School of Medicine (no. 08243) and  
the Institute of Medical Science, The University of Tokyo (no. 20-67-0331).

Experimental colitis. For TNBS-induced colitis, anaesthetized mice (18–22 g) 
were sensitized with 2.5% TNBS (Sigma-Aldrich) together with acetone and olive 
oil50. After 1 week, after a 3-h fast, the mice were given 100 µl of 2.5% TNBS in 
50% ethanol via a flexible feeding tube that maintained their heads in a vertical 
position for 10 min. The control group received only 50% ethanol. Weight changes 
were recorded daily, and tissues were collected for histological analysis and isola-
tion of mononuclear cells from the colonic lamina propria. For mAb treatment, 
mice were injected intraperitoneally with 0.5 mg of mAb (1F11 or an isotype 
control) 1 day before being given TNBS/EtOH intrarectally. mAb administration 
was continued for 3 days. For P2Y12 inhibition with clopidogrel sulphate, (Wako, 
Osaka, Japan), mice received clopidogrel (0.5 mg ml − 1) in their drinking water 
from 3 days before intrarectal administration of TNBS/EtOH until the end of the 
study50. For DSS-induced colitis, mice were given 3.5% DSS (Wako, for C57BL/6) 
or 2.5% DSS (MP Biomedicals, Illkirch, France, for Mas-TRECK tg mice) in their 
drinking water for 5 days and their body weights were monitored daily50. In some 
experiments, non-hydrolysable ATP (adenosine 5′-O-(3-thio) triphosphate and 
O-(4-benzoyl)benzoyl adenosine 5′-triphosphate) or UDP-glucose (0.25 mg in 50% 
EtOH) was intrarectally administered and the effects were analysed 2 days later.

In vitro MC stimulation and inhibition. BM-derived MCs (2.5×105) were cultured 
with various concentrations of adenosine, ADP, ATP, UTP or anti-DNP-IgE 
with DNP-human serum albumin. Adenosine-3-phosphate 5-phosphosulfate 
(0.25 mM), carbenoxolone (10 µM), flufenamic acid (100 µM), pyridoxal-phos-
phate-6-azophenyl-2′,4′-disulfonate (100 µM), 4,4′-diisothiocyanatostilbene-2,2′-
disulfonic acid disodium salt hydrate (100 µM), OxATP (0.5 mM), AD2P5 (1 mM), 
oligo (10 or 100 µM) or UDP (100 µM) was added to the cells for the inhibition 
assay27,28,40,51. All reagents were purchased from Sigma-Aldrich (St Louis, MO, 
USA, purity was ≥ 95%). 5-LO (BD Pharmingen, Franklin Lakes, NJ, USA) was 
stained after permeabilization with 0.2% Triton-X100 for 10 min; nuclei were 
stained with 4′,6-diamidino-2-phenyl indole.

Cell preparation and flow cytometry. ECs and lamina propria mononuclear 
cells were isolated from the colon, as described previously52. For flow cytomet-
ric analysis, cells were incubated with 5 µg ml − 1 of an anti-CD16/32 antibody 
(10 µg ml − 1, Fc block, BD Pharmingen) for 5 min and stained for 30 min at 4 °C 
with fluorescence-labeled Abs specific for c-kit (0.2 µg ml − 1), Gr-1 (0.4 µg ml − 1), 
CD4 (1 µg ml − 1), CD11b (0.2 µg ml − 1), CD11c (0.4 µg ml − 1), CD39 (0.4 µg ml − 1), 
CD45 (0.4 µg ml − 1), IgA (10 µg ml − 1), B220 (0.4 µg ml − 1; BD Pharmingen), CCR3 
(2 µg ml − 1), CXCR2 (4 µg ml − 1; R&D Systems, Minneapolis, MN, USA), FcεRIα 
(0.4 µg ml − 1), CD73 (0.4 µg ml − 1), TLR2 (10 µg ml − 1; eBioscience, San Diego, CA, 
USA), F4/80 (20 µg ml − 1), CCR2 (10 µg ml − 1), P2X7 (Hano43; 2 µg ml − 1,Serotec, 
UK) or CCR1 (10 µg ml − 1, Abnova, Taiwan). Flow cytometric analysis and cell 
sorting were performed by using FACSCalibur and FACSAria (BD Biosciences, 
Franklin Lakes, NJ, USA), respectively. Sorted cells were stained with May-Giemsa 
stain in some experiments. Colonic MCs and BM-derived MCs were prepared as 
described elsewhere22.

Establishment of an anti-P2X7 mAb (1F11) and an anti-CD63 mAb. The proce-
dure used to establish MC-specific mAbs is shown as a flowchart in Supplementary 
Figure S3. Briefly, c-kit +  FcεRIα +  MCs were obtained as described previously22 
from the colons of mice that exhibited allergic diarrhoea. Purified colonic MCs 
(106 cells) were injected into the footpads of Sprague Dawley rats seven times, as 
described previously53. Lymphocytes were isolated from the spleen and inguinal 
lymph nodes and fused with P3X63-AG8.653 myeloma cells (CRL-1580; American 
Type Culture Collection, Manassas, VA, USA). The reactivity of each hybridoma to 
the colonic MCs was examined by means of flow cytometry. To identify antigens 
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Figure 6 | Enhanced ATP production in intestinal inflammation and MC 
activation induced by non-hydrolyzable ATP. (a) The concentration 
of ATP released from the colon tissue of mice receiving intrarectally 
administered phosphate-buffered saline, vehicle or TnBs was measured. 
Data are shown as means ± s.e.m. (n = 3–7). *P = 0.0004, **P = 0.0447 
(two-tailed student’s t-test). (b) CD63 expression of colonic mCs was 
measured with flow cytometry after intrarectal administration of vehicle 
(n = 14), TnBs (n = 5), non-hydrolyzable ATP (adenosine 5′-o-(3-
thio) triphosphate (ATPγs); n = 9 or o-(4-benzoyl)benzoyl adenosine 
5′-triphosphate (BzATP); n = 10) or uDP-glucose (n = 6), or in intact 
mice (n = 7). Data are shown as means ± s.e.m. *P = 0.0002 (two-tailed 
student’s t-test), **P = 0.0135 (Welch’s t-test) and ***P = 0.0238 (Welch’s 
t-test). ns, not significant.
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recognized by the mAbs, immunoprecipitation was performed with the mAbs,  
followed by Liquid chromatography–mass spectrometry analysis, as described  
previously53. Antigen specificity was confirmed by transfecting CHO cells with 
plasmids that encoded the murine P2X7 receptor and CD63.

Measurements of membrane permeability and inflammatory mediators.  
To assess membrane permeability, BM-derived MCs were washed twice with  
phosphate-buffered saline (PBS) and incubated with 1 mg ml − 1 Lucifer yellow 
(Sigma-Aldrich) containing 250 µM sulfinpyrazone (Sigma-Aldrich). The MCs 
were then stimulated with 0.5 mM ATP (Sigma-Aldrich) for 15 min, as described 
elsewhere12. In the inhibition assay, 1 or 10 µg ml − 1 of 1F11 mAb or the control 
antibody (Rat IgG2b) was added before ATP stimulation. The fluorescence signal  
of Lucifer yellow was determined by using fluorescence microscopy (BZ9000,  
Keyence, Osaka, Japan) and flow cytometry.

To measure the production of cytokines, chemokines and LTs from MCs, 
BM-derived MCs (2.5×105) were stimulated with 2.5 mM ATP for 30 min, after 
which the supernatants were collected. Chemokine and cytokine production was 
detected with an inflammatory cytokine kit (BD Pharmingen). For IL-1β meas-
urement, BM-derived MCs from wild-type, P2x7 − / −  and caspase-1  − / −  mice 

were stimulated with 0.1 µg ml − 1 of LPS for 4 h, followed by ADP or ATP stimula-
tion. LT C4/D4/E4 production was detected by use of an enzyme-linked immu-
nosorbent assay (GE Healthcare Bio-Science, NJ, USA). For ATP, cytokine and 
chemokine measurements from the colon tissue, the colon tissues were isolated 
from mice 2 days after intrarectal administration of TNBS. Released ATP was 
measured by culturing colon tissues at 100 mg of tissue per 100 µl of RPMI1640 
medium for 3 h and using a luminescence ATP detection system (PerkinElmer, 
Norwalk, CT, USA).

Immunoprecipitation and western blotting. Cell lysates obtained from 
BM-derived MCs or CHO transfectants (mouse P2X7 variants a, c and d and 
flag-mP2X7s, cloned from C57BL/6 mice) were analysed by western blotting 
and immunoprecipitation with 1F11 mAb or the control Ab. Membranes were 
probed with an anti-flag and a polyclonal rabbit anti-P2X7 antibody (Sigma-
Aldrich).

Histology. Colonic tissues were fixed in 4% paraformaldehyde and embedded 
in paraffin. Tissue sections (5 µm) were stained with haematoxylin and  
eosin solution, as described previously22. For the detection of MCs and P2X7 
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Figure 7 | The ecto-adenylate kinase pathway mediates ADP-dependent MC activation through P2X7 purinoceptors. (a) Bm-derived mCs treated 
with ADP or ATP at 0.5 mm for 30 min and examined for CD63 expression. (b) Bm-derived mCs treated with IgE plus relevant allergen or various 
concentrations of ADP, ATP or uTP for the analysis of CD63 expression. Data are representative of four experiments. (c) Expression of mRnA encoding 
each P2Y receptor in colonic lamina propria lymphocytes (LPLs) and mCs was analysed by quantitative reverse transcription (RT)–PCR (n = 3).  
(d,e) Bm-derived mCs pre-treated with 0.25 mm P2Y1 inhibitor (adenosine-3-phosphate 5-phosphosulfate (A3P5Ps)) (d) or 0.01 mm P2Y12 inhibitor 
(mRs2353) (e), stimulated with ADP and examined for CD63 expression (n = 3). (f) Bm-derived mCs from P2x7 − / −  mice stimulated with ATP or ADP; 
CD63 expression was determined with flow cytometry. Data are representative of four experiments. (g) Expression of pannexin-1 (Panx1), connexin-43 
(Conx43) and Conx32 on colonic mCs, macrophages (mac), CD4 +  T cells (CD4), DCs, IgA +  cells (IgA) and ECs was measured by quantitative RT–PCR 
(n = 4). (h) Bm-derived mCs were pretreated with inhibitors of P2X receptors [oxATP, 0.5 mm; pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate 
(PPADs); 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDs)], connexins [flufenamic acid (FFA)], Panx-1 [carbenoxolone (CBX)], ecto-adenylate 
kinase [diadenosine pentaphosphate (AD2P5)], ATP synthase (oligomycin) or nucleoside diphosphokinase (uDP) and subsequently stimulated with 
0.25 mm ADP. CD63 expression was determined with flow cytometry. (n = 3) *P < 0.01, **P < 0.05 (two-tailed student’s t-test). All data are shown as 
means ± s.e.m. (i) Bm-derived mCs were treated with AD2P5, oligomycin or uDP and stimulated with 0.5 mm ATP or IgE plus allergen. CD63 expression 
was determined with flow cytometry (n = 5). *P < 0.0001 (two-tailed student’s t-test), **P = 0.0008 (two-tailed student’s t-test) and ***P = 0.0008 
(Welch’s t-test). ns, not significant.
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expression in human specimens, colonic tissue sections were stained with 
antibodies for MC tryptase and P2X7 purinoceptors (Alomone Laboratories, 
Jerusalem, Israel).

shRNA plasmid construction and lentiviral transduction. For the construction 
of shRNA expression lentivirus vector plasmids, a series of oligonucleotide pairs 
were synthesized, as listed below. Each oligo pair was annealed and cloned into 
pmU654. Each mU6-shRNA cassette was then subcloned into the ∆U3 sequence of 
the 3′-LTR of the lentivirus vector plasmid pLCG to generate pLCG-shCD63 (sense: 
5′-TTTGATTCTTGCTGCATCAACATAGCTTCCTGTCACTATGTTGATGCAG 
CAAGAATCTTTTTTG-3′, antisense: 5′-AATTCAAAAAAGATTCTTGCTGCA 
TCAACATAGTGACAGGAAGCTATGTTGATGCAGCAAGAAT-3′), pLCG-shP2Y12 
(sense: 5′-TTTGATCTACTAATGATTCTAACTGCTTCCTGTCACAGTTAGAAT 
CATTAGTAGATCTTTTTTG-3′, antisense: 5′-AATTCAAAAAAGATCTACTAA 
TGATTCTAACTGTGACAGGAAGCAGTTAGAATCATTAGTAGAT-3′) and  
pLCG-shAK1 (sense: 5′-TTTGCGAGAAGATTGTACAGAAATGCTTCCTGTCA 
CATTTCTGTACAATCTTCTCGCTTTTTTG-3′, antisense: 5′-AATTCAAAAAA 
GCGAGAAGATTGTACAGAAATGTGACAGGAAGCATTTCTGTACAATCTT 
CTCG-3′) and pLCG-shAK2 (sense: 5′-TTTTGGAGCTAATTGAGAAGAATTGC 
TTCCTGTCACAATTCTTCTCAATTAGCTCCATTTTTTG-3′, antisense:  
5′-AATTCAAAAAATGGAGCTAATTGAGAAGAATTGTGACAGGAAGCA 
ATTCTTCTCAATTAGCTCC-3′).

To obtain lentivirus-encoding green fluorescent protein (as a reporter gene) 
and shRNA for CD63, 293FT cells (6×105) were transfected with pLP1, pLP2, pLP-
VSVG and pLCG-shRNA by using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 
USA) as per the manufacturer’s protocol (Invitrogen). After 24- and 48-h incuba-
tions, lentivirus-encoding shRNA was collected.

BM-derived MCs (1×106) or MC/9 cells were transduced with shRNA expres-
sion lentivirus stock in the presence of 8 µg ml − 1 Polybrene (Sigma-Aldrich)55. 

After 24 h, the cells were washed and green fluorescent protein-positive cells were 
sorted by FACSAria and used for subsequent experiments.

Quantitative real-time–PCR. Total RNA was prepared by using TRIzol (Invitro-
gen) and reverse transcribed by use of Superscript VILO (Invitrogen), as described. 
Quantitative reverse transcription–PCR was performed with the LightCycler 480 
II (Roche, Mannheim, Germany) and the Universal Probe Library (Roche). Primer 
sequences are listed in Supplementary Table S1.

Statistical analysis. Statistical analysis was performed by using the unpaired two-
tailed Student’s t-test and Welch’s t-test. The data are presented as means ± s.e.m. 
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