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Abstract: The explosive volume of semantic data published in the Resource Description Framework
(RDF) data model demands efficient management and compression with better compression ratio
and runtime. Although extensive work has been carried out for compressing the RDF datasets, they
do not perform well in all dimensions. However, these compressors rarely exploit the graph patterns
and structural regularities of real-world datasets. Moreover, there are a variety of existing approaches
that reduce the size of a graph by using a grammar-based graph compression algorithm. In this
study, we introduce a novel approach named gRDF (graph repair for RDF) that uses gRePair, one
of the most efficient grammar-based graph compression schemes, to compress the RDF dataset. In
addition to that, we have improved the performance of HDT (header-dictionary-triple), an efficient
approach for compressing the RDF datasets based on structural properties, by introducing modified
HDT (M-HDT). It can detect the frequent graph pattern by employing the data-structure-oriented
approach in a single pass from the dataset. In our proposed system, we use M-HDT for indexing
the nodes and edge labels. Then, we employ gRePair algorithm for identifying the grammar from
the RDF graph. Afterward, the system improves the performance of k2-trees by introducing a more
efficient algorithm to create the trees and serialize the RDF datasets. Our experiments affirm that the
proposed gRDF scheme can substantially achieve at approximately 26.12%, 13.68%, 6.81%, 2.38%, and
12.76% better compression ratio when compared with the most prominent state-of-the-art schemes
such as HDT, HDT++, k2-trees, RDF-TR, and gRePair in the case of real-world datasets. Moreover,
the processing efficiency of our proposed scheme also outperforms others.

Keywords: compression; graph; gRePair; k2-trees; RDF

1. Introduction

Nowadays, the RDF is a widely used standard data model for storing a large amount
of semantic data. This RDF model can store and make connections among datasets from
various sources such as scientific data, business knowledge, demographic information, so-
cial networks, and Wikipedia. For example, a DBPedia dataset not only contains Wikipedia
data but also incorporates links to other datasets on the Web. Various applications can
exploit the heterogeneous connection among datasets to gather additional knowledge. One
of the most prominent ways to store the knowledge of the world is the knowledge graph
(KG). It is used by a number of numerous applications such as dialog system [1,2], question
answering [3,4], and search [5]. Therefore, the growth of KG is increasing, having millions
of entities and their relationships. KG is represented by the RDF data model having a finite
number of triples. A triple represents a relationship between a subject (S) and a object (O)
via a predicate (P). However, managing and accessing the RDF data efficiently is not trivial,
due to the enormous size of datasets, and raises several serious challenges. RDF data needs
to be compact and comprehensive, saving communication bandwidth and storage, yet
it should preserve the integrity of the data. Therefore, RDF compression has become an
increasingly important research area due to the continuous expansion of structured RDF
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data. There are several approaches that are used to achieve lossless RDF compression.
Some universal data compression schemes, such as bzip2 (http://www.bzip.org/, accessed
on 23 March 2022) and LZMA (http://www.7-zip.org/, accessed on 23 March 2022), can be
employed for the RDF data [6]. However, these approaches alter the structure of the RDF
dataset and reduce the size of the data significantly. Some RDF compression approaches
that alter the serialization of RDF data but preserve the structure of the data, such as
HDT [7], HDT-TR [8], k2-triples [9], and lean graphs [10], can be used for reducing the size
of the RDF data. Another scheme, such as rule-based RDF compression considered as logi-
cal compression, is also introduced to reduce the triple number substantially from the RDF
dataset [11,12]. Elimination of the redundancy in the ontology is also a logical compression
scheme that interprets the semantics of OWL (http://www.w3.org/TR/owl-features/,
accessed on 23 March 2022) (Web Ontology Language) [13]. Despite achieving the com-
pressed RDF dataset by using the existing approaches, there are very few studies that focus
on the structure of the graph in an RDF dataset. For example, the statistical redundancy
of the RDF dataset is exploited in the case of a universal compression scheme, and the
datasets are considered as an ordered character series. However, the RDF dataset is usually
a graph, and the ordering of edges and nodes are extraneous for the semantics of the
dataset, although there are very few studies that consider this sort of information and
they constrict fixed simple graph structure of the dataset, which is less efficient, while
compressing the RDF dataset. For example, [11] compresses the graph structures that
are star-shaped and reoccur having changing center nodes with a single triple at an RDF
dataset. This approach performs well when the dataset occupies many various nodes that
are sharing the abundant same neighbors. However, this scheme cannot be used when such
a structure is not present in the RDF dataset. On the other hand, RDF graphs are serialized
according to the byte sequences, which produces syntactic redundancy. Existing techniques,
such as RDF/XML [14], HDT [7], and HDT-TR [8], consider the syntactic redundancies
of the graph structure in the RDF dataset. However, if the graph pattern knowledge is
not present in the RDF dataset, these schemes cannot employ the common structure of
the graph that is shared by the various instances of a single graph pattern. On the other
hand, HDT encodes all the triples by using the tree-shaped triples; one per different subject
by using bit and compact integer sequences. However, it does not consider the structural
redundancies, i.e., common patterns when explaining the subjects, as the RDF data comes
with various levels of structured and unstructured data. Moreover, many studies have
proposed techniques for constructing a dictionary [15,16] to compress the RDF data that
address the redundancy in URI properties. Some researchers exploit the semantics of an
RDF dataset to perform syntax-based compression [17–19]. In addition to that, there are
several approaches for processing the graph, ranging from tree-based [20] to context-free
grammar [21] techniques. However, none of the above approaches focus enough to reduce
the compression ratio, runtime, and redundancy of triple components. On the other hand,
to the best of our knowledge, very little research work has been carried out previously to
integrate the gRePair algorithm with the RDF compression algorithm for achieving better
compression in the RDF dataset.

Therefore, in this study, we propose a novel approach named grammar-based RDF
(gRDF) for efficiently compressing the RDF dataset by utilizing the gRePair [21] algo-
rithm, which is one of the best graph compression schemes. This paper is an extension of
our previous published work [22]. The key contributions of this paper are summarized
as follows.

• We improve the performance of HDT by introducing modified HDT (M-HDT) to
identify and hold predicates and graph patterns. It compresses the RDF dataset by
considering the redundancy of the data. Therefore, our proposed scheme can optimize
the use of memory space and reduce the loss of the data by employing a single-pass
operation in the RDF dataset.

http://www.bzip.org/
http://www.7-zip.org/
http://www.w3.org/TR/owl-features/
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• We employ the gRePair algorithm, which is one of the best graph compression schemes,
to the RDF dataset after indexing it by using our proposed M-HDT scheme in our
proposed gRDF scheme.

• We store the remaining graph in the k2-trees. In our proposed scheme, we develop
an efficient algorithm for k2-trees to achieve a more compressed RDF dataset with
reduced run time.

• Extensive experiments were carried out to validate the performance in terms of com-
pactness and processing efficiency.

The rest of the paper is organized as follows. Section 2 describes background informa-
tion and explains the overview of the existing approaches. We represent the architecture
of our proposed model and its associated features in Section 3. Then, Section 4 explains
the details of the experimental settings and provides the results of our comprehensive
evaluation. Finally, we conclude our investigation in Section 5 by summarizing our findings
and including the suggestions for future research.

2. Related Work

The World Wide Web (W3C) introduced the first standard of RDF in 2004. From
February 2014, we have been using the current version, RDF 1.1. It is employed to depict
semantic information and link the data. A set of triples are used to represent the RDF
data, where the subject is connected with the object via a predicate. We employ nodes
to represent the subjects and objects and edges to denote the predicates in a set of triples
for generating the graph structure of RDF. Therefore, the structure defined by the RDF
is a natural representation of a graph similar to the relationship of XML with trees. The
values for the subject, predicate, and object of an RDF graph are long strings, such as
URIs. As RDF graphs compress the semantic information of the dataset, most of the
existing approaches [6,23,24] use a dictionary to map the possible values into integer and
illustrate the graph by using a set of triples represented in integer format. This leads to two
different approaches for compressing the RDF dataset: syntactic compression and semantic
compression. Syntactic compression uses a compressed string dictionary to identify and
remove the symbolic redundancy from the RDF graph. HDT [7] is the pioneer scheme in
this family that efficiently encodes the underlying graph to the header (description of the
metadata in a dataset), dictionary (maps the value of the triple into ID), and triples (encode
the RDF graph). The header is used for the processing and the discovery of the dataset.
On the other hand, the dictionary employs a prefix tree to reduce the space for storing the
URIs. This scheme at first groups the triple by the subject and then by using the predicate
which is denoted by using the bit sets and the arrays of ID. Ref. [7] employs a predicate
family that combines the frequently occurring predicates and extends HDT to HDT++ [18].
HDT++ stores the predicates’ family ID including the object ID instead of the predicate ID
of each triple. It achieves better compression than HDT for the highly structured dataset.
Another scheme, known as k2-triple, uses a separate adjacency matrix for representing
each predicate in the graph structure of the RDF dataset during RDF compression [9,23].
It employs k2-trees to store the triples for handling the large RDF graphs by using an
in-memory store of data. These techniques are considered the best RDF compressor in the
current state-of-the-art RDF compression scheme [25]. Another RDF compression approach
named RDF-TR (RDF-triples re-organizer) identifies and removes the structural regularities
in an RDF dataset to underpin the nature, which is schema relaxed, of the RDF dataset [8].
It groups the subjects having the same predicates and recodes those predicate-related
objects. In addition to that, it accommodates HDT and k2-trees during the compression of
RDF datasets. The RDFCSA [26] and OFR [27] are the most recent physical compressor.
RDFCSA speeds up the data extraction process but it needs large space. Therefore, it does
not perform better for RDF compression. Then, it uses compressed suffix array (CSA) to
improve the performance [28]. Though it can compete with HDT in the case of effectiveness,
it cannot achieve the compression ratio similar to k2-triples. On the other hand, OFR mainly
concentrates on reducing the storage space, while it does not consider the retrieval of triples.
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It isolates the triples into six sub-dictionaries, in which, at first, the dictionary is partitioned
by subject, predicate, and object. Then, it creates the dictionaries to occupy each distinct
class of triples. These dictionaries are delta- and run-length-compressed [29]. The triples are
ordered by run-length and (O, S) values. They use delta compression to handle multiple
objects. In the case of consecutive subjects, they employ non-decreasing order. In the
second stage of compression, the triples and the dictionaries are again compressed. They
use zip and 7zip to eliminate all the remained redundancy after employing the OFR scheme.
Compression achieved by OFR incorporated with zip and 7zip outperforms HDT+zip and
HDT+7zip. However, this achievement is not enough to compare whether a standalone
OFR scheme can improve the performance of HDT.

On the other hand, semantic compression replaces the redundant parts of the graph
for reducing the number of triples during compression. Ref. [21] proposes the gRePair
algorithm, which is the extension of the RePair algorithm, to reduce the graph based on
grammar. It creates the grammar according to the relationship in the graph and alters the
original graph based on the rules of equivalent grammar by another graph. If there is a large
number of redundancies in the object–predicate and subject–predicate pair relationships,
and there are very few predicates in the graph, then the gRePair algorithm is more efficient.
The performance of this algorithm has been compared with the K2-trees method, and
gRePair achieves 10 times better compression with respect to the K2-trees method in a
graph having one rdf:type predicate. To the best of our knowledge, no evaluation has been
performed previously using a complete large real-world dataset with many predicates.
However, [10,30] uses the concept of lean subgraph, which maps the redundant blank
nodes into labels that are already present in the graph or other blank nodes. The rules,
constraints, and queries are analyzed in [31] for minimizing the graph but do not include
any practical results. Though [11] concludes that this scheme is not suitable for compressing
the growing RDF dataset, on the contrary, [32] alters the redundant graph patterns by triples
having newly constructed predicates and grammar that consists of rules which will be
used for decompression. The rule-based compression method proposed by [11] employs
the mining scheme to detect the frequent patterns that are then employed similar to the
generative rules for deleting all the triples. However, there is no significant improvement in
compression ratio by itself, and this compressor must be accompanied by HDT to achieve
better performance. Furthermore, for capturing more semantic association in the RDF
dataset, [12,33] employs more expressive rules to mine frequent patterns based on Horn
rules. This compression scheme outperforms [11] in terms of compression ratio. Another
rule-based compression scheme proposed by [34] employs OWL2RL for removing the
redundant triples. To detect redundant subgraph patterns, it analyzes the entities of the
subject–object. The compression ratio is not provided in this manuscript but they mentioned
that their scheme identifies approximately 32.77% redundant triples.

3. Materials and Methods

We employ gRePair algorithm for compressing the RDF dataset after indexing it by
using our proposed modified HDT scheme in our proposed gRDF scheme. There are
four steps in our system which are shown in Figure 1. In the first step, our gRDF scheme
loads the RDF dataset into the memory. Then, the system indexes all the nodes and edges
by using modified HDT (M-HDT). In the second step, we employ gRePair algorithm to
generate grammar from the indexed RDF dataset. We build the k2-trees after employing
the gRePair algorithm in our proposed system. In the final step, the system will serialize
the graph in a sequence of k2-trees. Our system serializes each tree by using the edge labels
ID. These steps are explained in more detail in the following.
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M-HDT

(Indexing)
gRePair 

Serialization
k2-trees

(Create trees)

RDF dataset 

Compressed 

RDF dataset

Figure 1. The proposed system architecture.

3.1. M-HDT

HDT modularizes the data and utilizes the skewed nature of big RDF graphs [35,36]
to reduce redundancy and accomplish large space savings. It has three main components;
header, dictionary, and triple. Header stores the metadata of the RDF dataset and acts as an
entry point of the datasets’ information to process and retrieve the conferred RDF graph
according to the machine-readable and processable format. The dictionary arranges all
the RDF terms (URI, blank nodes, and literals) into a catalog for providing a high level of
compression in the RDF graph. There are three subsets of the elements (subject, S, predicate,
P, object, O) in the RDF graph, represented as follows. Common subject–object is depicted
as the set SO and mapped to [1, |SO|], non-common subject is denoted as S − SO and
mapped to [|SO|+ 1, |S|], the non-common object is represented as O− SO and mapped
to [|SO|+ 1, O], and predicate is denoted as P and mapped to [1, |P|]. However, the triple
encodes the RDF graph compactly into a set of triples and reduces the noise due to the
repetitions and long labels. It encodes the RDF triples into three IDs for the corresponding
subject, predicate, and object terms represented in the dictionary.

Figure 2 shows an example of the dictionary and triples of HDT for the KDBC dataset.
In this figure, the dictionary is created based on the RDF graph of the KDBC dataset and its
associated triples. After that, the triples are encoded according to the triple components
defined in the dictionary. Therefore, the HDT dictionary supports faster lookup and
there is no possibility of ambiguity. However, there are some possibilities of redundancy
such as structural regularities in the RDF graph of the dataset. In this study, we have
modified the HDT to discover the frequent pattern by using our proposed M-HDT structure-
oriented approach.

We use vector addition and subtraction for defining the operation of differential
encoding in M-HDT. We employ this operation for two graphs to reduce the transmitted
elements during compression and extract the hidden elements during decompression. We
have used negative differential operation during compression and positive differential
operation during decompression. Both negative and positive differential operation need
two input vectors, X = (x1, . . . , xi, . . . , xn) and Y = (y1, . . . , yi, . . . , yn), where xi and
yi represent the subject and object, respectively. These two vectors then return vector Z.
Figure 3 represents the architecture of the M-HDT for detecting the frequent pattern to
reduce the structural similarities.

• Negative differential operation. It keeps the elements of A by replacing the elements
that are similar to B. These similar elements are represented by the empty string by
using the following equation:

Z = A− B = (z1, . . . , zi, . . . , zn) (1)

where

Γi ∈ [1, n], zi =

{
“ ” if (Ai = Bi)

Ai else

Thus, if A = (1, 5, 8) and B = (3, 5, 9) then Z = A− B = (1, “ ”, 8).
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• Positive differential operation. It keeps the elements of A that are not empty. In other
cases, it returns the elements having similar indexes to A from B. The mathematical
representation of the positive differential operation is depicted as follows:

Z = A + B = (Z1, . . . , Zi, . . . , Zn) (2)

where

Γi ∈ [1, n], Zi =

{
“ ” if (Ai 6= “ ”)
Ai else

For example, A = (5, “ ”, “ ”) and B = (4, 2, 3) then Z = (A + B) = (5, 2, 3).
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We use the hash table to represent the differential encoding for detecting a frequent
pattern in M-HDT. It stores the list of subjects and objects of each graph where the summa-
tion of subject and object value (SSOV) is the key. For each subject of the triple, we create
the SSOV by adding the subject and object. This value replaces the predicates and returns
the graph structure in a compressed format named modified RDF representation (MRR),
depicted as < SSOV, {subject, object1, object2, . . .} >. After generating the MRR, the sys-
tem finds whether the pattern has already been present in the other graph or not. A similar
graph pattern can be identified by using the following definition. Let G = g1, g2, . . . , gn
be the set of graphs in the KDBC dataset, Gp = {pi ∈ P|i ≤ n} be a subset of P, and
Gi ∈ KDBC be the graph in the dataset. Thus, Gp is a graph pattern of Gi if and only if

∃pi(∈ Gp → pi ∈ Gi) (3)

Here, n is the number of nodes in a graph. According to the Gp graph pattern, each
Gi RDF graph is generated. Therefore, if there exists a similar graph pattern previously
according to Equation (3), we employ the differential encoding operation. Thus, the system
becomes lighter by altering all the redundant values into empty strings and the hash table
is updated. Then, we construct the compressed RDF graph. The algorithm of M-HDT
is depicted in Algorithm 1. For better understanding, we employ our proposed M-HDT
scheme in the KDBC dataset, which is shown in Figure 4.
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Figure 4. An example of the M-HDT.

Algorithm 1: M-HDT algorithm
Input: RDFTriple(T)
Output: CompressedHashTable(CHT)

1: CHT (graphPattern(GP), Objectlist)
2: foreach Graph ∈ T
3: GP. construct
4: GraphN← GBV + Graph. subject + Graph. objects
5: if GP ∈ CHT then
6: PreviuosGraph← CHT. get (GP)
7: CHT. put (GP, GraphN)
8: GraphN← GraphN-PreviousGraph
9: else

10: HT. put (GP, GraphN)
11: end if
12: return GraphN

In Figure 4, at first the subjects are placed. Then, we store the mapped RDF data where
the subjects of all the triples are represented by the Subject∗. The representation format of
the mapped RDF data is < (Subject∗, Predicate, Object), . . . >. In the graph structure, the
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predicates are depicted in bold letters. Then, SSOV is employed. After that, the MRR is
used to encode the RDF graph. For example, the triples having subject 4 can be represented
as (16, 4∗, 3, 5, 4) by replacing the triples ((4∗, 1, 3), (4∗, 4, 5), (4∗, 5, 4)) following the
MRR. Finally, the differential encoding operation is employed that uses positive or negative
differential operation. For example, our proposed system reduces the triples having subject
5 to (16, 5∗, 5, 2, ) by applying negative differential operation. It removes object 4 from
the triples having subject 5 as it is already present in the triples having subject 4 and they
both have the same SSOV (16). The evaluation of the differential encoding operation is
depicted in the hash table shown in Figure 4.

3.2. gRePair

An RDF graph is a directed graph that can be represented by using a tuple,
RDFG = (N, E, γ) where N = {n1, n2, . . . , nm} represents the set of all nodes, E de-
notes the edges, and γ : E → P depicts the mapping of the edge label. Our system uses
gRePair algorithm proposed by [21] to create grammar, Gr, from the indexed RDFG. We
can define grammar as Gr = (Ds, Da) where Ds denotes the start graph which extends
the mapping of the edge label, γ′ : E → P ∪ Da and Da defines the diagram sets that
are employed to compress the RDF graph. On the other hand, a diagram is depicted as
da = (ai, aj), where ai and aj represent two edge nodes that share at least one node. There-
fore, each diagram is connected with three nodes. The nodes can be internal or external.
An internal node is any node of a tree having child nodes. However, a node is called the
external node if it occupies at least one edge node which does not exist in that diagram. We
have used 33 various shapes of the diagrams in our system. Some examples are given in
Figure 5.

External node Internal node

Figure 5. Different shapes of the diagram.

Our system uses the following steps shown in Figure 6 to employ the gRePair algo-
rithm. For employing the gRePair algorithm, our proposed gRDF scheme at first iterates all
the vertices of the RDF dataset. A diagram is considered a potential diagram if all the edge
pairs are connected to a vertex. In the second step of the gRePair algorithm, our system
sorts the diagram which appears at least twice in a descending order based on the priority
queue. In the third step, the system will try to determine the most frequent diagram and
remove it from the queue. The frequent diagrams within the graph are replaced by the
non-terminal edges which are later added to the list for further serialization in the fourth
step. As new edges are introduced, a new diagram may also generate. The vertices are
searched to identify the new diagram only when it is connected with at least one newly
introduced non-terminal edge. If a new diagram is identified, it will insert into the queue
and repeat the process from step two as the queue is not empty. The algorithm of gRePair
for the replacement of the occurrences is shown in Algorithm 2. An example of gRePair
algorithm is represented in Figure 7.



Sensors 2022, 22, 2545 9 of 17

Scan initial diagram

Sort the diagram

Replace all occurrences

Find most frequent diagram

Indexed RDF dataset

Create 

Grammar

Search new 

diagram

Yes
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Figure 6. Steps of gRePair algorithm.

x x
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y
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X X X

X X XA=

X
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x y

replace 

diagram

(a) (b)

Figure 7. Example of gRePair algorithm. (a) Diagram replacement and (b) Grammar after the
replacement of the diagram.

Algorithm 2: Replacement of the occurrences in the gRePair algorithm
Input: RDFG = (N, E, γ)
Output: Gr

1: I(da)← Index of all the occurrences that are not overlapped for each diagram,
da in RDFG

2: while |I(da) > 1| do
3: Select a diagram that is most frequent, M f
4: Replace each occurrence at I(M f ) by a new edge in Ds
5: Occurrence list update
6: end while
7: returnGr

In this example, we considered one edge-labeled graph at the left side of Figure 7a,
in which we will identify a diagram having at least one common node. There are three
occurrences of the diagram in that graph which have one x and y edge. Moreover, it also
has another three occurrences which have two x and y edges, but these occurrences are
overlapped. However, in that diagram, there should be, at most, one occurrence that is not
overlapped. Therefore, we use a non-terminal edge label as X to alter every occurrence of
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the x/y diagram which is shown at the right side of Figure 7a. The grammar of this graph
is represented in Figure 7b.

3.3. k2-Trees

A start graph, Ds, and the set of all diagrams, Ddiagram, are created from the grammar
produced by the gRePair algorithm. In Sstart, for each label of edge, our system creates an
adjacency matrix according to [21]. The dimension of the matrix is |N| × |N| and the cell of
the matrix is the edges between the row (subject) and column (object) indexes. If there is
an edge label between the subject and the object that exists, then our system assigns 1 for
denoting that cell. The generated matrix is generally sparse. Our system generates the k2-
trees [23] from these matrices. k2-trees compress the dictionary similar to the HDT scheme.
They partitions the predicates of RDF datasets vertically and create the disjoint subsets for
the pair of subject–object. After that, these subsets are compressed highly because they use
binary matrices (i.e., if the corresponding triple presents in the RDF dataset, it is marked
by 1). Figure 8 denotes the resulting k2-trees for an RDF graph and its serialization. It is
an 8× 8 matrix whose two right-most columns and two bottom-most rows are occupied
by zeroes for reaching the needed matrix sizes, though they are not used to encode the
current vertex. From the matrix, the conceptual tree and its serialization are created, and
are located in the right side and the bottom of the tree (Figure 8). Before merging with other
paths of the matrix, each path from the root to the leaves is created individually.

0 1 1 0

0 0 0 1

0 1 0 1

0 0 0 0

1 1 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0 1111 1111 0010 1000 1000 0100 1010 0100 0100 1011 0010 0010

0

1 1 1 1

1

10 010

0

00 1 0001

1

11 0

01

1

000 0 00 0 1 01 0 0 1 0 111 0 0 0 01

1

2

Figure 8. An example of the matrix encoding of a k2-tree (1) and its serialization (2).

In our proposed system, we have modified the traditional k2-trees algorithm and
employed a more efficient algorithm during recursion. Our proposed algorithm at first
iterates all the cells which have 1 value in a matrix. The path in k2-trees is created for each
of these iterated cells according to Algorithm 3. At first, the system resizes the matrix
into 2m × 2m where 2m ≥ |N|. We use zero to fill the included rows and columns. If the
dimension of a matrix is 2m × 2m, then this matrix can be divided into four equal-sized
(2m−1 × 2m−1) sub-matrices, which is called a quadrant. These quadrants are denoted
as follows:

• First quadrant: (0, 0) to
(
2m−1 − 1, 2m−1 − 1

)
.

• Second quadrant:
(
0, 2m−1) to

(
2m−1 − 1, 2m).

• Third quadrant:
(
2m−1, 0

)
to
(
2m, 2m−1 − 1

)
.

• Fourth quadrant:
(
2m−1, 2m−1) to (2m, 2m).

The algorithm identifies those cells’ quadrant and includes a child node to the path
before decreasing the size of the quadrant in a complete matrix. After that, our proposed
Algorithm 3 is used to merge all the created paths. Then, the map denotes the k2-trees that
will be optimized during serialization.
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Algorithm 3: Path creation and merging algorithm of k2-trees
Input: Matrix N, int m, k
Output: list of paths

1: a1 = 0, b1 = 0, a2 = 2m, b2 = 2m

2: root= new TreeNode()
3: presentNode = root
4: for Point x: N.getPoints() do
5: Q = getQuadrant(x, a1, b1, a2, b2)
6: C = new TreeNode()
7: presentNode.set(Q,C)
8: presentNode = C
9: shrinkBoundaries(a1, b1, a2, b2, Q)

10: Map(int,Treenode) = map
11: if m == k OR Treenode == null then
12: return
13: for C:Treenode.getC() do
14: map.get(k).add(C)
15: for C:Treenode.getC() do
16: merge(C, map, k + 1, m)
17: return map

3.4. Serialization

Our system serializes the start graph and diagram to serialize the grammar as follows.

• Start graph. Our system serializes the start graph according to the sequence of k2-
trees. Every tree is preceded by its edge label ID (4 bytes). One bit is used to represent
each tree node. Therefore, the system serializes the tree from the root to the leaf
according to the sequence of bits denoted by its nodes. If there is an uneven number
of nodes present in the tree, the system uses zero to pad the last byte. An example
of serialization is shown in Figure 8, where we can use only 6 bytes to store the
whole tree.

• Diagram. Our system serializes the diagram to reduce the size of the graph according
to Figure 9. It consists of two indexes of edge labels. The IDs of the edge label denote
the diagrams or properties ID that correspond to that edge label. For employing in
the single internal node IDs and decoding the bytes number, our system uses two bits
for the size flag. However, the diagrams shape ID is stored into the shape ID which
consists of 6 bits. The diagrams shape can be one of the shapes among 33 different
shapes. Moreover, the IDs of the internal nodes that occur in the diagram are stored in
the internal node of Figure 9. The diagrams’ occurrence IDs are sorted according to the
external node IDs. In addition to that, the mapping of the individual occurrences of the
diagram and the internal nodes are implicitly sorted without occupying further space.

4 bits 8 bits 12 bits 16 bits

Index1: Edge Label 

Index2: Edge Label 

Size Shape ID

Internal Node: {Internal Index1 (Internal Index2)},…

Figure 9. Serialization of the diagram where each row occupies 16 bits.

3.5. Decompression

During decompression, our system at first loads the dictionary. Then, the RDF triple is
generated after loading all the k2-trees of every terminal edge. After that, all the diagrams
are iterated reversely. The non-terminal edges are ordered according to their connected
vertices IDs. A single non-terminal is altered by the internal nodes and two edges according
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to this order. The internal nodes are interpreted in the accurate order as the non-terminal
edges are ordered similar to the serialization. The created terminal edges are immediately
transformed into the RDF graph according to the two edge labels contained in a diagram.
The generated non-terminals are included in their diagrams list.

4. Discussion

We evaluated our proposed system performance by employing the prototype in Java
on Linux OS (Ubuntu 20.04.3) consisting of Intel core i5-4690, 3.50 GHz, and 64 GB RAM.
We used LUBM benchmark datasets (http://swat.cse.lehigh.edu/projects/lubm/, accessed
on 23 March 2022) and two real-world publicly available datasets named ArchivesHub
(http://data.archiveshub.ac.uk/, accessed on 23 March 2022) and ScholarlyData (https:
//old.datahub.io/dataset/scholarlydata/, accessed on 23 March 2022) to analyze the
performance of our proposed scheme. For LUBM 1 and LUBM 10 datasets, the number of
files we employed were 15 and 189, and for ArchivesHub and ScholarlyData datasets, the
number of files we employed were 250 and 283 during the experiment.

For evaluating the performance of our proposed scheme, we measured the compres-
sion ratio, compression time, decompression time, and dictionary size by using HDT,
HDT++, k2-trees, HDT-TR, gRePair, and our proposed gRDF schemes. Our experiments
considered heterogeneous linked open RDF datasets of various sizes. Table 1 shows the
statistical description of the datasets that we used during our experimental analysis. The
Lehigh University Benchmark (LUBM) dataset features the ontology of the university
domain where all the entities of a university, such as students, professors, and courses,
are depicted in the triple format. On the other hand, the ArchivesHub dataset consists
of the archived data of UK institutions, and ScholarlyData comprises the dataset of the
semantic web community for people, papers, organizations, and events concerned with the
academic conferences.

Table 1. Dataset statistics.

Name Triples Resources Classes

LUBM 1 100545 17209 15

LUBM 10 1272577 207461 15

ArchivesHub 1361815 135643 46

ScholarlyData 859840 95016 46

• Compactness Results. We compared the performance of our proposed system with
the existing HDT [7], HDT++ [18], k2-trees [9], RDF-TR [8], and gRePair [21] tech-
niques for compact RDF serialization to analyze the efficiency of our proposed system.
Figure 10 shows the compression ratio for different datasets compressed by the ex-
isting state-of-the-art techniques and our proposed system. The compression ratio
measures the ratio of the number of triples that remain in the dataset after compres-
sion to the total number of triples. Therefore, a lower compression ratio indicates
better performance. The figure proves that our proposed system achieves a better
compression ratio than the other techniques. For example, our proposed system
has achieved approximately 36.42%, 12.45%, 8.71%, 4.98%, and 32.31%; and 26.12%,
13.68%, 6.81%, 2.38%, and 12.76% better compression ratio than the existing HDT,
HDT++, k2-trees, RDF-TR, and gRePair schemes in the case of LUBM datasets and
real-world datasets, respectively (Figure 10a). On the other hand, our system has
approximately 30.23%, 9.09%, 4.76%, 3.84%, and 29.41% better compression ratio
when using LUBM 1 dataset and 42.92%, 16.42%, 13.33%, 6.4%, and 35.71% better
compression ratio when using LUBM 10 dataset than the existing HDT, HDT++, k2-
trees, RDF-TR, and gRePair schemes (Figure 10a). In addition to that, our system also
has approximately 25.35%, 15.87%, 5.35%, 1.85%, and 14.51% better compression ratio

http://swat.cse.lehigh.edu/projects/lubm/
http://data.archiveshub.ac.uk/
https://old.datahub.io/dataset/scholarlydata/
https://old.datahub.io/dataset/scholarlydata/
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when using ArchivesHub dataset and 27.5%, 9.37%, 8.98%, 3.33%, and 9.12% better
compression ratio when using ScholarlyData dataset than the existing HDT, HDT++,
k2-trees, RDF-TR, and gRePair schemes (Figure 10b). This is because our proposed
system can discover and remove the structural redundancies of the datasets before
compressing the dataset efficiently. In addition to that, the hash table in the M-HDT
can detect, hold predicates, and graph patterns to optimize the memory space usages.
On the other hand, we have received the same dataset size after decompression by
using our proposed scheme; this means that our proposed gRDF scheme does not lose
any data during compression. Furthermore, we have also analyzed the percentage of
gain in the compression ratios provided by our proposed gRDF scheme with respect to
the best performing exiting scheme for various datasets [37]. From Figure 10, we have
come to know that the RDF-TR scheme performs better among the existing schemes
for all the experimented datasets. Therefore, our proposed gRDF scheme outperforms
RDF-TR. After analyzing Figure 10a, we can conclude that for LUBM 1 and LUBM 10
datasets, our proposed scheme has achieved 3.84% and 6.4% gain. On the other hand,
our proposed gRDF scheme has achieved 1.85% and 3.33% gain for ArchivesHub and
ScholarlyData datasets, which is evaluated from Figure 10b.
Then, we measured the space required to store the compressed dictionary in terms of
the total size of the compressed dataset, which is shown in Figure 11. The dictionary
replaces long terms of the RDF triples to the short IDs along with their references. It
enormously compresses the RDF datasets as well as elevates the issues of scalability.
From this figure, we can observe that most of the space used by the compared state-
of-the-art techniques and our proposed scheme is consumed by the dictionary. The
less the space used by the dictionary leads, the better the compression ratio. From
this figure, we can observe that our proposed system can use the dictionary much
better than others. For example, the average size of the dictionary of our proposed
scheme in terms of all the real-world datasets is at approximately 75%, which is much
better than other schemes (Figure 11b). Moreover, the average dictionary size of
our system is approximately 1.29%, 6.17%, 14.60%, 9.52%, and 5.00%; 2.00%, 6.96%,
13.52%, 10.36%, and 9.25% better than the existing HDT, HDT++, k2-trees, RDF-TR, and
gRePair schemes in terms of ArchivesHub and ScholarlyData dataset (Figure 11b). In
addition to that, the average dictionary size of our proposed system is approximately
4.80%, 29.28%, 34.00%, 32.19%, and 11.60%; 9.75%, 36.20%, 41.26%, 38.33%, and 21.27%
better than the existing HDT, HDT++, k2-trees, RDF-TR, and gRePair schemes in
terms of LUBM 1 and LUBM 10 dataset (Figure 11a). This is because our proposed
M-HDT can store the hash table in a compressed form by removing the frequent
patterns of the RDF dataset. Moreover, the triples in the RDF can be represented in the
star pattern and trees which are compressed well by using gRePair because during
the replacement of the occurrences, it reduces the edge number in half. This saves
processing resources and enables larger size dictionaries to be managed in a fixed main
memory. However, we have also analyzed the percentage of gain in the dictionary
size achieved by the proposed gRDF scheme in terms of best performing existing
scheme among various datasets. Therefore, after analyzing Figure 11, we have come to
know that the dictionary of HDT uses much less space among other existing schemes.
However, the gain of our proposed scheme is 4.80% and 9.75% for LUBM 1 and LUBM
10; and 1.29% and 2% for ArchivesHub and ScholarlyData datasets (Figure 11a,b).

• Processing efficiency. We have analyzed the compression and decompression time of
our proposed scheme in terms of the various datasets and compared the performance
with respect to the state-of-the-art techniques. From Figures 12 and 13, we can observe
that our proposed gRDF scheme has better compression and decompression time than
the other state-of-the-art schemes. This is because of the better dealing capacity for
the redundant structure of the dataset as well as the use of simple data structure for
identifying and building graph patterns. Moreover, gRePair has the capability to exe-
cute the finite automata without prior decompression in one pass by using a speed-up
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algorithm [21]. For example, our proposed gRDF scheme compressed the real-world
datasets at approximately 4.51%, 17.77%, 51.31%, 37.02%, and 57.83% times faster
than the existing HDT, HDT++, k2-trees, RDF-TR, and gRePair schemes, respectively
(Figure 12b). Moreover, it decompressed the real-world datasets at approximately
5.68%, 13.54%, 30.83%, 23.14%, and 55.28% times faster than the existing HDT, HDT++,
k2-trees, RDF-TR, and gRePair schemes, respectively (Figure 13b). On the other hand,
after observing Figures 12 and 13, we can observe that the difference between the
compression and decompression time of our proposed scheme is larger than the other
existing schemes when using the LUBM 1 dataset. In future work, we will try to
resolve this issue.
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Figure 10. Compression ratio measured by various compression schemes of (a) LUBM and (b) real-
world datasets.
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Figure 11. Analysis of dictionary size measured by various compression schemes of (a) LUBM and
(b) real-world datasets.
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Figure 12. Compression time in logarithmic scale measured by various compression schemes of
(a) LUBM and (b) real-world datasets.
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Figure 13. Decompression time in logarithmic scale measured by various compression schemes of
(a) LUBM and (b) real-world datasets.

5. Conclusions

The exponential growth of semantic web contents and the flexible paradigm of RDF
demands compression to efficiently manage and reduce the size of RDF datasets. There
are several approaches for compressing the RDF datasets; however, most of the existing
approaches do not perform well in all dimensions, such as better compression ratio and
runtime. In this study, we introduce a novel gRDF scheme for compressing the RDF dataset
more efficiently with better runtime. We introduce M-HDT to index all the edges and
node labels within the graph, which improves the performance of HDT by identifying
the regularities and redundancies of the RDF datasets while taking the benefit of datasets
structure where the same types of subjects are denoted via a similar set of properties, and the
range of their values are little overlapped. We employ one of the most effective grammar-
based graph compression gRePair algorithms to create grammar from the indexed RDF
datasets. Moreover, we improve the performance of the traditional k2-trees by introducing
a more efficient algorithm for path creation and merging to create the trees. Our system
then serializes each tree by using the edge labels ID. We use one bit to depict the node of
the tree. Therefore, our system serializes the nodes from top to bottom in a sequence of
bits. The performance of our proposed system has been evaluated on real-world datasets
and compared with HDT and other state-of-art schemes. Simulation results affirm that
our proposed system outperforms the other existing schemes for compactness as well as
processing efficiencies. There are some limitations of our proposed gRDF scheme. For
example, from the experimental analysis of the dictionary size for various datasets, we
have come to know that the average size of the dictionary for the LUBM and the real-world
datasets are approximately more than 37% and 75%. Therefore, if we reduce the size of
the dictionary, we can achieve better compression. On the other hand, in this research, the
query execution on the compressed graph is out of scope. In the future, we are planning
to use embedding techniques during compression, because the embedding technique
will represent the nodes and edges of the RDF graph in low-dimensional vector while
maintaining the semantic properties and topological features. Therefore, the obtained
vector will be task-independent so that it can be reused for other applications. Moreover,
we will also focus on overcoming the limitation of our proposed scheme.
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