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ABSTRACT

Gene Set Context Analysis (GSCA) is an open source
software package to help researchers use massive
amounts of publicly available gene expression data
(PED) to make discoveries. Users can interactively
visualize and explore gene and gene set activities in
25,000+ consistently normalized human and mouse
gene expression samples representing diverse bio-
logical contexts (e.g. different cells, tissues and dis-
ease types, etc.). By providing one or multiple genes
or gene sets as input and specifying a gene set ac-
tivity pattern of interest, users can query the expres-
sion compendium to systematically identify biologi-
cal contexts associated with the specified gene set
activity pattern. In this way, researchers with new
gene sets from their own experiments may discover
previously unknown contexts of gene set functions
and hence increase the value of their experiments.
GSCA has a graphical user interface (GUI). The GUI
makes the analysis convenient and customizable.
Analysis results can be conveniently exported as
publication quality figures and tables. GSCA is avail-
able at https://github.com/zji90/GSCA. This software
significantly lowers the bar for biomedical investiga-
tors to use PED in their daily research for generating
and screening hypotheses, which was previously dif-
ficult because of the complexity, heterogeneity and
size of the data.

INTRODUCTION

Publicly available gene expression data (PED) are an invalu-
able resource for biomedical research. There are currently
over 1,000,000 microarray and high-throughput sequenc-
ing samples stored in public databases such as the Gene Ex-
pression Omnibus (GEO) (1) and ArrayExpress (2). These

include at least 200,000+ gene expression samples. These
databases, which are continuing to quickly expand, contain
vast amounts of information that have yet to be fully uti-
lized. For instance, microarray data generated by one inves-
tigator for studying pathway A may also contain informa-
tion about pathway B. This information may not be used by
the original investigator for his/her study of pathway A, but
it can be useful for other people who want to study pathway
B (Figure 1A).

A unique feature of PED is that it contains samples con-
tributed by scientists worldwide, covering a wide variety of
biological contexts including different cells, tissues and dis-
ease types, different developmental time points and differ-
ent stimuli, etc. Thus, if there is a convenient way to reuse
the data, one will be able to systematically examine gene or
pathway’s activities in a broad spectrum of biological con-
texts, which would not be possible if an investigator had
to rely on him- or herself to generate all the data. How-
ever, several obstacles impede the usage of PED for data
mining, including data normalization, annotation, visual-
ization and retrieval. In addition, it is technically challeng-
ing to meaningfully analyze the data and turn them into
useful knowledge. Unfortunately, none of these are trivial
given the complexity, heterogeneity and size of the data. To
help researchers effectively use PED in their daily research,
we developed Gene Set Context Analysis (GSCA) to allow
them to conveniently explore gene and gene set activities in
a large collection of normalized and annotated GEO mi-
croarray samples and to systematically link gene set activi-
ties to biological contexts.

GSCA is constructed based on 25,000+ human and
mouse samples representing 1000+ different biological con-
texts. By providing one or multiple genes or gene sets as
input, users can interactively examine their transcriptional
activities in these samples. Users can also specify a gene set
activity pattern of interest (POI) and query the expression
compendium to systematically identify biological contexts
associated with the specified pattern (Figure 1B). This anal-
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Figure 1. Gene Set Context Analysis. (A) Data generated by one investigator for studying one pathway (blue triangle) may also contain information
about other pathways (red circles). This information has not been fully utilized so far. (B) GSCA takes one or more gene sets as input. Users specify a
combinatorial expression pattern of interest (POI) of these gene sets. GSCA then searches a large compendium of publicly available gene expression data
and identifies all enriched biological contexts associated with the POI. (C) Comparison between GSCA and GSEA. GSEA analyzes thousands of gene
sets sequentially in one data set, while GSCA analyzes one or multiple gene sets across massive amounts of samples from many data sets.

ysis allows one to answer questions such as ‘which diseases
are associated with high activity of pathway A, low activ-
ity of pathway B and medium activity of pathway C’. It can
help researchers with new gene sets (e.g. gene sets obtained
from a high-throughput experiment) to quickly extend their
discoveries via finding previously unknown biological con-
texts of gene set functions. GSCA has a graphical user in-
terface (GUI). Using the GUI, users can conveniently vi-

sualize the data, customize the analyses, and save analysis
results and plots for publications.

GSCA is conjugated to Gene Set Enrichment Analysis
(GSEA, Figure 1C) (3). GSEA is designed to analyze asso-
ciation between gene sets and biological signals in one data
set. For example, given a microarray data set, GSEA can an-
alyze thousands of gene sets one-by-one to identify which
gene sets are enriched in differentially expressed genes in
that data set. Unlike GSEA, GSCA analyzes expression lev-
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els of one or multiple gene sets in massive amounts of sam-
ples from thousands of data sets. The analysis aims to sys-
tematically identify biological contexts in which the input
gene sets show user-specified expression patterns.

GSCA can be viewed as a generalization of ChIP-PED, a
method we devised to support the analysis of genome-wide
chromatin immunoprecipitation (i.e. ChIP-seq and ChIP-
chip) data (4). ChIP-PED analyzes the expression of a tran-
scription factor (TF) and its target gene set in PED in order
to find the biological contexts associated with the TF func-
tion. It was originally motivated by our needs for character-
izing cMyc function (5). A limitation of ChIP-PED is that
it can only analyze a TF and a target gene set of the TF.
Thus, it represents a special case of GSCA with only two
input gene sets. One cannot use it to analyze other num-
ber and other types of gene sets. Moreover, ChIP-PED only
considers high or low expression and cannot analyze more
complex expression patterns. ChIP-PED does not have a
GUI. All analyses have to be performed by typing com-
mands via a keyboard which makes data exploration incon-
venient. This has greatly limited the use of ChIP-PED by
biologists. These limitations motivated the development of
GSCA which generalizes ChIP-PED by allowing one to an-
alyze any kind and any number of gene sets through a user-
friendly interface. The GUI allows one to interactively spec-
ify and analyze highly sophisticated expression patterns. It
also allows users to conveniently import gene sets and PED
compendia, visualize data, tune parameters, perform cross-
species analyses, and export analysis results and plots. As
we shall demonstrate below, these new functions are crucial
for effectively using the highly complex public expression
data.

Previously, a number of other methods and tools have
also been developed for using PED in different ways. For
example, PED has been used to build the gene expression
BARCODE for predicting tissue type of microarray sam-
ples (6), tools for predicting genes related to specific bio-
logical processes (7,8), phenome-genome network (9), func-
tional map of human genome (10), and tools for pheno-
typic profiling (11) and disease diagnosis (12). It has also
been used to study the global gene expression character-
istics in human (13) and improve transcription factor tar-
get gene prediction (14). Most of these tools, however, are
developed for purposes different from GSCA and do not
support query and analyses of expression levels of gene sets
and their association with biological contexts. The Expres-
sion Atlas (15) is a tool that allows users to query differ-
entially expressed genes in a large number of curated PED
data sets. It can also be used to query gene’s baseline ex-
pression in healthy or untreated conditions. However, unlike
GSCA, one cannot search the Expression Atlas using user-
specified gene set activity patterns (e.g. an arbitrary combi-
natorial expression pattern of multiple genes or gene sets)
and identify their associated biological contexts.

MATERIALS AND METHODS

Gene set context analysis

The primary aim of GSCA is to link gene set activities to bi-
ological contexts. Hereinafter, gene set is a general concept.
A single gene is viewed as a gene set with only one gene.

Currently, GSCA is constructed based on four compen-
dia of annotated PED samples compiled by the Gene Ex-
pression BARCODE project (16): a compendium of 11,778
samples from Affymetrix Human Genome U133A Array
(GPL96), a compendium of 5,153 samples from Affymetrix
Human Genome U133 Plus 2.0 Array (GPL570), a com-
pendium of 313 samples from Affymetrix Human Genome
U133A 2.0 Array (GPL571) and a compendium of 9,444
samples from Affymetrix Mouse Genome 430 2.0 Array
(GPL1261). Samples within each compendium are from the
same microarray platform. For each array platform, BAR-
CODE collected its samples from GEO and consistently
normalized them using frozen RMA (fRMA) (17). Gene
expression levels were then characterized using BARCODE
z-scores which were determined by modeling each gene’s ex-
pression values across all samples to adjust for probe effects
(16). Z-scores close to zero represent absent or low expres-
sion, whereas large z-scores correspond to high expression.
Previous studies have shown that after data are processed
using this protocol, the unwanted variation such as lab
and batch effects within each PED compendium usually is
smaller than the biological variation across diverse sample
types, making it feasible to meaningfully compare genes’ ex-
pression levels across heterogeneous samples (4,16). Note,
however, that expression values from different platforms are
not directly comparable. The biological contexts, defined
as samples’ cell or tissue types and associated treatment or
disease conditions, were derived from BARCODE annota-
tions as previously described (4,16) (Supplementary Ma-
terials). Each sample is associated with one context. Not
all samples have been annotated in BARCODE. The four
compendia above represent the annotated subset of BAR-
CODE 3.0 samples. These samples and annotations provide
a good coverage of major tissues and cell types in human
and mouse (Supplementary Materials, Supplementary Ta-
ble S1).

Consider S gene sets and a compendium of N normal-
ized gene expression samples. Suppose the samples are an-
notated with a total of C biological contexts. Let xgi denote
the expression level of gene g in sample i (i ∈ 1, ..., N). We
define the activity of gene set s (s ∈ 1, ..., S) in sample i,
ysi, as a weighted average of expression levels of individual
genes in the gene set:

ysi =
∑

g∈s wgxgi
∑

g∈s |wg| (1)

where ωgs are user-specified weights. If ωg = 1 for all g (de-
fault setting), the gene set activity is the mean expression
level of all genes in the gene set. Negative weights can be
used to handle genes whose expressions are expected to be
anti-correlated. For instance, for a gene set consisting of tar-
get genes of a TF, one can assign ωg = 1 to genes activated
by the TF and ωg = −1 to genes repressed by the TF. ysi
defined in this way does not measure the mean expression
level of target genes. However, it provides a measure that
can be used to compare the regulatory activities of the TF
across samples. As an example, consider a TF target gene
set s consisting of one positive (activated) target and one
negative (repressed) target. Suppose in sample i, the TF is
highly active, its positive target (ωg = 1) has high expression
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10, and its negative target (ωg = −1) has low expression −2.
Correspondingly, the target gene set activity ysi = [1 × 10 +
(−1) × (− 2)] / [|1| + |−1|] = 6. Suppose in another sample
k, the TF is expressed at low levels, its positive target is inac-
tive and has low expression 1, and its negative target is not
repressed and has high expression 9. As a result, the target
gene set activity ysk = [1 × 1 + (−1) × 9] / [|1| + |−1|] =
−4. Here, ysi > ysk is consistent with the fact that the TF is
more actively executing its regulatory role (i.e. activating its
positive target and repressing its negative target) in sample i
compared to sample k. This shows that the gene set activity
defined in this way can be used to compare the regulatory
activities of a TF across samples. By contrast, if one sets ωg
= 1 for both target genes, then ysi becomes the mean expres-
sion of target genes, which cannot reflect the TF’s regulatory
activity since ysi = (10 − 2) / 2 = 4, ysk = (1 + 9) / 2 = 5,
and ysi < ysk. A more concrete example to illustrate this is
provided in Supplementary Materials and Supplementary
Figure S1.

After gene set activities are defined, one can specify a gene
set activity POI. For instance, if one is interested in samples
with ‘high gene set 1 activity and low gene set 2 activity’, the
POI may be defined as ‘y1i > c1 and y2i < c2’ where c1 and
c2 are two user-chosen cutoffs. Complex POIs can be speci-
fied interactively using the GUI, or using formulas that de-
scribe relationships among different gene sets (see examples
below).

Once the POI is specified, GSCA will search the PED
compendium to find samples with the POI. It then evalu-
ates which biological contexts are significantly associated
with the POI. Each biological context can have multiple
samples. Suppose context c has nc samples, among which
kc have the POI. GSCA compares nc and kc with the total
number of compendium samples N and the total number
of samples with the POI K using a Fisher’s exact test to de-
termine whether context c is enriched in samples with the
POI. P-values from the C hypothesis tests are Bonferroni
corrected to adjust for multiple testing. For each context, a
POI fold change is computed as:

fc = (kc + K/N)/(nc + 1)
K/N

(2)

Biological contexts with adjusted P-value and fold change
passing a user-specified cutoff (adjusted P-value <0.05 and
fold change >1.5 by default) are reported.

Conceptually, GSCA is analogous to BLAST (18).
BLAST searches a sequence database based on sequence
similarity, whereas GSCA searches a gene expression
database to look for user-specified gene set activities. This
search can often lead to new discoveries. For instance, sup-
pose one obtained a new gene set from a costly experiment,
one can use GSCA to quickly discover previously unknown
relationship between the new gene set and diseases not sur-
veyed by the original experiment.

Software

GSCA is developed using the statistical programming lan-
guage R. The shiny package in R is used to develop the
GUI. The software and GUI provide a variety of functions
to support the five major steps of data analysis shown in

Figure 2. These include functions for uploading gene sets
or creating them using a keyboard, choosing PED com-
pendia or uploading users’ own compendia, defining POI
(either numerically by entering values or formulas using
a keyboard, or interactively by dragging a mouse on the
computer screen), displaying gene set activities using his-
tograms, scatter plots or heat maps, saving analysis param-
eters and results, exporting plots into publication quality
images, and numerous utility functions such as converting
gene sets between species to support cross-species analyses.
These functions will be explained and demonstrated in de-
tail below through examples. GSCA can be run on Win-
dows, Linux and Mac operating systems. Information on
how to install GSCA is provided in Supplementary Materi-
als.

RESULTS

Example I: demonstration of GSCA using two gene sets

We first demonstrate the software in detail using an analysis
of MYC and its target genes (Figure 3). MYC is a transcrip-
tion factor involved in ∼30% of human tumors. Previously,
Ji et al. identified a core set of 51 target genes of human
MYC by analyzing gene expression, ChIP-chip and ChIP-
seq data from embryonic stem cells and several cancer cell
lines (5). Ji et al. speculated that these genes may provide a
signature for MYC TF activity, and they used this signature
to search for diseases where MYC may play a functional
role. Here we illustrate how this analysis can be done using
the GSCA software.

Step 1: input gene set. First, choose ‘Input Gene Set’ in
the main menu (Figure 2). The input for this analysis con-
sists of two gene sets: one is MYC and the other one is
its target genes. According to Ji et al., the 51 target genes
are all activated by MYC, therefore all weights are set to
ωg = 1. We saved the input gene sets (specified using EN-
TREZ Gene Identifiers (IDs)) and weights into a single
text file (Supplementary Table S2). This file can be directly
loaded into GSCA via ‘Upload Gene Set File’ function
(Figure 3A). The input file can contain multiple gene sets,
and the weights can be any positive or negative numbers and
are not required to be integers. Users can analyze their own
gene sets by preparing input files following the same format
of Supplementary Table S2.

An alternative way to input gene sets is to use a keyboard.
To do so, one first selects the ‘Specify Gene ID’ function.
One can then type ENTREZ Gene IDs and create a name
for each gene set (Figure 3B). ENTREZ IDs entered in the
‘Positive genes’ box receive weight ωg = 1, and those in the
‘Negative genes’ box receive weight ωg = −1. This approach
does not allow one to use other weight values.

Step 2: select gene set and a PED compendium. By choos-
ing ‘Select Gene Set and Compendium’ in the main menu
(Figure 2), one will move to the next step. In this step,
one can select some or all input gene sets for analysis.
One also needs to specify a PED compendium (Figure 3C).
Users can either select a compendium available in GSCA,
or upload their own PED compendium (instructions on
how to prepare users’ own compendium are shown on the
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Figure 2. GSCA analysis pipeline. A default GSCA work flow is shown on the left. A screenshot of GSCA interface is shown on the right. Functions in
the user interface corresponding to the five analysis steps are indicated using the red numbers.

GSCA GUI). For demonstration purpose, we choose the
compendium of Affymetrix Human Genome U133A Array
(GPL96) for the MYC analysis.

Step 3: explore data and define gene set activity pattern of in-
terest. Next, one can select ‘GSCA Analysis’ in the main
menu (Figure 2). Depending on the number of analyzed
gene sets, the software will display gene set activities across
all compendium samples on the screen using histograms
(for 1 gene set), scatter plots (for 2 gene sets), or heat maps
(for >2 gene sets). The MYC analysis involves two gene sets.
Therefore, a scatter plot is generated to show MYC expres-
sion (i.e. its RNA level) and its target gene activity in com-
pendium samples (Figure 3D). The plot shows a clear pos-
itive correlation between MYC and its target gene activity
(Pearson correlation = 0.495, P-value = 0 based on correla-
tion test (19)). The degree of correlation is non-trivial con-
sidering the heterogeneous lab and cell type origins of these
samples. This demonstrates the data quality and the feasi-
bility to meaningfully compare gene set activities across het-
erogeneous PED samples.

In the same ‘GSCA Analysis’ menu, one can now spec-
ify a POI. POI can be defined numerically, interactively or
using formulas.

If one chooses ‘Numeric POI’ (Figure 2), the POI will be
defined in the form of ‘gene set 1 ∈ (c11, c12), and gene set
2 ∈ (c21, c22),..., and gene set S ∈ (cS1, cS2)’. The cutoffs csl
can be chosen to correspond to certain standard deviations
(SDs) away from the mean of ysi across all PED samples, or
certain quantiles, or certain P-values based on a normal dis-
tribution fitted to the data. When cs1 is set to be the smallest

possible value in the PED compendium, ysi ∈ (cs1, cs2) re-
duces to ysi < cs2. Similarly, ysi > cs1 can be represented by
setting cs2 to the largest possible value in the compendium.
By default, GSCA defines POI as ‘y1i > c1, y2i > c2, ..., ySi >
cS’ where cs corresponds to one SD above the mean activity
of gene set s in all samples. This corresponds to a pattern in
which all gene sets are highly active (Figure 3D).

If one chooses ‘Interactive POI’ (Figure 2), the POI will
be defined using a computer mouse. For analyzing two gene
sets, one can draw one or more polygons on the scatter plot
to specify the POI. In the MYC analysis, for instance, MYC
expression and its target gene activity are correlated well
in most cases except for a small subset of samples where
MYC expression is low but the target gene activity is rela-
tively high. To study these samples, a polygon can be drawn
as in Figure 3E. The polygon defines the POI. In order to
help others to reproduce the results, one can save the inter-
actively specified POI by using ‘Save Current POI’. In a new
analysis, one can load previously saved POI using ‘Load
POI’.

If one chooses ‘Formulaic POI’ (Figure 2), the POI will
be defined using a formula to specify the relationship among
gene sets (see Supplementary Materials and Supplementary
Figure S2 for details). For example, the formula ‘(MYC +
2)2 + (MYC TG − 2)2 ∗ 10 < 4’ defines an ellipse (Supple-
mentary Figure S2A). Samples selected by this POI also had
low MYC expression and relatively high target gene activity.

Defining POI numerically is simple, and it can be eas-
ily incorporated into users’ own analysis pipelines to run
analyses automatically. Defining POI interactively, on the
other hand, allows one to handle complex POIs. This pro-
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Figure 3. GSCA demonstrated using the MYC example. (A) Panel for uploading gene set files. (B) Panel for inputting ENTREZ gene IDs. (C) Panel for
selecting available compendia or uploading users’ own compendium. (D) GSCA scatter plot showing the default numeric POI. (E) POI defined interactively
by drawing a polygon. (F) Ranking table reported by GSCA showing the top biological contexts associated with the numeric POI. (G) Scatter plot that
highlights samples from five most significant biological contexts in the analysis of POI interactively specified in (E).
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vides flexibility to explore complex data, but it cannot be
automated. Defining POI using formulas is less flexible than
using interactive POI but more flexible than using numeric
POI, and it may be incorporated into users’ automatic anal-
ysis pipelines.

Step 4: explore GSCA results. Once the POI is specified,
GSCA will search the user-specified compendium and re-
port biological contexts significantly associated with the
POI based on user-specified P-value and fold change cutoff.
The reported contexts along with various summary statis-
tics such as fold change and adjusted P-value will be listed in
a table and shown under the ‘Ranking Table’ tab (Figure 2).
For instance, Figure 3F shows the top biological contexts
reported for Figure 3D when the default POI (i.e. high MYC
expression and high target gene activity) is used (see Supple-
mentary Table S3 for full results). These contexts are poten-
tially associated with active MYC TF functions. Some con-
texts were known to have active MYC function (e.g. B cell
lymphoma (5)), whereas others were new contexts in which
MYC’s function was unestablished at the time the 51 core
target genes were originally reported. One example for the
latter is the Ewing sarcoma (A673 cell line), for which MYC
function has been experimentally verified only recently (4).
Indeed, 25 of the 30 contexts reported by GSCA (includ-
ing Ewing tumor) were not used to construct the 51 target
gene set (Supplementary Table S3). This provides an exam-
ple that illustrates how one may use GSCA to link gene sets
to previously unknown biological contexts to make new dis-
coveries.

Among all 30 predicted contexts, at least 21 were sup-
ported by published experiments (including functional ex-
periments that assess the phenotype changes after perturb-
ing MYC expression or experiments that evaluate MYC
protein activity) according to existing literature (Supple-
mentary Table S3). This yields an estimated false discovery
rate (FDR) of 30%. This FDR is likely a conservative esti-
mate, since it is possible that some of the remaining 9 predic-
tions are true but have yet to be studied. For this reason, the
actual FDR might be lower than 30%. Unlike FDR, evalu-
ating sensitivity is more difficult due to the lack of compre-
hensive knowledge about the relationship between biologi-
cal contexts and gene set activities. A series of analyses in
Supplementary Materials, Supplementary Figures 3 and 4,
and Supplementary Table S3 suggest that the current GSCA
can discover a large fraction but not all gene-set-context re-
lationships due to constraints such as sample size. These
analyses also show that the continual growth of PED can
potentially bring the sensitivity to a high level. Importantly,
even though GSCA may not find everything, its reported
contexts can already allow one to make many new discov-
eries (e.g. Ewing tumor in the default POI analysis above),
greatly expanding our current knowledge about genes and
pathways.

After GSCA analysis, samples from the most significant
contexts are color-coded and highlighted in the plot shown
under the ‘Plot’ tab (Figure 2). For example, Figure 3G
shows that samples chosen by the polygon in Figure 3E are
highly enriched in Wilms tumor. Since these samples have
low MYC expression but relatively high target gene set ac-
tivity, the plot suggests that MYC target genes may be acti-

vated in Wilms tumor by other regulators, or the measure-
ments of MYC RNA level in these samples may not reflect
the underlying true MYC protein level.

Step 5: save the results. By selecting ‘Save Results’ in the
main menu (Figure 2), users can save the list of reported bio-
logical contexts to a text file (e.g. Supplementary Table S3).
Histograms, scatter plots and heat maps can be exported
into PNG, TIFF or other file types for publication. The
GUI also provides numerous options for users to customize
their plots.

Robustness to noises in gene sets. In the above analysis, the
MYC target gene set is clean and contains little noise. To
see how noises in a gene set may affect GSCA, we replaced
25%, 50%, 75% and 90% of genes in the MYC target gene
set by random genes and repeated the analysis using the de-
fault POI (Supplementary Materials). This analysis shows
that GSCA is relatively robust to noisy genes in the gene
sets. Replacing ≤50% of the MYC target genes by noise only
resulted in small changes in sensitivity and FDR. The per-
formance decrease was obvious only when >75% of MYC
target genes were replaced by noise (Supplementary Figure
S5).

Example II: a comparison with ChIP-PED

The analysis of MYC and its target genes can also be con-
ducted using ChIP-PED. However, ChIP-PED has a num-
ber of limitations.

First, ChIP-PED can only analyze two gene sets (a TF
and its target genes), whereas GSCA can also analyze one
and multiple gene sets (see Examples III and IV below). In
addition, GSCA users have the freedom to specify genes’
weights ωg, whereas ChIP-PED users do not. The useful-
ness of this freedom is demonstrated by an example in Sup-
plementary Materials, Supplementary Figure S6 and Sup-
plementary Table S4, where using a weighting scheme more
complex than ±1 improves the analysis.

Second, ChIP-PED only allows one to analyze four pos-
sible patterns: (i) high TF and high target gene activity (‘y1i
> c1H and y2i > c2H’); (ii) low TF and high target gene ac-
tivity (‘y1i < c1L and y2i > c2H’), (iii) high TF and low tar-
get gene activity (‘y1i > c1H and y2i < c2L’), and (iv) low
TF and low target gene activity (‘y1i < c1L and y2i < c2L’).
These correspond to the four corners (green dashed lines) in
Figure 4. By contrast, GSCA users can interactively spec-
ify POIs with arbitrary shapes. This flexibility is crucial in
real applications since POIs in real data can be far more
complex than those specified by ChIP-PED. For example,
Figure 4A shows the TF OCT4 and its target gene activities
in mouse (OCT4 target genes were obtained from (4) and
listed in Supplementary Table S5 along with their weights).
One may ask what sample types are associated with medium
levels of Oct4 and its target gene activity. This question can-
not be directly answered using ChIP-PED. However, it can
be easily answered using GSCA by drawing a polygon to
select samples of interest (Figure 4A, blue dashed lines). It
turns out that the selected samples were enriched in differen-
tiating stem cells such as embryoid bodies (Supplementary
Table S5). By contrast, samples with high Oct4 and high
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Figure 4. Two examples comparing GSCA interactive POI and ChIP-PED POI. Green dashed lines represent four possible ChIP-PED POIs. Blue dashed
lines define the interactive POI in GSCA. (A) Analysis of Oct4 and its target genes (Oct4 TG). (B) Analysis of Gli1 and Nanog.

target gene activity were enriched in undifferentiated stem
cells (Supplementary Figure S7, Supplementary Table S5),
consistent with the knowledge that OCT4 protein activity
decreases as stem cells differentiate (20). Figure 4B provides
another example which analyzes biological contexts associ-
ated with Gli1 and Nanog activities in mouse. In this exam-
ple, which is discussed in detail in Supplementary Materials
and Supplementary Figure S8, one POI corresponds to high
level of Gli1 and medium level of Nanog. Once again, this
can be studied easily using GSCA but not by ChIP-PED.
These examples demonstrate that POIs in real application
vary substantially from one case to another. It is difficult
to have an automatic algorithm smart enough to handle
all possible scenarios. Therefore, the versatility provided by
GSCA to interactively specify POIs is crucial to meet the
diverse needs of different investigators.

Third, ChIP-PED requires one input gene set to be a TF
and the other gene set to be its target genes. By contrast,
GSCA can be used to analyze any gene sets. To demonstrate,
Figure 5 shows the GSCA analysis applied to two metabolic
pathways, glucose (glycolysis) metabolism and fatty acid ox-
idation (FAO), in the compendium of Affymetrix Human
Genome U133A Array. The two gene sets used for the anal-
ysis are provided in Supplementary Table S6. They were ob-
tained from MSigDB (21). Genes shared by both pathways
were removed. Genes’ average expression level in each path-
way was plotted. Interestingly, samples with high activities
of both pathways were highly enriched in muscles (Figure
5A), consistent with the high metabolism rate in muscles
(22). There is a group of samples with high fatty acid path-
way activity but medium level of glycolysis activity (Fig-
ure 5B). These were highly enriched in liver, in which hepa-
tocytes participate in energy utilization and storage and rely
on fatty acid oxidation for homeostasis (23). Finally, one
can see another group of samples whose glycolysis activity
is disproportionally higher than what would be expected by
other samples with similar level of fatty acid metabolism
(Figure 5C). These samples were highly enriched in brain
tissues, which were highly dependent on glucose and gly-

colysis that prepares glucose catabolites for mitochondrial
oxidation (24).

Fourth, ChIP-PED does not provide functions to sup-
port cross-species analyses. In GSCA, one can easily con-
vert genes in a gene set to their homologs in another species
using HomoloGene (25), and then perform analyses in the
converted species. For instance, we converted the glycolysis
and fatty acid oxidation gene sets from human to mouse us-
ing ENTREZ ID conversion tool included in GSCA GUI.
We then run GSCA in mouse. Figure 5D shows an analysis
similar to Figure 5C. Samples with glycolysis activity higher
than expected given the level of fatty acid metabolism were
again enriched in brain tissues. Thus, the finding related to
this pattern is conserved between human and mouse.

In addition to the differences above, GSCA also provides
numerous functions to help users conveniently tune param-
eters, save interactively defined POIs, and export analysis re-
sults such as plots and tables. These functions are not avail-
able in ChIP-PED.

Example III: analysis of one gene set

Unlike ChIP-PED which can only analyze two gene sets,
GSCA can also analyze one or multiple gene sets. Fig-
ure 6 demonstrates GSCA for one gene set. GSCA was used
to analyze the glycolysis gene set in Supplementary Table
S6 using the compendium of Affymetrix Human Genome
U133A Array. GSCA generates a number of histograms
(Figure 6A) showing the distributions of gene set activity in
all samples as well as in samples from the top significant bi-
ological contexts associated with the default POI (i.e. high
glycolysis activity). Users can now specify their own POI
numerically by using either a keyboard or a slider. For ex-
ample, in Figure 6B, the slider was set to choose samples
whose glycolysis activity is above the 90th percentile of all
samples. The GSCA results show that these samples were
highly enriched in muscles and brain tissues (Figure 6C).
One can also specify POI interactively by using multiple
sliders to select multiple intervals whose union defines the
POI (Figure 6D). This is demonstrated in more detail by
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Figure 5. GSCA applied to two metabolic gene sets: glycolysis and fatty acid oxidation. In each panel, blue dashed lines define the interactive POI, and
the table shows contexts associated with the POI. (A) Analysis of high glycolysis and high fatty acid oxidation in human. (B) Medium glycolysis and high
fatty acid oxidation in human. (C) High glycolysis and medium to low fatty acid oxidation in human. (D) High glycolysis and medium to low fatty acid
oxidation in mouse.
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Figure 6. GSCA for one gene set. (A) Histograms showing gene set activities across samples. (B) Sliders used to define POI. (C) Table showing the identified
biological contexts. (D) Complex POI can be defined as the union of multiple intervals, specified interactively using multiple slider bars.

an analysis of Oct4 in Supplementary Materials and Sup-
plementary Figure S9. Defining POI using formulas is also
supported. This is similar to how formulas were used in Ex-
ample I and therefore a detailed discussion is skipped here
for brevity.

Example IV: analysis of multiple gene sets

To demonstrate GSCA for multiple gene sets, we analyzed
MYC and three metabolic pathways––mitochondria bio-

genesis, glycolysis and fatty acid oxidation––in the com-
pendium of Affymetrix Human Genome U133A Array (see
Supplementary Table S6 for gene sets, ωg = 1). The three
metabolic gene sets were obtained from MSigDB (21) and
then filtered to exclude genes that are not MYC target genes.
To do so, we first compiled a list of MYC binding sites by
taking the union of signal peaks using available MYC ChIP-
seq data from ENCODE (hg19) listed in Supplementary Ta-
ble S7. A gene was retained for analysis if there was at least
one MYC binding site within the 5 kb upstream and 1 kb
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downstream of the gene’s transcription start site. We further
filtered genes so that no genes were shared by any two gene
sets. Previous research has shown that the MYC oncogene
is involved in amplifying the expression of genes involved in
metabolism, cell growth and cell death (26). Here, we sought
to identify the biological contexts in which MYC might af-
fect different metabolic pathways by directly or indirectly
regulating metabolic genes.

After providing the gene sets and PED compendium,
GSCA creates a heat map showing activities of the four gene
sets in all PED samples (Figure 7A, left). In the heat map,
rows represent gene sets, columns represent samples, col-
ors represent gene set activities, and samples are clustered
using hierarchical clustering (Euclidean distance measure,
complete linkage method). Users have the option to cluster
gene sets, or to adjust the display order of the gene sets in
the heat map using the GUI.

Users can now specify their own POI interactively by us-
ing the slider above the heat map to select samples of inter-
est. One may add multiple sliders to define multiple intervals
and use their union to define POI. In Figure 7A, there is a
group of samples with low MYC expression but high mi-
tochondrial, glycolytic and fatty acid gene activities. After
users have selected these samples and clicked ‘Update Sam-
ple Selection’ button, GSCA creates a second heat map to
provide a zoom-in view of the selected samples (Figure 7A,
right). One can find that these samples are enriched in var-
ious types of muscles (Figure 7A, bottom). This low MYC
high metabolic expression signature is consistent with the
high metabolic rates of the non-proliferating muscle tissues.

POIs can also be defined numerically. One can either type
numerical cutoffs in text boxes or use sliders to set a nu-
meric range for each gene set. In Figure 7B, for instance,
we used sliders to select samples with high MYC expression
and high expression of mitochondrial and glycolysis genes
(‘high’ was defined approximately using the 60th percentile
of the expression of each gene set across all samples). Bio-
logical contexts associated with this pattern include a vari-
ety of cancer cell lines such as B cell lymphoma and K562.
MYC has been implicated to drive the expression of gly-
colytic genes in cancer cells (26), thus the GSCA finding of
these cancer cell lines for high MYC and high glycolysis is
consistent with existing literature. Interestingly, GSCA re-
vealed that these cancer cells have concurrently high mito-
chondrial and glycolytic signatures, suggesting that they use
both pathways in their highly proliferative state. This is a
previously under-appreciated phenomenon.

Further analyses show that samples with high MYC,
high mitochondria and fatty acid, but low glycolysis ac-
tivity (‘low’ was defined approximately using the 40th per-
centile of the expression of each gene set across all sam-
ples) were enriched in hematopoietic stem cells and CD34+
cultured erythroblasts, as well as breast and prostate can-
cer tissues (Figure 7C). This is intriguing since unlike the
widely-recognized role of MYC in glucose metabolism, mi-
tochondrial biogenesis, and lipogenesis, its role in fatty acid
oxidation or degradation by mitochondria is less-well un-
derstood (27). On the one hand, cells stimulated to grow
by MYC relies on glucose and glutamine for biosynthesis
of macromolecules such as fatty acids through lipogenesis,
which has a feed-back loop through malonyl-CoA to in-

hibit mitochondrial fatty acid oxidation. On the other hand,
MYC was shown experimentally to induce fatty acid ox-
idation through mitochondrial biogenesis, such that shut-
ting down MYC expression resulted in accumulation of in-
tracellular lipid droplets in tumor cells (28). Hence, there
is a gap of knowledge regarding the role of MYC in FAO.
The use of GSCA may identify biological contexts that re-
veal tissue specific alterations of FAO by MYC. In this re-
gard, Figure 7C shows contexts with high MYC, high mi-
tochondria and high FAO gene expression, including breast
and prostate cancer tissues, hematopoietic stem cells among
other contexts. The possibility that hematopoietic stem cells
(CD34+) may use fatty acid oxidation is implicated in the
literature (29). Several studies also suggest that leukemia
hematopoietic stem cells (CD34+) are sensitive to fatty acid
oxidation inhibition with etomoxir (30). These provide sup-
port for the GSCA findings. Interestingly, the hematopoi-
etic stem cell and CD34+ samples were not enriched in high
MYC-expressing samples in which only one of the mito-
chondria and fatty acid gene sets was active (Supplemen-
tary Figure S10), indicating that both metabolic pathways
are important for hematopoietic stem cell and CD34+ cells.
These observations provide clues for further experimenta-
tion to determine the tissue and cell type role of MYC in
influencing FAO and may result in new insights for cancer
therapy.

Finally, one can also define POI using formulas. For in-
stance, Supplementary Figure S11 illustrates how an anal-
ysis similar to Figure 7A can be done by directly typing a
formula.

DISCUSSION

In summary, we have demonstrated how GSCA can be used
to explore gene set activities in a large compendium of PED
samples and link interesting gene set activity patterns to
biological contexts. In our examples, GSCA revealed both
known and unknown contexts. The new contexts may pro-
vide an informative guide to help people design future ex-
perimental studies to investigate new and previously unsus-
pected biology. Potentially, GSCA may also be used as a hy-
pothesis screening tool to quickly explore different hypothe-
ses in order to pick up the most promising ones for design-
ing follow-up studies. Today’s high-throughput experiments
often produce new gene sets as products. Although such
experiments are powerful, most investigators only have re-
sources for a limited number of such experiments. For these
investigators, GSCA provides a cost-efficient and readily
available way to boost the value of their data and make new
discoveries. With the GUI and ability to interactively spec-
ify POI, GSCA can be used conveniently in one’s daily re-
search.

GSCA currently uses Fisher’s exact test to determine
the statistical significance of biological contexts. This test
is based on assuming that samples are independent. Ad-
justed P-values produced by GSCA therefore should be in-
terpreted with respect to this assumption. Empirically, we
found that this approach can produce reasonable results as
demonstrated by our examples. Previously, methods devel-
oped for handling correlation among genes in the conven-
tional gene set analysis, such as ROAST (31) and CAM-
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Figure 7. GSCA for multiple gene sets. (A) Gene set activities across all PED samples are shown using a heat map (left). The sliders above the heat map can
be used to interactively define POI. The heat map on the right provides a zoom-in view of the slider selected samples. The table below shows the identified
biological contexts. (B) POI can also be defined by setting a numeric range for each gene set using sliders. This panel shows an analysis of high MYC, high
mitochondria and high glycolysis activities. (C) High MYC, high mitochondria, high fatty acid and low glycolysis.
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ERA (32), have been found useful for improving statisti-
cal inference. It will be interesting to investigate in the fu-
ture whether GSCA can be generalized in a similar fashion
to allow potential correlation among samples and whether
such generalization can produce better analysis results. As
further discussed in Supplementary Materials and Supple-
mentary Figure S12, handling correlation among samples
in GSCA is not easy as it requires one to address non-trivial
issues such as considering inter-gene and inter-sample cor-
relations at the same time and estimating complex high-
dimensional correlation structure among samples. When
using the adjusted P-values in the GSCA output, users
should also keep in mind that these P-values measure statis-
tical significance only when GSCA is used to answer a spe-
cific question involving a specific POI defined before look-
ing at the GSCA results (see Supplementary Materials). If
users do not have a specific question in mind and want to re-
peatedly explore different POIs (e.g. by interactively tuning
a POI based on GSCA results) until something ‘significant’
is reported, these P-values can no longer be used as a formal
statistical significance measure since they were not designed
to capture the uncertainty associated with such data snoop-
ing. In this scenario, GSCA is purely exploratory in nature,
and P-values may only be used along with other statistics
(e.g. fold changes) to rank biological contexts rather than
telling the probability that they were reported by chance.
Users should use other independent sources of informa-
tion to verify the validity of the ‘findings’. How to measure
statistical significance in an exploratory analysis involving
human-machine interactions remains an open problem that
is worth future investigation.

There are a number of other potential directions to ex-
tend GSCA. First, the current GSCA relies on microar-
ray samples curated by BARCODE. As the normaliza-
tion and curation of RNA-seq data mature, one may ex-
tend GSCA to incorporate RNA-seq compendia. Second,
we currently analyze each PED compendium separately.
Integrative models for multiple-platform and cross-species
GSCA are worth future investigation. Third, GSCA re-
quires one to have annotated samples. Currently, samples
in BARCODE are manually annotated and curated. In or-
der to take the full advantage of the fast growing data, de-
veloping an automatic annotation system using the GEO
metadata and incorporating it with GSCA is crucial.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Tamayo,P. and Mesirov,J.P. (2011) Molecular signatures database
(MSigDB) 3.0. Bioinformatics., 27, 1739–1740.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv873/-/DC1


e8 Nucleic Acids Research, 2016, Vol. 44, No. 1 PAGE 14 OF 14

22. Horscroft,J.A. and Murray,A.J. (2014) Skeletal muscle energy
metabolism in environmental hypoxia: climbing towards consensus.
Extrem. Physiol. Med., 3, 19.

23. Rui,L. (2014) Energy Metabolism in the Liver. Compr. Physiol., 4,
177–197.

24. Schurr,A. (2014) Cerebral glycolysis: a century of persistent
misunderstanding and misconception. Front Neurosci., 8, 360.

25. Geer,L.Y., Marchler-Bauer,A., Geer,R.C., Han,L., He,J., He,S.,
Liu,C., Shi,W. and Bryant,S.H. (2009) The NCBI biosystems
database. Nucleic Acids Res., 38(suppl 1), D492–D496.

26. Dang,C.V. (2013) MYC, metabolism, cell growth, and tumorigenesis.
Cold Spring Harb. Perspect. Med., 3, a014217.

27. Dang,C.V. (2012) MYC on the Path to Cancer. Cell, 149, 22–35.
28. Zirath,H., Frenzel,A., Oliynyk,G., Segerström,L., Westermark,U.K.,

Larsson,K., Persson,M.M., Hultenby,K., Lehtiö,J. and Einvik,C.
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