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Simple Summary: Pancreatic adenocarcinoma (PAAD) is one of the most common tumors of the
gastrointestinal tract and is difficult to diagnose and treat due to tumor heterogeneity and the
immunosuppressive tumor microenvironment. RNA-binding proteins have been studied and their
dysregulation has been found to play a key role in altering RNA metabolism in various malignancies.
STAU2 is one of them. To investigate the role of STAU2 in PAAD, we monitored the signaling
pathway by regulating substrate mRNA and experimentally confirmed that STAU2 is the most
potential biomarker for the occurrence and development of PAAD. Furthermore, we found that high
expression of STAU2 not only contributes to immune evasion but also correlates with sensitivity to
chemotherapeutic agents, suggesting that STAU2 may be a potential target for combined natural
therapy. These results demonstrate that STAU2 is a novel prognostic and diagnostic biomarker for
PAAD, revealing STAU2′s utility in cancer therapy and drug development.

Abstract: Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer. RNA-binding proteins
(RBPs) regulate highly dynamic post-transcriptional processes and perform very important bio-
logical functions. Although over 1900 RBPs have been identified, most are considered markers of
tumor progression, and further information on their general role in PAAD is not known. Here, we
report a bioinformatics analysis that identified five hub RBPs and produced a high-value prognos-
tic model based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
datasets. Among these, the prognostic signature of the double-stranded RNA binding protein Staufen
double-stranded RNA (STAU2) was identified. Firstly, we found that it is a highly expressed critical
regulator of PAAD associated with poor clinical outcomes. Accordingly, the knockdown of STAU2
led to a profound decrease in PAAD cell growth, migration, and invasion and induced apoptosis of
PAAD cells. Furthermore, through multiple omics analyses, we identified the key target genes of
STAU2: Palladin cytoskeletal associated protein (PALLD), Heterogeneous nuclear ribonucleoprotein U
(HNRNPU), SERPINE1 mRNA Binding Protein 1 (SERBP1), and DEAD-box polypeptide 3, X-Linked
(DDX3X). Finally, we found that a high expression level of STAU2 not only helps PAAD evade the
immune response but is also related to chemotherapy drug sensitivity, which implies that STAU2
could serve as a potential target for combinatorial therapy. These findings uncovered a novel role for
STAU2 in PAAD aggression and resistance, suggesting that it probably represents a novel therapeutic
and drug development target.
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1. Introduction

Pancreatic adenocarcinoma (PAAD) is the most fatal of any common solid-malignancy
cancer [1,2]. In 2020, the survival rate was poor, and the 5-year rate is 9.2%. PAAD is con-
sidered to be the third primary cause of cancer-related mortality in the Western world [3,4].
In the United States, an estimated 47,050 deaths are expected. By 2030, it will be the second
leading cause, particularly given persistently rising incidence and a minimal change in
mortality rates [5,6]. PAAD develops from the following three best-characterized precursor
lesions: pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neo-
plasms (IPMN), and mucinous cystic neoplasms (MCN) [7,8]. Despite immense gains in
the molecular understanding of PAAD, early diagnosis and prognosis remain very poor.
At present, there is no targeted therapy that works better than chemotherapy, and the only
available treatment is surgery, which is only available to a small number of patients with
resectable tumors [9]. Therefore, a global understanding of the intricate pathogenesis of
PAAD and the development of new prognostic biomarkers and drug targets are of critical
importance for improving therapeutic strategies and survival rates.

High-throughput analyses of whole tumor cell transcripts suggest that RNA-based
mutations play critical roles in cancer pathogenesis and the development of tumor het-
erogeneity [10,11]. Tumors are invariably associated with faulty RNA metabolism that
disrupts the homeostasis of protein isoforms via oncogenic or tumor-suppressor signaling
pathways. Besides somatic mutations in the target genes, dysregulation of RNA-binding
proteins (RBPs) alters RNA metabolism in a variety of malignancies [12,13]. RBPs directly
bind to numerous classes of RNAs to form dynamic ribonucleoprotein (RNP) complexes,
which modulate all biochemical aspects of RNA life, including maturation, modification,
splicing, transport, localization, decay, and translation [14,15]. Thus, dysregulation of
RBPs results in transcriptomic and proteomic changes in tumor cells, which in turn affect
cell growth, proliferation, invasion, and apoptosis [16,17]. Due to advances in screening
techniques, more than 1900 human RBPs have been identified to date [18,19]. However, the
role of RBPs in tumors is not fully understood.

Increasing pieces of evidence have proven that dysregulation of RNA metabolism by
altering RBP expression is associated with PAAD onset and aggressiveness. For example, a
member of the PCBP family protein, PCBP3, which increases the survival of PAAD cells,
was regarded as a prognostic marker for PAAD [20]. SRSF1 and PTBP1 facilitate pancreatic
cancer initiation and progression through alternative splicing regulation [21,22]. HuR, a
member of the ELAV RBP family, not only affects mRNAs containing AREs in its 3′-UTRs,
but also directly binds to miRNAs, thereby enhancing PAAD cell survival [16,23–25].
The RBP ZEB1 regulates epithelial-to-mesenchymal transition in PAAD cells by changing
EMT-associated transcript expression [26]. ADAR1 regulates c-Myc stability through
AKT signaling, thereby promoting PAAD growth [27]. Of particular interest are recent
studies that have identified a role for RBPs in the immunotherapy of various types of
cancer [28]. For example, eIF4E RBPs promote PD-L1 translation in mouse tumors, while
eIF4E phosphorylation inhibitors disable PD-L1 translation [29]. MEX3B has been shown
to affect immune resistance by disrupting HLA-A mRNA in cancer cells [30]. Therefore, in-
depth investigation of the regulatory mechanisms of RBPs may be promising for developing
innovative immunotherapy targets for pancreatic adenocarcinoma. Generally, these studies
highlight the correlation of RBP dysregulation for PAAD tumorigenesis and progression.
Furthermore, there is still an urgent need to systematically elucidate the overall functions
of RBPs in PAAD prognosis and the immune microenvironment.

Herein, we used bioinformatic techniques in PAAD–TCGA and GTEx datasets to carry
out a risk model based on five prognostic hub RBPs. Subsequently, based on hazard ratios
with prognostic values and survival tests of these five hub genes, we focused on STAU2
to evaluate the reliability of the RBP’s related signature. STAU2 is a paralog of STAU1,
which mediates a translation-dependent mRNA decay pathway (SMD) that is involved
in multiple cellular processes [31–33]. Furthermore, several recent articles have reported
that STAU2 emerged as a critical mediator in tumor progression [34,35]. Nevertheless,
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the influence of STAU2 on PAAD has not been investigated. Accordingly, our findings
demonstrated that STAU2 is abundantly expressed in PAAD, and downregulation of STAU2
can significantly reduce the growth, invasion, and migration abilities of PAAD cells and
induce apoptosis. Moreover, high STAU2 expression was correlated positively with PAAD
cell infiltration and immune checkpoint expression. On the flip side, high STAU2 patients
were more sensitive to the chemotherapy drugs (5-Fluorouracil and Gemcitabine) but more
resistant to Erlotinib, an EGFR inhibitor. Collectively, based on the data from this study,
we constructed and verified an RBP-based prognostic risk model that showed potential
clinical application. Moreover, we demonstrated that STAU2 is a novel regulator of PAAD
initiation and progression, which could serve as a potential diagnostic and prognostic
biomarker for combinatorial therapy to improve PAAD survival.

2. Materials and Method
2.1. Data Collection and Processing

For 170 TCGA–PAAD patients, gene expression files containing the number of un-
treated genes and transcript fragments in kilobases (FPKM) were obtained from Genomic
Data Commons (GDC) using “TCGAbiolinks R”. The gene expression matrix of normal
pancreas across 360 healthy donors was obtained from Genotype-Tissue Expression (GTEx).
The gene list containing 1500 RNA binding proteins (RBPs) was obtained from the pre-
vious report. Using DESeq2 to analyze differentially expressed genes (DEGs) between
TCGA–PAAD patients and GTEx-normal pancreatic tissue, adjusted p-values < 0.05 and
1.5-fold changes were considered statistically significant differences.

2.2. Identification of RBP Signature with Prognostic Significance

Using RBP genes that were significantly differentially expressed in pancreatic tumors
and normal tissues, we performed univariate Cox regression analysis to isolate prognostic
RBP genes. In detail, log-rank p-values were calculated to estimate the significance, and
the survival plot was obtained through the “survminer” R package. These prognostically
relevant RBPs were ranked based on the smallest absolute shrinkage and selection operator
(LASSO). Further multiple stepwise Cox regression was performed to identify the hub
RBPs with prognostic significance. Risk scores for each patient were calculated as follows:

Risk score =
n

∑
k=1

expkcoe f k

Here, “n” is the number of prognostic RBP genes (n = 6), “expk” is the expression levels
of the gene k, and “coefk” is the estimated coefficient value of gene k in multivariate
Cox regression analysis. After normalizing the gene expression levels (FPKM) using the
estimated regression coefficient, we calculate the weighted risk scores of selected hub RBPs.
Ultimately, we assigned 170 PAAD patients to the low-risk group (n = 85) and high-risk
group (n = 85), regarding the median risk scores as the threshold point.

2.3. Identification of Differentially Expressed Genes between Risk Subgroups

A total of 170 patients with PAAD were divided into high and low risk subgroups
according to risk scores, and differential gene expression analysis (DGE) was performed on
the two subgroups using DESeq2. Adjusted FDR < 0.05 and |log2 (fold change) | > 1 were
used as the threshold of significance.
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2.4. Gene Set Enrichment Analysis

DEGs were tested for functional enrichment using the “clusterProfiler” R package
based on the GO (Gene Ontology) and KEGG Pathway databases, respectively. Gene set
enrichment analysis (GSEA) was used to detect abnormal signaling pathways assigned to
hallmark gene sets in high-risk subgroups.

2.5. Combination Analysis of Gene Expression, DNA Methylation, and Genetic Alternation in
PAAD Patients

DNA methylation array (Illumina Human Methylation 450, San Diego, CA, USA)
and copy number alternation data were downloaded from the GDC data portal using the
TCGAbiolinks R package. To explore the upstream regulation of prognostic RBPs, we
calculated the correlation coefficients of RBP genes’ FPKM with DNA methylation levels in
the promoter region of RBPs and log2-transformed copy numbers in RBPs, respectively.

2.6. Validation of Prognostic RBP Signature

Microarray data, somatic mutation, and genetic alternation information across 461
PAAD patients were obtained from the international cancer genome consortium (ICGC)
data port (https://dcc.icgc.org/, accessed on 3 February 2021). Cox one-way regression
and Covar multiple regression analyses were used to validate the predicted value of the
RBP attribute of the STAU2 node.

2.7. STAU2 Genetic Alternation Analysis

The genetic variation signature of the STAU2 gene was obtained from the cBioPortal
website (https://www.cbioportal.org/, accessed on 3 February 2021), which summarizes
its variation frequency, mutation type and copy number (CNA) changes. The comparison
of genetic alteration characteristics of STAU2 across multiple TCGA tumors was performed
using the “Cancer Type Summary” module. The “Mutation” module in the cBioPortal
website was used to construct the schematic diagram of the structure of mutated STAU2.
Kaplan–Meier plots with log-rank p-values were plotted to show the relationship between
STAU2 genetic alteration and the overall survival of TCGA tumors.

2.8. Prediction of Diagnostic Effect of ROC Curve on STAU2

The calculated ROC curves and AUC values were analyzed with the R pROC package,
as shown in ggplot2. AUC values between 0.5 and 0.7 indicate model success.

2.9. Analysis of Differentially Expressed Genes with STAU2

Genes associated with STAU2 expression in PAAD were detected using Linkedomics
(http://www.linkedomics.org/login.php, accessed on 3 February 2021). Volcano plots
were used to visualize, and they filtered regulated and decreased genes separately. The
significant correlation between genes was evaluated by Pearson’s test.

2.10. Protein–Protein Interaction (PPI) Network Construction

We used the STRING database to predict protein–protein interactions (PPIs) and create
PPI networks. The STAU2 protein–protein interaction network was then proposed, and
two major closely interacting proteomes were observed. It was found that 50 proteins were
closely related to STAU2. Then, KEGG enrichment analysis was performed on them, and
20 of them were used to construct the network graph.

https://dcc.icgc.org/
https://www.cbioportal.org/
http://www.linkedomics.org/login.php
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2.11. Identification of STAU2-Target Genes

STAU2-CLIP data were downloaded from GSE134971. Narrow peaks of two STAU2-
CLIP samples were merged using IDR software. The RNA sequence with STAU2-CLIP
peaks was summited to MEME to identify putative STAU2-binding motifs. Then, STAU2-
CLIP peaks were annotated to the nearest gene using the “annotatePeak” function of
the “ChIPseeker” R package. The host genes of STAU2-CLIP peaks were regarded as
STAU2-binding genes.

The correlation between STAU2 and other protein-coding genes was analyzed across
170 TCGA–PAAD patients using the FPKM matrix. The STAU2-associated gene was defined
as a gene with |R coefficient| > 0.3.

2.12. Analysis of Immune-Related Information of STAU2

The correlation between immune cell infiltration and STAU2 expression was obtained
using the TIMER online website, and Pearson’s correlation analysis was used to obtain the
correlation. Correlation of STAU2 with immune cell gene markers in pancreatic adenocarci-
noma was determined using timer analysis.

To reliably assess immune scores, we used immunodeconv, an R package that uses
the built-in xCell algorithm. The generated heatmaps are implemented by the R (v4.0.3)
ggplot2 and pheatmap packages.

The R software package “circle” was used to plot Chord diagram. The correlation
between the expression of STAU2 gene and eight immune checkpoints was analyzed by
Spearman analysis, and the correlation coefficient and significant correlation were gained.
Utilizing the TIMER2 web server (http://timer.cistrome.org/, accessed on 14 October
2021), we obtained the immune infiltration scores of cancer-related fibroblasts, mast cells,
endothelial cells, cancer-associated fibroblast, CD8+ T-cells, CD8+ central memory T-cells,
CD4+ memory T-cells, memory CD4+ central memory T-cells, Th1 CD4+ T-cells, NK
T-cell, plasma B-cells, the common lymphoid progenitor, and the granulocyte−monocyte
progenitor. Pearson correlation analysis was used to show the association between STAU2
expression levels and improved immune system infiltration in PAAD patients.

2.13. Kaplan–Meier Plotter Database Analysis

To analyze the prognostic value of STAU2 in PAAD, we used a web-based gene
expression database and survival information from the KM Plotter. Patient samples were
divided into two groups based on median expression (high and low expression) and hazard
ratios (HR) with 95% confidence intervals (95% CIs), and logrank p-values were used to
analyze the hazard ratios (HR) of immune cell subsets.

2.14. Drug Sensitivity Analysis of STAU2 in Pancreatic Adenocarcinoma

Using the Gene Set Cancer Analysis database (GSCA) online website and according to
the data from Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.
org/, accessed on 14 October 2021) and Cancer Therapeutics Response Portal (CTRP,
https://portals.broadinstitute.org/ctrp/, accessed on 14 October 2021), the 30 drugs with
the most sensitivity and predictive accuracy against STAU2 were predicted. For IC50 and
gene expression correlation analysis of first-line drugs for pancreatic adenocarcinoma,
tumor RNA-seq (FPKM) data downloaded from GDC were used, converted to TPM format,
and data were normalized to log2 (TPM + 1). Half-maximal inhibitory concentration
(IC50) data for predicted samples were obtained from GDSC and CTRP, predictions were
performed using a “pRRophetic” R package, and IC50 were estimated by comb regression.

http://timer.cistrome.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ctrp/
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2.15. Cell Culture

The PANC-1 cell line, BXPC-3 cell line (pancreatic cancer), and HPDE6-C7 cell line
(normal pancreas cell) were obtained from the American Type Culture Collection Center
(ATCC) and supplemented with 10% (FBS) in endotoxin-free in DMEM cultivated; BXPC-3
pancreatic adenocarcinoma cells were maintained in RPMI-1640 in 10% FBS. Penicillin
streptomycin and plasma cytokine prophylactic were added to the medium.

All human cell lines have been authenticated using STR (or SNP) profiling within the
last three years. All experiments were performed with mycoplasma-free cells.

2.16. Cell Proliferation Assays

Cell proliferations were evaluated using the Cell Counting Kit-8 (Share-bio, SB-CCK8,
Shanghai, China). First, 5000 shNC-PANC-1 cells and shSTAU2-PANC-1 cells were seeded
in each well of a 96-well plate for 5 days. CCK8 reagent was added to the wells of each
dish daily. Plates of treated cells were incubated in an incubator for 4 h. The enzyme plate
analyzer was used to detect the absorbance at 450 nm using a microplate reader (Bio-Tek
SynergyH1, Vineland, NJ, USA). For cell growth assays, cell viabilities were determined
at 0, 24, 48, 72, and 96 h. Three independent trials were performed. For antiproliferative
activity of the compound, data were fitted in nonlinear regression, and IC50 values were
calculated by GraphPad Prism 8.0.

2.17. Lentivirus Production and Infection

Lentivirus particles of short-hairpin RNA against STAU2 (pGV112-shSTAU2) and its
scrambled control (PGV112-shNC) were constructed and purchased from Genechem Co.
Ltd. (Shanghai, China). Lentivirus-induced STAU2 is transformed into PANC-1 cells to gen-
erate PANC-1 knockdown cells for STAU2. In general, the lentiviral particles were collected
and transferred directly to PANC-1 cells after 72 h of transfection. Lentivirus-containing
PANC-1 cell lines were inoculated at 32 ◦C, 1200 rpm for 90 min. After the rotation inocula-
tion, puromycin was added to the cultured PANC-1 cells to select positively infected cells.
The shSTAU2 sequence was 5′-CCGGGCCAGGGAACTCCTTATGAATCTCGAGATTCAT-
AAGGAGTTCCCTGGCTTTTTG-3′, and the non-targeting shRNA sequence was 5′-CCGG-
TTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTG-3′.

2.18. Real-Time Quantitative PCR (RT-qPCR)

The total RNA isolated from cells with RNA-easy reagent was reverse transcribed
using Hiscript III 1st Strand cDNA Synthesis (Vazyme, R323-01, Nanjing, China). The
RT-qPCR reaction was carried out using the ChamQ SYBR qPCR Master mix (Vazyme,
Q331-02, Nanjing, China). See Table S1 for primers.

2.19. Western Blot Analysis

Cells were grown at 5 × 106/mL in T-75 flasks. The treated cells were lysed with RIPA
(Thermo Fisher Scientific, 89901, Waltham, MA, USA), a phosphatase inhibitor (Roche,
04906845001, Basel, Switzerland), and a protease inhibitor (Roche, 04693132001). Lysates
were quantified and boiled in SDS sample buffer, then fractionated with SDS-Page and
transferred to PVDF membranes. Blocking, antibody incubation, and washing were per-
formed in buffer containing 0.05% (v/v) Tween-20 and 5% (w/v) non-fat dry milk. The
primary antibody was diluted against the target protein in blocking solution. Membranes
were incubated overnight with the primary antibodies listed in Table S2. After four washes
in blocking solution, spots were incubated with horseradish peroxidase-conjugated sec-
ondary antibody. Protein was detected by electrochemiluminescence. Finally, the Image J
V1.8.0 software was used to perform protein quantification.
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2.20. Colony Formation Assays

One thousand cells were plated in 24-well plates to analyze colony formation in dishes.
Cells were fixed 2 weeks after pre-plating, stained with 0.1% crystal violet, and counted.

2.21. Migration Assays

In vitro cell migration assay of STAU2 knockdown transfected PANC-1 cells or PANC-
1 cells was performed using transwell plates (Falcon, 353097, New York, NY, USA). To
begin, 200 µL DMEM without fetal bovine serum was inoculated on the upper surface
at room temperature, and 500 µL DMEM medium containing 10% FBS was injected into
the wells at a ratio of 2 × 104 cells at room temperature. Cells were cultured for 24 h in
transwell chambers, and cells that did not migrate to the upper surface were removed.
Migrated cells were fixed on the underside with 4% paraformaldehyde and stained with
0.1% crystal violet for 5 min. The number of cells on the lower surface was counted under
a microscope to determine the number of migration.

2.22. Invasion Assays

In vitro cell invasion assay of STAU2 knockdown transfected PANC-1 cells or PANC-1
cells was performed using transwell plates. First, 200 µL DMEM without fetal bovine
serum was inoculated on the upper surface of 20 µL Matrigel (Corning, 356234, New York,
NY, USA) at room temperature, and 500 µL DMEM medium containing 10% FBS was
injected into the wells at a ratio of 2× 104 at room temperature. Cells were cultured for 24 h
in transwell chambers, and cells that did not migrate to the upper surface were removed.
Infiltrated cells were fixed on the underside with 4% paraformaldehyde and stained with
0.1% crystal violet for 5 min. Cell penetration into the lower surface of Matrigel was
counted, and the number of cells under the microscope was also counted.

2.23. Apoptosis Assays

Apoptosis was detected using YF®488-Annex V and PI Apoptosis Kit (US Everbright,
Y6002, Suzhou, China). Cells were seeded at 1 × 106/well, then washed twice with cold
PBS and resuspended in 1× binding buffer at a concentration of 1 × 106 cells/mL. Cell
apoptosis under 488 nm excitation was detected by flow cytometry, and the results were
analyzed using FlowJo V10 software.

2.24. RNA-Immunoprecipitation RT-qPCR (RIP RT-qPCR)

Cells were lysed in lysis buffer (100 mM KCl, 5 mM MgCl2, 10 mM Hepes pH 7.0,
1 mM DTT, 50 units/mL RNase out, 1× protease inhibitor cocktail, 1× PBS) at 4 ◦C for
2 h. A volume of 10% lysate was subjected to RNA isolation as input. Then, 10 mg Protein
A-Agrose beads (Sigma-Aldrich, P1406-250MG, Darmstadt, Germany) were pre-treated
with PBS three times and 2% BSA for 30 min and then incubated with 10 µL STAU2 or
IgG (as control) antibody at 4 ◦C for 2 h. Subsequently, the beads–antibody complex was
incubated with cell lysate on rotation at 4 ◦C overnight. Beads were washed with PBS and
then subjected to total RNA isolation. Purified RNA was reversely transcribed followed
by RT-qPCR.

2.25. RNA-Seq and Data Analysis

Cells were harvested and total RNA was extracted using Beyozol Total RNA Extraction
Reagent (Beyotime, R0011, Shanghai, China), following the instructions of the manufacturer.
Total mRNA was enriched by Obligo(dT) beads then fragmented into short fragments and
reversely transcribed into cDNA with random primers. After the second-strand cDNA was
synthesized, cDNA fragments were purified, end repaired, poly(A) was added, and they
were ligated to Illumina sequencing adapters. The ligation products were size selected by
agarose gel electrophoresis, amplified by PCR, and sequenced using Illumina HiSeq2500
by Genedenovo Biotechnology Co., Ltd. (Guangzhou, China). Raw reads were cleaned to
remove adapters or low-quality reads and rRNA mapped reads. Clean reads were mapped
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to the Homo sapiens’ genome. Gene expressions were quantified by FPKM (fragment
per kilobase of transcript per million mapped reads) value and differential expression
analysis was performed by R (v4.0.3) DESeq2 between two different groups, with false
discovery rate (FDR) below 0.05 and absolute fold change ≥2 considered differentially
expressed genes. Bioinformatic analysis was performed using the Omicsmart platform
(https://www.omicsmart.com, accessed on 26 October 2021).

2.26. Statistical Analysis

Continuous variables between two groups were compared using Student’s t-test and
Mann–Whitney Wilcoxon test. Kruskal Wallis One-Way ANOVA was used to examine
differences in more than two groups. Analysis of variance (ANOVA) was used to test for
variance between groups. The Benjamin–Hochberg method was used to adjust the false
detection rate (FDR) of p-values for many comparisons. All statistical analyses were per-
formed using R software (v 4.0.3). p-values < 0.05 were considered statistically significant.

3. Results
3.1. Identification of Prognostic RBP Signature

RNA-seq data from 170 PAAD specimens and 360 normal pancreas tissue samples
were downloaded from the TCGA and GTEx cohorts. We preprocessed the data to identify
differentially expressed RBPs using the limma software package. We screened out 477,
downregulated 221, and upregulated 256 RBPs (Figure 1A). For a further selection of
RBPs with the highest forecast value, using univariate Cox regression in a step-by-step
analysis, we chose five hub prognostic RBPs and carried out a lasso regression to establish
a risk model for PAAD patients (Figure 1B). Multiple stepwise Cox regression analyses
through the TCGA cohort demonstrated that the mRNA levels of high-risk RBPs (p = 0.0312)
and mutated KRAS genes (p = 0.01221) were independent prognostic factors (Figure S1).
The expression profiles showed a marked overexpression of STAU2, DDX60L, MRPS10,
PARN, and TLR3 in PAAD samples compared to normal samples (Figure 1C). Moreover,
the KM plot through the TCGA cohort demonstrated that PAAD patients with a higher
risk score had poor overall survival, and high expression of STAU2, DDX60L, MRPS10,
PARN, and TLR3 was also associated with worse overall survival (Figure 1D, p < 0.01).
Consistently, data from the international cancer genome consortium (ICGC) dataset showed
similar results (Figure S2, p < 0.01), but no significant difference in TLR3. Collectively, our
results showed that the five hub RBP-based risk model correlated closely with PAAD
patients’ survival.

3.2. Transcriptomic Alternation in High-Risk PAAD Patients

The differentially expressed genes (DEGs) of different risk groups were tested in the
TCGA–PAAD cohort to further analyze the underlying mechanism of the RBP genes: of
3918 DEGs, 3177 were downregulated and 741 upregulated (Figure 2A). Then, using GSEA
and KEGG pathway analysis, Hallmark and KEGG functional enrichments were performed.
They demonstrated that genes enriched in pancreatic secretion, E2F targets, G2M targets,
MTORC1 signaling, and glycolysis signaling were significantly upregulated in the high-risk
group, whereas in the low-risk group, genes enriched in MYOGENESIS, KARS signaling,
and the pancreas’ beta-cell pathway were upregulated (Figure 2B,C). These results indicated
that these RBPs might regulate PAAD occurrence and progression by affecting cellular
proliferation and metabolic pathways.

https://www.omicsmart.com
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Figure 1. Identification of prognostic RBP signature. (A) Volcano plot shows that 477 RBP genes are
significantly up- and down-regulated in PAAD patients. (B) Forest plots to show hazard ratios of the
hub RBP genes, with prognostic values in PAAD based on data from TCGA. (C) Boxplots show a
comparison of expression levels in TCGA tumor samples and GTEx normal tissues. The p-values were
calculated using the unpaired Mann–Whitney Wilcoxon test, * p < 0.01. (D) The Kaplan–Meier plotter
shows the relationship between RBP gene expression levels and overall survival in six prognostic
PAAD patients.
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Figure 2. Transcriptomic alternation in high-risk PAAD patients. (A) The Volcano plot shows
significant differences in gene expression between PAAD high-risk subgroups and low-risk subgroups.
(B) Bar graphs show KEGG pathway enrichment for risk-related DEGs in PAAD patients. (C) Diagram
of canonical gene set enrichment analysis clearly shows up- and down-regulated hallmark pathways
in high-risk subgroups.
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3.3. Upstream Regulation of Alternated Hub RBPs in PAAD Patients

To explore the upstream regulation of these highly expressed RBPs, we examined
the copy-number changes and methylation of five RBP genes based on the website server
cBioPortal. The correlations were as follows: 0.42 between copy-number alterations with
mRNA expression of STAU2 (p < 0.001); −0.33 between DNA methylation with mRNA
expression of STAU2, (p < 0.001) (Figure 3A); 0.093 between copy-number alterations with
mRNA expression of DDX60L (p < 0.001); −0.44 between DNA methylation with mRNA
expression of DDX60L (p < 0.001) (Figure 3B); 0.48 between copy-number alterations with
mRNA expression of MRPS10 (p < 0.001); −0.26 between DNA methylation with mRNA
expression of MRPS10 (p < 0.001) (Figure 3C); 0.032 between copy-number alterations
with mRNA expression of TLR3 (p < 0.001); −0.37 between DNA methylation with mRNA
expression of TLR3 (p < 0.001) (Figure 3D); 0.49 between copy-number alterations with
mRNA expression of PARN (p < 0.001); and 0.3 between DNA methylation with mRNA
expression of PARN (p < 0.001) (Figure 3E).
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Figure 3. Upstream regulation of alternated hub RBPs in PAAD patients. Top scatter plots showed
the relationship between mRNA expression and copy number alterations in (A) STAU2, (B) DDX60L,
(C) MRPS, and (D) TLR3. (E) The bottom scatterplot of PARN shows the relationship between mRNA
expression and promoter DNA methylation levels in (A) STAU2, (B) DDX60L, (C) MRPS, (D) TLR3,
and (E) PARN.

This result indicated that STAU2 might be copying the number-regulating genes
MRPS10 and PARN and methylation-regulating genes DDX60L and TLR3.

3.4. High Expression of STAU2 Was Associated with a Negative Prognosis of PAAD

Among the five RBPs, STAU2 had the highest hazard ratio, so we selected it for further
analysis. We observed the status of STAU2 gene modification based on the cBioPortal web-
site sever. The frequency of the highest alteration in STAU2 (>8%) was observed in patients
with uterine Cowden syndrome (CS) tumors with “amplification” as the primary type.
The amplification-type of STAU2 was the main type of pancreatic cancer, and its mutation
frequency is around 5% (Figure 4A). In addition, we investigated possible associations
between STAU2 mutations and PAAD clinical outcomes. The data in Figure 4B indicate
that PAAD cases without genetically altered STAU2 had a better overall survival prognosis
(p = 0.0064) compared with cases with genetically altered STAU2, in which amplification is
the most important part the alteration. These results are consistent with the poor prognosis
of PAAD patients with STAU2 amplification and high expression.
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Figure 4. High expression of STAU2 correlates with prognosis in PAAD. (A) Bar plots to show the
genetic alteration frequency of STAU2 among multiple tumors in TCGA. (B) Kaplan–Meier plots
show overall survival in STAU2 alteration or non-alteration patients. (C) Forest plot showing the
hazard ratios of multivariate Cox regression of TCGA in PAAD patients. (D) The receiver operating
characteristic curve (ROC) predicts the accuracy of STAU2 as a diagnostic factor for pancreatic
adenocarcinoma. (E) RT-qPCR experiment to show expression of STAU2 in HPDE6-C7, BXPC-3, and
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PANC-1. Statistical analysis of the results of three independent experiments was performed using
the unpaired Student’s t-tests: **** p <0.0001. Error bar, mean ± SD, n = 3. (F) The protein levels of
STAU2 in HPDE6-C7, BXPC-3, and PANC-1 cells were detected by western blot. Grayscale analysis
of the western blot results. Statistical analysis of the results of three independent experiments was
performed using the unpaired Student’s t-tests: * p < 0.05, ** p < 0.01. Error bar, mean ± SD, n = 3.
The uncropped Western Blot images can be found in Figure S7.

For patient specificity (geographic specificity) and clinical features specificity of STAU2,
we respectively conducted expression and prognosis analysis in different conditions. For
the geographical specificity of patients, we analyzed STAU2 expression in pancreatic cancer
samples of different ethnicities (White, Asian, and Black) and found no significant dif-
ferences. We also analyzed STAU2 expression in pancreatic cancer patients without and
with radiation therapy and found that pancreatic cancer patients who received radiation
therapy had significantly lower STAU2 expression than those who did not (Figure S3A,B).
A multivariate TCGA–Cox regression analysis showed that high levels of STAU2 mRNA
(p = 0.04562), age (p = 0.0458) and KRAS (p = 0.00519) were independent prognostic fac-
tors (Figure 4C). Analysis of a multivariate Cox regression through the ICGC dataset
confirmed that a high STAU2 mRNA level (p = 0.04703) is an independent prognostic
factor (Figure S3C). We also analyzed the influence of STAU2 expression on the develop-
ment of PAAD through the receiver operating curve (ROC), and the area-under-the-curve
(AUC) value of STAU2 was 0.96. These results suggested that STAU2 expression might be
associated with PAAD progression (Figure 4D).

We then analyzed STAU2 mRNA levels in three pancreatic cell lines. Compared with
the normal HPDE6-C7 cell line, PANC-1 and BXPC-3 cell lines showed a significant level of
STAU2 mRNA regulation (Figure 4E). Then, we analyzed the expression level of STAU2
protein in PAAD cell lines by Western Blot and found that the expression of STAU2 was
higher in PANC-1 and BXPC-3 cells compared to HPDE6-C7 cells (Figure 4F).

3.5. Down-Regulation of STAU2 Significantly Reduces the Burden of PANC-1 Cell Line

We depleted STAU2 in the PANC-1 cell line, which we selected for further experiments
(Figure 5A). Invasion is an important part of migration, and cells with high migration ability
generally have high an invasion ability. Invasion and migration ability are both markers
for tumor malignancy. Deleting STAU2 significantly inhibited cell cloning (Figure 5B), cell
growth (Figure 5C), migration, and PANC-1 cell line invasion (Figure 5D). In addition,
inhibition of STAU2 in PANC-1 cells induced apoptosis (Figure 5E). WB results showed
upregulation of E-cadherin, whereas N-cadherin, BCL-2, and caspase 7 were downregu-
lated (Figure 5F). In summary, reducing the level of STAU2 significantly reduced PAAD
malignancy, suggesting that STAU2 plays a key role in PAAD regulation and may serve as
a potential target for novel anticancer drugs.

3.6. The Function Analysis of STAU2 and Its Related Genes

To better understand the mechanism behind STAU2, we divided pancreatic cancer
samples collected by TCGA into high- and low-expressing STAU2 groups to test the dif-
ference between them. Of the DEGs, 174 genes were downregulated and 104 upregulated
(Figure 6A). Hallmark enrichment showed that upregulated genes were enriched in pan-
creatic beta cells, hedgehog signaling, UV-response, increased KRAS signaling, mitotic
spindle, and the inflammatory response pathway. The downregulated genes were en-
riched in lower KRAS signaling, DNA repair, and oxidative phosphorylation (Figure 6B).
According to the STRING interactive network, 50 proteins that can bind to STAU2 were
characterized (Figure 6C), and their 50 genes were enriched via the KEGG pathway on the
online platform Omicsmart. The main pathways are RNA transport, spinocerebellar ataxia,
mRNA surveillance, and ubiquitin-mediated proteolysis (Figure 6D). Then, we enriched
the KEGG pathways with STAU2-related genes, which were then explored by the FPKM
matrix for TCGA–PAAD patients (Figure S4). The main pathways are salmonella infection,
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ubiquitin-mediated proteolysis and endocytosis, spliceosome, and mRNA surveillance
(Figure 6E). The dot plots show the hallmark pathway enrichment results of STAU2-related
genes, which were found to be associated with mitotic spindle, protein secretion, MYC
targets V1, UV-response, and TGF-β signaling (Figure 6F). These results indicated that
STAU2 and its related genes might regulate cell proliferation and the metabolism pathways
of PAAD cells.

3.7. Identification of STAU2 Target Genes

To determine the downstream STAU2 target genes, we analyzed the genomic distri-
bution of STAU2-CLIP peaks (GSE134971) [34] A strong enrichment of STAU2 binding
to the last exon was noted on or close to the 3′ untranslated region (UTR) of mRNA
(Figure 7A). As shown in Figure 7B, high-risk PAAD patients had an overrepresentation
of the STAU2 binding motif. The logo representation plots show the putative STAU2
binding motifs overrepresented around STAU2-related genes (Figure 7C). TCGA patients
were sorted according to STAU2 expression from low to high. The heatmap shows the
expression of STAU2-correlated genes (Figure S4). To investigate which gene expression
could be regulated by STAU2, we performed a transcriptome-wide RNA-sequence analysis
of STAU2-knockdown PANC-1 and control cells. We identified seven genes among the
STAU2-correlated genes (TCGA–PAAD), STAU2-binding genes (GSE134971), and STAU2-
correlated downregulated genes in shSTAU2 samples (Figures S5A and 7D). Correlations
between STAU2 expression and PALLD, HNRNPU, SERBP1, DDX3X, ALDH5A1, FAM8A1,
and TBC1D5 expression levels were positive (Figures S5B and 7E). We then found that
PAAD patients with high PALLD, HNRNPU, SERBP1, and DDX3X mRNA had a poor
prognosis (Figures S5C and 7F). Moreover, using RT-qPCR, we confirmed the expression of
these genes in shNC and shSTAU2 PANC-1 cells, and the expressions of PALLD, HNRNPU,
SERBP1, and DDX3X were markedly reduced (Figure 7G). We also confirmed that they
were the direct editing targets of STAU2 (Figures S5D and 7H).

3.8. Correlation Analysis between STAU2 Expression and Immune Infiltration Cells

Immune cells play a critical role in the tumor microenvironment, and tumor infiltration
is closely related to the onset, development, and metastasis of tumors. Herein, we analyzed
the correlation between the expression of STAU2 and six types of immune infiltration
cells: B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells,
by the TIMER online website. The results showed that there was a positive correlation
between the STAU2 expression level and these infiltration cells, except for CD4+ T cells,
for which there was no significant correlation (Figure 8A). To further investigate the
effect of STAU2 on different functional T cells, we analyzed the correlation between the
expression of STAU2 and tumor immune infiltration cells (TIICs) using the xCell algorithm
in the PAAD dataset. The results showed that high STAU2 expression correlates with a
common lymphoid progenitor, granulocyte–monocyte progenitors, CD8+ T cell, CD8+
central memory T cell, and CD4+ memory T cell. Meanwhile, low STAU2 expression was
related to B plasma cells and CD4+ central memory and CD4+ Th1 T cells (Figures 8B and
S6). Moreover, we examined the relationship between the expression of STAU2 and some
immune checkpoint molecules: SIGLEC15, TIGIT, PDCD1LG2, PDCD1, LAG3, HAVCR2,
CTLA4, and CD274 (PD-L1). Interestingly, the expression of STAU2 was significantly
associated with them (Figure 8C). To further understand the crosstalk of STAU2 in immune
responses, we studied the correlation between STAU2 expression in PAAD and various
immunological characteristics. The genes were used to characterize immunosuppressive
cells, including regulatory T cell (Treg), tumor-associating macrophage (TAM), and myeloid-
derived suppressor cell (MDSC). Our finding also indicated that the expression of STAU2
is positively related to these marker sets of immunosuppression cells through TIMER in
the PAAD dataset (Figure 8D).
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Figure 5. Functional analysis of STAU2 gene downregulation in pancreatic cancer. (A) Western blot
analysis of STAU2 protein levels in vector-transfected shSTAU2 or PANC-1 cells. Vinculin was used
as an endogenous control. The uncropped Western Blot images can be found in Figure S8. (B–D) The
effect of knocking down the STAU2 gene on colony formation (B), cell growth (C), migration (D),
left, cells stained with crystal violet were cells migrating to the low surface), and invasion (D),
right, crystal violet stained cells invading through Matrigel to the low surface) in PANC-1 cell
lines. (E) Representative flow cytometry plot for quantifying apoptosis in PANC-1 STAU2 KD and
control cells. (F) Western blot analysis of protein changes associated with cell migration, invasion,
and apoptosis following STAU2 knock-down. Statistical analysis of the results of the above three
independent experiments was performed using the unpaired Student’s t-tests: ns p > 0.05, ** p < 0.01,
**** p <0.0001. Error Bar, mean ± SD, n = 3. The uncropped Western Blot images can be found in
Figure S9.
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Figure 6. The function analysis of STAU2 and its-related genes. (A) Volcano plots show significantly 

differentially expressed genes between high and low expressing subpopulations of STAU2 in 

PAAD. (B) GSEA enrichment of the STAU2 correlated genes. (C) The PPI analysis of STAU2 

(STRING). (D) KEGG enrichment of the PPI genes. (E) Dot plots showing enriched KEGG pathways

of STAU2-related genes. (F) Dot plots showing hallmark pathway enrichment results of STAU2-

related genes. 
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Figure 6. The function analysis of STAU2 and its-related genes. (A) Volcano plots show significantly
differentially expressed genes between high and low expressing subpopulations of STAU2 in PAAD.
(B) GSEA enrichment of the STAU2 correlated genes. (C) The PPI analysis of STAU2 (STRING).
(D) KEGG enrichment of the PPI genes. (E) Dot plots showing enriched KEGG pathways of STAU2-
related genes. (F) Dot plots showing hallmark pathway enrichment results of STAU2-related genes.
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Figure 7. Identification of STAU2-target genes. (A) The genomic distribution of STAU2-CLIP peaks
(GSE134971), presented by Venn diagram. (B) Heatmaps to show the ordered genes based on their
fold-changes between low-risk and high-risk PAAD patients. These genes were then grouped into
the same fraction (approximately 1000 genes per expression compartment). The red bar on a black
background indicates the range of values for each container (the minimum value is −2, and the
maximum value is 2). The corresponding heatmap below shows the enrichment scores of STAU2; red
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or yellow represent the overrepresentation of the STAU2 binding motif, while blue represents the
underrepresentation of the STAU2 binding motif. (C) Logo representation plots to show the putative
STAU2 binding motifs overrepresenting around STAU2-binding genes. (D) Venn diagrams show
the overlap of STAU2-correlated genes, STAU2-binding genes, and STAU2-correlated down genes.
(E) Scatter plots to show the correlation between STAU2 and STAU2-target genes. (F). Kaplan–Meier
plot showing the relationship between expression levels of STAU2-target genes and overall survival
of TCGA–PAAD patients. (G) RT-qPCR experiments demonstrated the expression of STAU2 target
genes in PANC-1 cells transfected with shSTAU2 or vector. Statistical analysis was performed on the
results of three independent experiments using the t-test: ns p > 0.05, * p < 0.05. Error bar, mean ± SD,
n = 3. (H) Relative enrichment of STAU2 target genes in PANC-1-abSTAU2 over IgG (control)
determined by RIP RT-qPCR assays. GAPDH shown as negative control. Data were generated from
three independent trials, Statistical analysis was performed using the t-test: * p < 0.05, ** p < 0.01.
Error bar, mean ± SD, n = 3.

3.9. Predictive Analysis of STAU2 Expression in PAAD Using Immune System Cells

Since STAU2 expression was significantly associated with immune system infiltration
and poor prognosis, we further investigated whether it affects PAAD immune infiltration.
The prognostic analysis was conducted based on expression in PAAD-related immune cell
subsets. As shown in Figure 9A,B, high expression of STAU2 and reduced infiltration of
CD8+ T cells, eosinophils, macrophages, regulatory T cells, and type 2 T-helper cells were
associated with a poor prognosis. However, under different levels of B cells, CD4+ memory
cells, mesenchymal stem cells, and natural killer T cells, the expression of STAU2 had no
significant correlation with PAAD prognosis. These results suggested that the effect of
STAU2 may be partly due to immune infiltration.

3.10. Drug Sensitivity Analysis of the STAU2

We used the GDSC and CTRP databases to display the drug sensitivity of STAU2
through bubble charts. Figure 10 shows that the increased expression of STAU2 was as-
sociated with drug resistance. In the GDSC database, highly expressed STAU2 might be
sensitive to 17-AAG (Hps90 inhibitor) and RDEA119 and trametinib (MEK inhibitors).
Conversely, highly expressed STAU2 might be resistant to drugs such as BX-912 (PDK1 in-
hibitor), GSK1070916 (Aurora kinase inhibitor), and navitoclax (Bcl-2 inhibitor) (Figure 10A).
In the CTRP database, high expression of STAU2 might be resistant to BI-2536 (PLK in-
hibitor), GSK461364 (PLK inhibitor), and JQ-1 (BET inhibitor) (Figure 10B). Then, we
explored the correlation between STAU2 expression and the IC50 of the post-pancreatic
surgery adjuvant chemotherapy drugs (5-Fluorouracil and Gemcitabine) and Erlotinib,
used for targeted therapy for unresectable locally advanced pancreatic cancer. The result
showed a negative correlation with the IC50 of 5-Fluorouracil and Gemcitabine, but a
positive correlation with the IC50 of Erlotinib (Figure 10C). Then, we tested the IC50 values
of the three drugs against shNC and shSTAU2 in PANC-1 cells using cell counting kit 8
(CCK8). The result showed that 5-Fluorouracil and Gemcitabine increased the IC50 value of
shSTAU2 PANC-1 cells relative to shNC PANC-1 cells, whereas Erlotinib reduced the IC50
value (Figure 10D). These data suggest that patients with high levels of STAU2 mRNA are
more sensitive to 5-Fluorouracil and Gemcitabine but more resistant to Erlotinib, making
these drugs potential targets for combination therapy.
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Figure 8. Correlation analysis of STAU2 expression with levels of immune infiltration and immune
checkpoints in pancreatic adenocarcinoma (A) STAU2 positively correlates with infiltration of B cells, CD8+
T cells, macrophages, neutrophils, and dendritic cells by the TIMER. (B) Immune cells’ score heatmap
associated with STAU2 expression. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Correlation analysis of STAU2
expression level and the level of eight immune control points in pancreatic cancer * p < 0.05, ** p < 0.01.
(D) Correlation analysis of STAU2 and Treg, TAM, and MASC cell gene markers in TIMER.
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Figure 9. Kaplan–Meier survival curve of high and low expression of STAU2 in pancreatic cancer-
immune cell subsets. (A) Forest plot showing the prognostic value of STAU2 expression in different
subsets of immune cells in PAAD patients. (B) The Kaplan–Meier plotter method was used to
demonstrate the correlation between STAU2 expression and OS in different subsets of immune cells
from PAAD patients.
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Figure 10. Prediction of the relationship between STAU2 expression and drug sensitivity. (A) Drug
sensitivity of STAU2 from GDSC. Dot plots show correlations between gene expression and GDSC
connectivity. (B) Drug sensitivity of STAU2 from CTRP. Scatter plot showing the correlation between
gene expression and CTRP binding. The size of the dots represents the FDR value, and the color of
the dots represents the correlation, with red being positively correlated and blue being negatively
correlated. (C) The correlation between IC50 score of first-line drugs for pancreatic adenocarcinoma
and STAU2 gene expression was analyzed by Spearman correlation. (D) IC50 of shSTAU2 PANC-1 cell
and shNC PANC-1 cell treated by 5-Fluorouracil, Gemcitabine, and Erlotinib. Data were generated
from three independent trials. Error bar, mean ± SD, n = 3.
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4. Discussion

As the third-leading cause of cancer death in western countries [36], the diagnosis
and treatment of PAAD patients is challenging due to tumor heterogeneity and the im-
munosuppressive tumor microenvironment [37]. Currently, surgery, chemotherapy, and
radiotherapy are the main treatment strategies. However, side effects and drug resistance to
chemotherapy and radiotherapy result in treatment failures [38]. Indeed, with a persistently
rising morbidity and extremely poor prognosis, PAAD will become the second-leading
cause of cancer death by 2030 [5,6]. Therefore, identifying accurate biomarkers and ther-
apeutic targets for PAAD is urgently needed. Studies of RNA-binding proteins (RBPs)
have demonstrated that their dysregulation plays a key role in altering RNA metabolism
in various malignant tumors, and that they are considered to be attractive targets for the
occurrence and aggressiveness of PAAD [39,40].

In the previous study, we explored the hub RBPs of PAAD from the TCGA and GTEx
databases. Furthermore, we obtained a high-value predictive model with five RBPs. Based
on the analyses from univariate Cox regressions and the Kaplan–Meier plotter database,
we observed a correlation between STAU2 expression and PAAD progression. First, we
observed that the highest rate of genetic alternation in STAU2 occurred in patients with
“amplification” as the primary type, and patients with genetic mutation of STAU2 showed
poor overall survival. Therefore, a multivariate stepwise Cox regression analysis, ROC
analysis, and experimental STAU2 study showed that high expression of STAU2 was associ-
ated with poor clinical outcomes, and that downregulation of STAU2 resulted in a decrease
in the growth, migration, and invasion of PAAD cells and induced apoptosis. Moreover,
after analyzing the overlap of STAU2-CLIP, STAU2-correlated genes, and STAU2-correlated
downregulated genes in shSTAU2 samples, we identified PALLD, HNRNPU, SERBP1, and
DDX3X as STAU2 target genes. Furthermore, increased STAU2 expression correlated posi-
tively with immune cell PAAD infiltration and immune checkpoint expression. Our data
also suggested that STAU2 expression induces immunosuppression through accumulation
of Treg, TAM, and MDSC. Finally, the analyses of the GDSC and CTRP databases indicated
that STAU2 expression was associated with drugs resistance, and that patients with high
STAU2 were more sensitive to chemotherapy drugs (5-Fluorouracil and Gemcitabine) but
more resistant to Erlotinib, an EGFR inhibitor.

Based on the data from this study, we demonstrated that the RNA-binding protein
STAU2 is a useful regulator of PAAD initiation and progression, suggesting that target-
ing RBPs is a promising therapeutic strategy for patients with PAAD. Dysregulation of
RNA metabolism by altering RBP expression was associated with PAAD occurrence and
aggressiveness. Therefore, investigating the most commonly suitable RBPs may lead to
promising innovative therapy targets. In the present study, based on the TCGA and GTEx
databases, we identified 477 DERBPs and screened out five hub RBPs (STAU2, DDX60L,
MRPS10, PARN, TLR3) to build our prognostic signature. By adopting univariate and mul-
tiple stepwise Cox and lasso regression analyses in TCGA–PAAD, we found the profiles of
these five genes to be overexpressed in PAAD samples. In addition, the TCGA cohort KM
survival map showed that high expression of these five genes was associated with poorer
overall survival. Furthermore, high expression of STAU2, DDX60L, MRPS10, and PARN
was also evaluated by a KM survival plot through ICGC–PAAD. The results collectively
demonstrated that the five hub RBP-derived risk model demonstrated a high prognostic
and diagnostic ability.

DEGs in different risk groups were used to study the molecular mechanisms of patients
at high and low risk for PAAD. In total, 3177 downregulated and 741 upregulated genes
were screened out, and Hallmark and KEGG functional enrichments were performed.
We found that pancreatic secretion, E2F targets, G2M targets, MTORC1 signaling, and
glycolysis signaling were highly activated in the high-risk group. These results indicated
that these RBPs might regulate cell proliferation and PAAD metabolism pathways. Several
studies have demonstrated the function of these genes in various cancers. For instance,
Bajaj et al. reported that STAU2 is a critical factor in the development of myeloid leukemia
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because it drives histone methylation [34]. DExD/H-Box 60 (DDX60L), a member of
the DExD/H-Box family of helicases involved in RNA metabolism, has been identified
as influencing the survival and metastasis of pancreatic ductal adenocarcinoma (PDAC)
cells [41]. Mitochondrial ribosomal protein S10 (MRPS10), a 28S subunit protein belonging
to the S10P ribosomal protein family, was found to be elevated in breast cancer, which
might promote the fatty acid oxidation (FAO) process to support the rapid metabolism
of tumor cells [42]. Toll-like receptor 3 (TLR3) is an important member of the TLR family
and is involved in double-stranded RNA binding and activation of the NF-κB signaling
pathway. It has been reported as an oncogene involved in the proliferation of tumor
cells that are highly expressed in head and neck, prostate, and breast cancers, as well as
in hepatocellular carcinoma and multiple myeloma [43]. Poly(A)-specific ribonuclease
(PARN), which removes adenosine residues from the poly(A) tails after catalyzing mRNA
deadenylation, was upregulated in gastric cancer, acute leukemia, and small cell lung
carcinoma [44]. Furthermore, we found that the genetic alteration of STAU2, MRPS10, and
PARN correlated with mRNA levels, and that the mRNA level of STAU2 was also regulated
by methylation. In addition, DDX60L and TLR3 might be methylation-regulating genes.

After focusing on the expression, hazard ratios with prognostic values, and survival
tests of these five hub genes, we turned our attention to STAU2 to evaluate the reliability
of the RBP-related signature. STAU2 contains five conserved RNA-binding domains that
stabilize and transport mRNA. While it has been studied in hematological malignancies, its
function in PAAD remains unknown. Herein, we showed that STAU2 displays high genetic
alteration frequency among multiple tumors in TCGA cohorts, and that genetically mutated
STAU2 patients showed poor prognosis in overall survival. Furthermore, multivariate
Cox regression analysis showed that in the TCGA and ICGC databases, high expression
of STAU2 mRNA was an independent prognostic factor for PAAD patients, and ROC
analysis predicted that STAU2 expression was associated with the progression of PAAD. In
addition, we confirmed that the transcript and protein levels of STAU2 are higher in PAAD
cells than in normal pancreatic cells (HPDE6-C7). We observed that silencing STAU2 not
only inhibited cell proliferation, colony formation, and metastasis but also induced tumor
apoptosis. These results suggest that STAU2 plays a key role in PAAD regulation and is a
potential target for the development of new anticancer drugs.

Notably, we explored co-expression genes with STAU2 using the Linkedomics dataset,
interactive genes using the STRING database, and relative genes using the FPKM matrix
across TCGA–PAAD patients. Hallmark and KEGG functional analyses revealed that they
were enriched mainly in processes such as UV-response, mitotic spindle, RNA transport, the
mRNA surveillance pathway, TGF-β signaling, and the inflammatory response pathway.
Furthermore, we identified seven key target genes of STAU2 by exploring the STAU2-
correlated genes (TCGA–PAAD), STAU2-binding genes (GSE134971), and downregulating
STAU2-correlated genes (RNA-Seq) database. Correlation analysis and RT-qPCR and RIP
RT-qPCR validation showed that STAU2 binds and stabilizes PALLD, HNRNPU, SERBP1,
and DDX3X mRNA, and that upregulation of these genes leads to poor overall survival in
PAAD patients. Previous studies have reported the biological function of these targets in
several kinds of cancers. PALLD promotes pancreatic cancer cell invasion by promoting
the invasive formation of tumor-associated fibroblasts [45]. HNRNPU is overexpressed in
hepatocellular carcinoma (HCC) and promotes HCC occurrence and progression [46,47].
SERBP1 is a member of the RG/RGG family of RBPs, which is markedly overexpressed
in glioblastoma and in prostate, ovarian, and liver cancer and is associated with poor
outcomes [48,49]. DDX3X is a member of the ATP-dependent RNA helicase subfamily,
which is involved in mRNA splicing, transport, and translation. DDX3X functions as
an oncogenic protein in regulating the tumorigenesis and metastasis of various cancers,
such as glioma, prostate cancer, Ewing sarcoma, and breast cancer [50,51]. Moreover,
Liang et al. reported that upregulation of DDX3X is associated with a poor prognosis
in pancreatic ductal adenocarcinoma (PDAC) patients [52]. The molecular regulatory
mechanism between STAU2 and these substrates needs to be explored further.
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In recent years, immunotherapy has been applied in a variety of cancers, but due
to the heterogeneity of tumors and complexity of the tumor microenvironment, PAAD
patients display poor response to single-agent immunotherapy [2]. Immune infiltration
levels exhibit a close relation to immunotherapy responses and exert an important role
in affecting the prognosis of patients. Here, we found that STAU2 correlated positively
with the common lymphoid progenitor, granulocyte–monocyte progenitors, CD8+ T cell,
CD8+ central memory T cell, and CD4+ memory T cell. Meanwhile, STAU2 negatively
correlated with B plasma, CD4+ central memory, and CD4+ Th1 T cells in PAAD. Moreover,
STAU2 expression was positively associated with immune checkpoint markers, such as
PD-1, PD-L1, and CTLA4. Our study also showed that STAU2 expression was positively
associated with marker sets of immunosuppressive cells (Treg, TAM, and MDSC). More
importantly, PAAD patients with high STAU2 expression and decreased CD8+ T cells,
eosinophils, macrophages, regulatory T cells, and type 2 T-helper cells exhibited poor prog-
noses. Collectively, these results indicate that a high STAU2 expression might contribute
to PAAD immune system evasion, and this could serve as a potential immunotherapeutic
target. Currently, the main treatment strategies are surgery and chemotherapy. Previous
studies have shown that RBPs are closely related to drug sensitivity [53,54]. Our results
showed that patients with high STAU2 mRNA were more sensitive to 5-Fluorouracil and
Gemcitabine, but more resistant to Erlotinib (an EGFR inhibitor), which could serve as a
potential target for combinatorial therapy.

5. Conclusions

In summary, our study carried out a risk model based on five RBPs via a series of
bioinformatic techniques in PAAD–TCGA and GTEx datasets. High expression of these five
RBPs offers excellent prognostic and diagnostic potential. Among these genes, STAU2 was
the most high-potential biomarker, involved in PAAD occurrence and progression by regu-
lating the substrate mRNA surveillance pathway, which was confirmed by the experiment.
Furthermore, we found that a high expression level of STAU2 not only contributes to PAAD
immune system evasion but also correlates with chemotherapy drug sensitivity, which
implies that STAU2 could serve as a potential target for combinatorial therapy. All these
findings indicate that STAU2 is a novel prognostic and diagnostic biomarker for PAAD,
which highlights the attractive potential of RBPs in cancer therapy and drug development.
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