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BACKGROUND: Glioblastoma patients are still not cured by the treatments available at the moment. We investigated the therapeutic
properties of temozolomide in combination with F16– IL2, a clinical-stage immunocytokine consisting of human interleukin (IL)-2
fused to the human antibody F16, specific to the A1 domain of tenascin-C.
METHODS: We conducted three preclinical therapy studies, using subcutaneous and intracranial U87MG glioblastoma tumours
xenografted in BALB/c nude mice. The same therapeutic schedule was used, consisting of five total administrations every third day,
of 0.525 mg temozolomide, 20 mg F16– IL2, the combination, or the control solution.
RESULTS: Immunohistochemical analysis of U87MG xenografts and of human glioblastoma specimens showed selective tumour
staining of F16. A quantitative biodistribution confirmed the preferential tumour accumulation of radiolabelled F16– IL2. In the
study with subcutaneous xenografts, the combination of F16– IL2 with temozolomide induced complete remission of the
animals, which remained tumour free for over 160 days. The same treatment led to a consistent size reduction of intracranial
xenografts and to a longer survival of animals. The immunocytokine promoted the recruitment of leukocytes into tumours of
both models.
CONCLUSION: The combined use of temozolomide with F16– IL2 deserves clinical investigations, which will be facilitated by the
excellent safety profile in cynomolgus monkeys, and by the fact that F16– IL2 is in clinical trials in patients with cancer.
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Central nervous system tumours rank first among neoplasia types
for the average years of life lost (Burnet et al, 2005). Approximately
13 000 deaths and 18 000 new cases of central nervous system
tumours occur annually in the United States (CBTRUS Statistical
report, 2006). Mortality rates are generally similar to incidence
rates in most geographical areas (Ferlay et al, 2000).

The term ‘glioma’ refers to tumours of glial cell origin and
includes astrocytomas, oligodendrogliomas, ependimomas, and
mixed gliomas (Kleihues and Cavenee, 2000). They account for
more than 70% of all brain tumours and their prognosis is very
poor. Glioblastoma is the most frequent (65% of all gliomas) and
also the most malignant histological type (Ohgaki et al, 2004).

The prognosis of glioblastoma continues to be dismal in spite of
progress made in the molecular characterisation of the most
frequent genetic alterations of the disease (Parsons et al, 2008).
Even state-of-the art multimodality treatments, although capable
of substantially extending life expectancy, are not curative (Stupp
et al, 2005). The current standard of care for patients with
glioblastoma includes surgery, radiotherapy, and concurrent and
adjuvant temozolomide (Stupp et al, 2005). Temozolomide is an
oral alkylating drug that has demonstrated antitumour activity as a
single agent in the treatment of recurrent glioma (Newlands et al,

1997; Yung et al, 2000; Stupp et al, 2001). Temozolomide is
indicated for newly diagnosed glioblastoma patients in association
with radiotherapy in the postsurgical period (75 mg m�2 p.o. daily
for 6 weeks, during a focal radiotherapy taking place five times a
week for 6 weeks, for a total dose of 60 Gy), and alone during the
maintenance period (150– 200 mg m�2 p.o. on days 1– 5, every 28
days for six cycles). Nevertheless, this treatment modality yields a
median survival benefit of 2.5 months, compared with adjuvant
radiotherapy alone (Stupp et al, 2005).

Conventional cytotoxic therapies of cancer often do not
discriminate between tumour and normal tissues. To achieve
therapeutically relevant concentrations in the tumour mass, large
drug doses have to be administered to the patient, leading to a
poor therapeutic index and unacceptable toxicities to healthy
tissues (Bosslet et al, 1998). The selective delivery of therapeutic
agents to the tumour site, using antibodies directed against
tumour-associated antigens, represents a promising strategy to
overcome the disadvantages of conventional cancer therapies
(Adams and Weiner, 2005; Carter, 2006; Schrama et al, 2006).
Antigens that are expressed around the tumour neovasculature are
especially attractive targets for antibody-based pharmacodelivery
applications because of their inherent accessibility for blood-borne
agents and because angiogenesis is a characteristic feature
of virtually all aggressive solid tumours (Thorpe, 2004; Neri and
Bicknell, 2005; Schliemann and Neri, 2007). Our group has
demonstrated the possibility of delivering bioactive agents to the
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subendothelial extracellular matrix using monoclonal antibodies
specific to splice isoforms of fibronectin and tenascin-C (Birchler
et al, 1999; Carnemolla et al, 2002; Halin et al, 2002, 2003; Borsi
et al, 2003; Ebbinghaus et al, 2005; Neri and Bicknell, 2005; Tijink
et al, 2006; Kaspar et al, 2007). In particular, encouraging results
obtained with derivatives of the human monoclonal antibodies L19
(specific to the extradomain B of fibronectin) and F16 (specific
to the extradomain A1 of tenascin-C) have led to the clinical
development of five immunocytokines and radioimmunoconju-
gates (Carnemolla et al, 2002; Halin et al, 2002, 2003; Borsi et al,
2003; Ebbinghaus et al, 2005; Menrad and Menssen, 2005;
Schliemann and Neri, 2007; Mårlind et al, 2008).

Microvascular proliferation is a characteristic feature of
glioblastoma (Kleihues and Cavenee, 2000; Castellani et al, 2002).
An overexpression of the extradomain B of fibronectin in high-
grade gliomas has been established and the monoclonal antibody
L19 has been shown to target glioblastoma in patients (Castellani
et al, 1994, 2002; Santimaria et al, 2003). Furthermore, radio-
labelled preparations of monoclonal antibodies specific to the A1
or the D domain of tenascin-C have been investigated for the
radioimmunotherapy of patients with glioblastoma (Riva et al,
2000; Paganelli et al, 2006; Zalutsky et al, 2007, 2008).

In this study, we have explored the possibility of using
immunocytokine F16–IL2 in combination with temozolomide for
the therapy of experimental murine models of glioblastoma. F16–IL2
is a noncovalent homodimeric immunocytokine consisting of the
human proinflammatory cytokine interleukin (IL)-2 fused to the
human antibody fragment scFv(F16). Both F16 and F16-IL2 have been
shown to intensely stain aggressive cancer types and to preferentially
accumulate at the tumour site following intravenous administration
(Brack et al, 2006; Mårlind et al, 2008). F16–IL2 has recently been
shown to mediate an anticancer effect, which can be potentiated by
coadministration of taxanes or adriamycins, leading to the initiation
of two phase Ib clinical studies in patients with metastatic breast or
ovarian cancer (F16–IL2þ doxorubicin), or breast or lung cancer
(F16–IL2þ paclitaxel). Tumour-targeting immunocytokines based on
IL2 have previously been demonstrated to mediate the infiltration of
immune cells into the tumour mass, with natural killer (NK) cells as
the main mediator of therapeutic activity (Reisfeld and Gillies, 1996;
Carnemolla et al, 2002; Mårlind et al, 2008; Schliemann et al, 2009).
These properties may be beneficial in the context of glioblastoma
therapy (Dunne et al, 2001; Albertsson et al, 2003). In our
experiments, F16–IL2 was found to potentiate the therapeutic action
of temozolomide in nude mice bearing subcutaneous and orthotopic
human glioblastoma xenografts.

MATERIALS AND METHODS

Cell lines and animals

Human subcutaneous and orthotopic glioblastoma xenografts
were obtained by injection of U87MG human glioblastoma
cells (ATCC Nr: HTB-14). This cell line was cultured in MEM
(Invitrogen, Basel, Switzerland), supplemented with 10% fetal calf
serum (Invitrogen), 2 mM L-glutamine, 1 mM sodium pyruvate, and
100 U mL�1 ampicillin, and incubated at 371C in 5% CO2. Animal
experiments with subcutaneous glioblastoma xenografts were
conducted in female BALB/c nude mice (Charles River Labora-
tories, Sulzfeld, Germany) under a project licence granted by the
Veterinäramt des Kantons Zürich (198/2005), whereas orthotopic
glioblastoma therapy experiments were conducted in male BALB/c
nude mice (Charles River Laboratories), according to the
University of Milan animal facility rules.

Antibodies and therapeutic agents

The L19 antibody, specific to the extradomain B of fibronectin, the
F16 antibody, specific to the extradomain A1 of tenascin-C, and

the preparation and characterisation of the F16– IL2 fusion protein
with human interleukin-2 have been described before (Pini et al,
1998; Neri and Bicknell, 2005; Brack et al, 2006; Mårlind et al,
2008) Temozolomide (ABCR GmbH & Co. KG, Karlsruhe,
Germany) was dissolved in a saline solution (H2O 0.9% NaCl)
containing 10% dimethyl sulfoxide (DMSO).

Immunohistochemistry on human glioblastoma samples
and glioblastoma xenografts

Surgically resected human glioblastoma tissues and U87MG
subcutaneously xenografted glioblastomas were freshly frozen in
OCT (optimal cryotemperature) medium as described (Borsi et al,
2002; Castellani et al, 2002) and stored at �801C before being
processed.

For immunohistochemical procedures, F16 and L19 antibodies
were used in biotinylated small immunoprotein (SIP) format
(Borsi et al, 2002; Brack et al, 2006). Aliquots of antibodies were
prepared from a single batch, stored at 41C, and used only once,
thus contributing to excellent reproducibility of immunohisto-
chemical results.

Tissue sections of 10 mm thickness were treated with ice-cold
acetone, rehydrated in Tris buffer solution (50 mM Tris, 100 mM

NaCl, 0.001% Aprotinin, pH 7.4), and blocked with Tris buffer
solution 20% fetal calf serum. Biotinylated SIP(F16) and SIP(L19)
were added onto the sections in a final concentration of 2 mg ml�1

and detected using a streptavidin – alkaline phosphatase complex
(Biospa, Milano, Italy) as described (Borsi et al, 2002; Castellani
et al, 2002). Fast Red (Tablets Set, Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) was used as phosphatase substrate and
sections were counterstained with Gill’s haematoxylin no. 2
(Sigma-Aldrich Chemie GmbH). For every immunohistochemical
experiment, a negative control was used by omitting the primary
antibody.

The optic microscope Zeiss Axiovert S100TV (Carl Zeiss
MicroImaging GmbH, Jena, Germany), at 5� , 10� , and 20�
magnifications, and the Zeiss Axiovision Release 4 acquisition
software were used to evaluate the expression of the
A1 domain of tenascin-C and the extradomain B of fibronectin,
as revealed by staining using F16 and L19 antibodies, respectively.

Biodistribution experiment

The in vivo targeting performance of F16-IL2 was evaluated by
quantitative biodistribution analysis (Carnemolla et al, 2002).
Female BALB/c nude mice bearing subcutaneous U87MG tumours
(obtained by a s.c. flank injection of 5� 106 U87 cells) were
grouped (n¼ 5/group) when tumours were clearly palpable
(volume of ca 200 mm3) and injected i.v. into the lateral tail
vein with radioiodinated F16–IL2. Antibody immunoreactivity
after labelling was evaluated by loading a sample of radiolabelled
F16–IL2 onto TNC-A1-Sepharose resin, followed by radioactive
counting of the flow-through and eluate fractions. Immunoreac-
tivity, defined as the ratio between the counts of the eluted protein
and the sum of the counts of the eluted and flow-through fractions,
was 84%. Mice were killed 24 h after injection of F16– IL2 (10mg,
3.6mCi per mouse), organs were weighed, and radioactivity was
counted with a Packard Cobra gamma counter (GMI Inc, Ramsey,
MN, USA). The radioactivity content of representative organs was
expressed as the percentage of the injected dose per gram of tissue
(%ID g�1).

Subcutaneous glioblastoma mouse model

Subcutaneous glioblastoma-bearing mice were obtained by a s.c.
flank injection of 5� 106 U87MG cells in 8-week-old female BALB/c
nude mice. Twelve days after tumour cell implantation, when
tumours had reached an average size of 300 mm3, mice were staged
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to maximise uniformity among the groups (n¼ 5/group). One
group was injected i.v. (lateral tail vein) with 20 mg of F16– IL2
(corresponding to 6.6 mg of IL-2) in a total volume of 100 ml PBS
(phosphate-buffered saline) solution, one was injected i.p. with
0.525 mg of temozolomide (corresponding to 75 mg m�2) in a total
volume of 150 ml saline 10% DMSO, a third group received both
the i.v. injection of 20 mg F16 –IL2 and the i.p. of 0.525 mg
temozolomide. Finally, the control group was injected i.p. with
150ml of saline 10% DMSO. Five total administrations were
performed on days 12, 15, 18, 21, and 24. Using a conversion factor
based on body surface (Reagan-Shaw et al, 2008), the dose
of temozolomide used in this study corresponded to a human dose
of 75 mg m�2 for each injection (Stupp et al, 2005). The cumulative
dose of temozolomide per mouse was lower than the LD10 (dose
lethal to 10% of treated animals) for both subcutaneous and
orthotopic glioblastoma mouse models (Friedman et al, 2000).

Animals were monitored and weighted daily; tumours were
measured with a digital caliper three times a week. Tumour volume
was estimated using the formula volume¼ length�width2/2. Mice
were killed when tumours approached a volume of 3000 mm3 or
when tumours turned necrotic and bled, according to Swiss
regulations. No animals had to be killed because of therapy-
derived toxicities.

Orthotopic glioblastoma mouse model

Orthotopic glioblastoma-bearing mice were obtained by an
intracranial implantation of 5� 104 U87MG cells in 6-week-old
male BALB/c nude mice (Bello et al, 2004). Twelve days after
tumour cell implantation, mice were randomly divided into four
therapeutic groups (n¼ 10/group). Schedule and doses of ther-
apeutics were the same as for the therapy with subcutaneous
glioblastoma-bearing mice.

Mice were monitored daily to detect any signs of neurological
suffering from tumour growth or from toxicity effects of the therapy.
All therapeutic groups were killed 25 days after therapy beginning.
Brains were removed and the hemisphere containing the tumour and
the contralateral one were separately snap-frozen and stored at
�801C. Tumours were measured by thawing the corresponding
hemisphere and by sectioning the tissue when necessary. Tumour
volume was estimated using the formula volume¼ length�width2/2.
The healthy hemisphere was taken as control.

We repeated the therapy with intracranial U87MG xenografted
mice, comparing the four therapeutic groups on a survival
basis. Orthotopic glioblastoma-bearing mice were obtained by
an intracranial implantation of 5� 104 U87MG cells in 6-week-
old male BALB/c nude mice (Bello et al, 2004). Twelve days
after tumour cell implantation, mice were randomly divided into
four therapeutic groups (n¼ 8/group and n¼ 9 for the
temozolomideþ F16– IL2 combination group). Schedule and doses
of therapeutics were the same as for the previous therapies. Mice
were monitored daily and killed at the first appearance of
neurological damage from tumour growth or on detection of any
signs of suffering from therapy-related toxicity. Kaplan–Meier
survival curves were drawn.

Assessment of immune effector cell infiltration in
subcutaneous and intracranial glioblastoma xenografts,
and in normal organs following treatment

To evaluate the role of inflammatory cell responses, BALB/c nude
mice bearing s.c. or i.c. U87MG tumours (n¼ 3/therapeutic group)
were treated on days 12, 15, and 18 after tumour cell implantation
with F16 –IL2 (i.v.), temozolomide (i.p.), F16 –IL2 (i.v.) plus
temozolomide (i.p.), or saline 10% DMSO solution (i.p.). Mice
were killed 24 h after the third injection. Tumours were excised
and snap-frozen in OCT medium, and liver and kidneys were

fixated in 4% formalin and embedded in paraffin according to
standard procedures.

The immunofluorescent staining of subcutaneous and intra-
cranial tumour sections was performed using antibodies against
the following antigens: F4/80 (rat antimouse F4/80, clone A3-1,
AbCam, Cambridge, UK) for the detection of tumour-infiltrating
macrophages, asialo GM1 (rabbit antiasialo GM1, Wako Pure
Chemical Industries Ltd, Osaka, Japan) for NK cells, and CD45
(rat antimouse CD45, BD Biosciences Pharmingen, Allschwil,
Switzerland) for leukocytes. In all cases, CD31 staining (rabbit or
rat antimouse CD31, BD Biosciences Pharmingen) was performed
to identify vascular structures.

Frozen tumour sections of 10 mm thickness were treated with
ice-cold acetone, blocked with PBS 10% donkey serumþ 10% goat
serum, incubated with primary antibodies (in a PBS 12% bovine
serum albumin (BSA) solution), and detected using fluorescent
Alexa 488- or Alexa 594-coupled secondary antibodies (donkey
antirat or goat antirabbit IgG, BD Biosciences Pharmingen) in a
PBS 12% BSA solution. The microscope Zeiss Axioskop 2 mot plus
with the fluorescence lamp HXP 120 Kubler Codix (Carl Zeiss
MicroImaging GmbH), and the acquisition software Zeiss Axio-
vision Release 4 were used for analysis.

Paraffin-embedded liver and kidney sections from mice of
the different therapeutic groups were baked overnight at 601C
and deparaffinised according to standard procedures. Antigen
retrieval was obtained by microwave warming in 8.2% trisodium
citrate (0.1 M)þ 1.8% Citric Acid (0.1 M) solution. Sections were
blocked with PBSTT (PBS 0.5% Tweenþ 0.1% Triton-X) 10% BSA,
incubated first with the primary antibody rat antimouse CD45
(clone 30-F11, BD Biosciences Pharmingen), then with the
secondary antibody biotinylated mouse antirat IgG2 (clone G15-
337, BD Biosciences Pharmingen), followed by Streptavidin Alexa
488-coupledþ 4’-6-diamidino-2-phenylindole. Glioblastoma tumours
from the same mice were used as positive control.

In each tissue section, staining was quantified in three representa-
tive microscopic images using ImageJ software (http://rsb.info.nih.
gov/ij/) and expressed as a percentage of measurement area.

Ex vivo detection of the F16 –IL2 fusion protein in
subcutaneous and intracranial glioblastoma xenografts
following treatment

The in vivo localisation of the F16 –IL2 fusion protein within the
tumour mass was investigated in subcutaneous and intracranial
glioblastoma xenografts collected from BALB/c nude mice (n¼ 3/
therapeutic group), which were treated on days 12, 15, and 18 (day
0¼ tumour cell implantation) with F16–IL2 or with the combina-
tion of F16 –IL2 and temozolomide, and killed 24 h after the third
drug administration.

A rat antihuman IL-2 antibody (eBioscience Inc., San Diego, CA,
USA) was used to detect the F16–IL2 fusion protein within the
tumour mass, and the CD31 staining (rabbit anti-mouse CD31, BD
Biosciences Pharmingen) served to identify vascular structures.
Immunofluorescent staining and analysis of results were per-
formed in the same way as for the immune cell infiltration study.

The specific binding of the rat antihuman IL-2 antibody to the
F16–IL2 immunocytokine was validated by enzyme-linked
immunosorbent assay. We loaded the biotinylated tenascin-C A1
antigen (10�6

M) on streptavidin wells (A–H), followed by
5 mg ml�1 of F16 –IL2 in PBS 2% milk in wells A– C, and 5 mg ml�1

of F8-IL2 in wells D–F as irrelevant antibody; wells G–H served as
negative control without primary antibody. The rat antihuman
IL-2 antibody (eBioscience Inc; diluted 1 : 1000) was used as
secondary antibody (wells A–H), followed by the goat antirat
IgG-HRP (eBioscience Inc.; diluted 1 : 1000), the POD substrate
(Roche Diagnostic, Rotkreuz, Switzerland), and the H2SO4 1 M

solution to complete the reaction.
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Assessment of apoptosis and proliferation in
subcutaneous glioblastoma xenografts following
treatment

The analysis of apoptosis and proliferation induced by the therapy
was performed in subcutaneous glioblastoma xenografts collected
from BALB/c nude mice (n¼ 3/therapeutic group), which were
treated on days 12, 15, and 18 (day 0¼ tumour cell implantation)
with F16 –IL2, temozolomide, the combination of F16 –IL2 and
temozolomide, or saline 10% DMSO solution, and killed 24 h after
the third drug administration.

Fluorescent TUNEL (Terminal deoxynucleotidyl transferase
dUTP nick end labeling) assays (Roche Diagnostic) were
performed according to the manufacturer’s instructions to detect
apoptosis in tumours of the different therapeutic groups.

The same specimens were analysed by immunofluorescence to
detect proliferation as revealed by the Ki67 antigen. Tumour sections

were blocked first with PBS 10% donkey serumþ 10% goat serum,
then with AffiniPure Fab fragment goat antimouse IgG (Jackson
ImmunoResearch Laboratories Inc., West Grove, PA, USA) in a PBS
12% BSA solution. A monoclonal mouse antihuman Ki67 (clone
B126.1, AbCam) and a rat antimouse CD31 (BD Biosciences
Pharmingen) were used as primary antibodies, followed by Alexa
594-coupled donkey antirat IgG and Alexa 488-coupled goat
antimouse IgG (BD Biosciences Pharmingen)þ 4’-6-diamidino-2-
phenylindole in a PBS 12% BSA solution. The analysis and
quantification of results were performed in the same manner as
for the previous immunofluorescence experiments.

Statistics

Comparisons of data of the efficacy study with intracranial
xenografts and of the infiltration and apoptosis/proliferation

s.c. U87

NC F16 Ab PC: L19 Ab

i.c. U87

Hu GBM 1

Hu GBM 2

Hu GBM 3

Figure 1 Immunohistochemical analysis of U87MG human glioblastoma xenografts and of human glioblastoma surgical specimens using the F16 antibody,
specific to the extradomain A1 of tenascin-C, and the L19 antibody, specific to the extradomain B of fibronectin (serial tissue sections). Both antibodies
stained tumour perivascular structures considerably. In negative controls (NC), the primary antibody was omitted. Scale bars indicate 100 mm.
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studies were performed using a two-tailed Student’s t-test. Survival
analysis was conducted by Kaplan–Meier curves, and their
comparison was determined by log-rank test. P-values of o0.05
were considered significant.

RESULTS

Immunohistochemistry on human glioblastoma specimens
and on mouse U87MG xenografts

We assessed the expression of the A1 domain of tenascin-C and of
the extradomain B of fibronectin (as positive control) in sections
of human glioblastoma surgical specimens and of U87MG
xenografts in nude mice. We used identical concentrations
of F16 and L19 antibodies (Pedretti et al, 2009). F16 was found
to strongly stain both experimental U87MG tumours and
glioblastoma samples from patients, with patterns and intensities
comparable to the ones of L19 (Figure 1), which had previously
been reported to stain perivascular structures in high-grade
gliomas (Castellani et al, 2002).

Biodistribution study with radiolabelled F16 –IL2

Nude mice bearing subcutaneous U87MG glioblastomas were
injected i.v. with radioiodinated preparations of F16-IL2 to study
the in vivo targeting performance by quantitative biodistribution
analysis. The immunocytokine displayed a preferential accumula-
tion in the tumour 24 h after injection (2.3% ID g�1), with a tumour-
to-blood ratio of 11.5 and with excellent tumour-to-organ ratios
(Supplementary Figure 1). In our previous experience, normal brain
and muscle exhibited uptake levels at least 10 times lower than that
of other organs (Berndorff et al, 2006; Spaeth et al, 2006).

Therapeutic activity of F16 –IL2 combined with
temozolomide in subcutaneous and intracranial
glioblastoma xenografts

We compared the therapeutic activity of F16 –IL2 and of
temozolomide (alone and in combination) in nude mice bearing
subcutaneous U87MG tumours. Therapy was started 12 days after
subcutaneous injection of U87MG cells, when tumours had
reached an average size of 300 mm3. Temozolomide was adminis-
tered five times, every third day, with i.p. injections of 0.525 mg
in saline 10% DMSO. This dose is higher than the one used in
previous therapy studies with the same agent (Chakravarti et al,
2006; Yamini et al, 2007), but is well below the LD10 of
temozolomide in nude mice, reported to be equal to 411 mg m�2

administered i.p. daily for 5 days, and to 1200 mg m�2 adminis-
tered i.p. once (Friedman et al, 2000). The dose of temozolomide
used in this study corresponds to a human dose of 75 mg m�2 for
each injection, in line with the standard 75 mg m�2 p.o. daily dose
of temozolomide, administered to patients for 6 weeks during
adjuvant radiation therapy (Stupp et al, 2005; Reagan-Shaw et al,
2008). F16–IL2 was administered i.v. at 20 mg doses (correspond-
ing to 6.6 mg of IL2).

Monotherapy treatment with F16 –IL2 led to a minor tumour
growth retardation, compared with the control group of mice
treated with saline 10% DMSO, whereas all mice in the
temozolomide group exhibited a strong tumour regression by
day 30 (Figure 2A). However, by day 45, tumours started to grow
again in three out of five mice. By contrast, mice treated with the
combination of F16 –IL2 plus temozolomide exhibited a complete
remission and remained tumour free for over 160 days.

The toxicity of pharmacological treatments in tumour-bearing
mice is commonly evaluated by a constant monitoring of weight
loss. In this study, mice of the control group did not exhibit weight
loss, whereas mice of the temozolomide, F16 –IL2, and F16–IL2

plus temozolomide treatment groups exhibited a comparable
profile of weight loss, which was at all time points below 9%
(Supplementary Figure 2A).

Encouraged by the tumour eradication obtained in subcuta-
neous xenografts, we studied the therapeutic performance of
F16–IL2 and temozolomide in an intracranial model of glioblas-
toma, obtained by stereotactic injection of 5� 104 U87MG cells
into nude mice. The treatment schedule and doses were as for the

0

20

40

60

80

100

0 30 60 90 120 150 180

S
ur

vi
va

l r
at

e 
(%

)

Days after tumour implantation

TMZ + F16-IL2 
F16-IL2
TMZ
CTRL 10% DMSO

0

500

1000

1500

2000

2500A

B
I II

C
T

um
ou

r 
vo

lu
m

e 
(m

m
3 )

Days after tumour implantation

F16-IL2+TMZ
F16-IL2
TMZ
CTRL 10% DMSO

52

36.8 33.5

14

CTRL 10%
DMSO

F16-IL2 TMZ TMZ +
F16-IL2

T
um

ou
r 

vo
lu

m
e 

(m
m

3 )

Therapy

----------
Therapy

16012 604530

Figure 2 (A) Preclinical therapy study with subcutaneous U87MG
human glioblastoma xenografts. The treatment regimen consisted of five
total administrations, every third day, of temozolomide (0.525 mg,
corresponding to 75 mg m�2) in a saline 10% dimethyl sulfoxide (DMSO)
solution, F16– IL2 (20 mg) in phosphate-buffered saline, a combination of
F16– IL2 and temozolomide (same doses), or saline 10% DMSO solution.
The combination therapy group exhibited the highest therapeutic benefit
with a complete remission of the animals, which remained tumour free for
over 160 days. (B) Preclinical therapy study, using intracranial U87MG
human glioblastoma xenografts. The same therapeutic schedule of
the subcutaneous study was used. The combination of F16– IL2 with
temozolomide exhibited the highest therapeutic benefit. Pairwise compar-
isons between the combination therapy group and temozolomide alone
(P¼ 0.009), F16– IL2 alone (P¼ 0.001), and the control group (Po0.001)
were calculated using the Student’s t-test and showed significant results.
(I) Photograph of a mouse hemisphere with tumour, imaged from two
sides. (II) Tumour volumes at day 25 from the start of treatment (13 days
after the last drug administration), expressed as average mean±s.d.
(C) Survival study using intracranial U87MG human glioblastoma
xenografts, with the same therapeutic schedule of the previous
subcutaneous and intracranial studies. Results indicate a longer survival
for the combination treatment group (combo vs TMZ: Po0.002; combo vs
F16– IL2: Po0.002; combo vs control: Po0.0001).
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subcutaneous model, but all mice were killed on day 25 from the
start of therapy to allow a comparative evaluation of tumour
burden for the four treatment groups. This time point was chosen
as the end of the experiment (i.e., after killing all mice), as the
first animal in the control group started to show signs of
neurological damage. Mice of the combination therapy (F16–
IL2þ temozolomide) exhibited the strongest therapeutic benefit,
with an average tumour volume of 14 mm3, compared with those of
temozolomide alone (33.5 mm3), F16–IL2 alone (36.8 mm3), and
the control group (52 mm3). Pairwise comparisons between the
combination therapy group and temozolomide alone (P¼ 0.009),
F16–IL2 alone (P¼ 0.001), and the control group (Po0.001) were
calculated using the two-tailed Student’s t-test and showed
significant results (Figure 2B). No signs of distress were observed
in the animals during the entire treatment period.

We performed a further therapy experiment with intracranial
glioblastoma-bearing mice to better evaluate the therapeutic
benefit of F16 –IL2 plus temozolomide on a survival basis. Four

groups of mice were treated with the same doses and schedule as
for the previous studies and were killed at the first appearance of
neurological damage from tumour growth or on detection of any
treatment-related toxicities. The Kaplan–Meier survival curve
confirms the higher therapeutic benefit for the F16–IL2 plus
temozolomide combination group (Figure 2C), with no augmented
toxicity (Supplementary Figure 2B). Comparisons of the F16–IL2
plus temozolomide group with the other therapeutic groups were
performed with the log-rank test and showed significant results
(combo vs TMZ: Po0.002; combo vs F16– IL2: Po0.002; combo vs
control: Po0.0001).

Microscopic analysis of effector cell infiltration in
subcutaneous and intracranial glioblastoma xenografts,
and in normal tissues following treatment

To assess the infiltration of immune cells into tumours and in
normal organs following treatment, subcutaneous and intracranial

CTRL

TMZ

F16-IL2
+ TMZ

F16-IL2

NK cells VasculatureLeukocytes Vasculature Macrophages Vasculature

CTRL

TMZ

F16-IL2
+ TMZ

F16-IL2

Figure 3 Immunofluorescence analysis of tumour-infiltrating immune cells and of microvascular density in the subcutaneous (A) and intracranial
(B) glioblastoma models, 24 h after the third injection of therapeutic agents. The F16– IL2þ temozolomide treatment groups show the largest increase in
the infiltration of leukocytes and in particular of natural killer cells and macrophages (serial tissue sections). Scale bars indicate 100 mm.
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U87MG human glioblastoma-bearing mice were obtained after
three drug administrations, and tumour, liver, and kidney sections
were analysed by immunofluorescence. Figure 3 shows represen-
tative tumour sections of subcutaneous (A) and intracranial (B)
glioblastoma xenografts, stained with antibodies anti-CD45
(a leukocyte-specific marker), anti-asialo GM1 (specific to NK
cells), and anti-F4/80 (which recognises macrophages). Vascular
structures were costained using an anti-CD31 antibody. The largest
increase in infiltration of NK cells and macrophages was observed
in combination F16– IL2 plus temozolomide-treated tumours
in both subcutaneous and intracranial models (quantification
in Supplementary Figure 3), whereas leukocytes were not detected
in liver and kidneys of the same animals (Supplementary Figure 4).
Pairwise comparisons of the immune cell infiltration into
tumours (combo vs the other treatments) were calculated using
the two-tailed Student’s t-test and showed significant results
(Po0.005).

Ex vivo detection of the F16 –IL2 fusion protein in
subcutaneous and intracranial glioblastoma xenografts
following treatment

We performed an ex vivo localisation of the F16–IL2 fusion
protein in subcutaneous and intracranial glioblastoma xenografts
collected from BALB/c nude mice, which were obtained after three
drug administrations of F16 –IL2 or the combination of F16– IL2
and temozolomide. The staining for human IL-2 revealed a
selective and comparable accumulation of the F16–IL2 immuno-
cytokine around tumour vascular structures in both subcutaneous
(A) and intracranial (B) xenografts (Figure 4).

Microscopic analysis of apoptosis and proliferation in
subcutaneous glioblastoma xenografts following treatment

The influence of the different treatments on apoptosis and
proliferation in subcutaneous glioblastoma mice was evaluated
by immunofluorescence. Figure 5 shows a clear increase in
apoptosis and a complete suppression of proliferation in the
combination F16 –IL2 plus temozolomide treatment group (quan-
tification in Supplementary Figure 6). All pairwise comparisons
between the combination and other therapeutic groups showed
significant results using the two-tailed Student’s t-test (apoptosis
in combo vs all other treatments: Po0.001; proliferation in combo
vs placebo: Po0.0001, combo vs F16– IL2: Po0.009, combo vs
TMZ: Po0.02).

DISCUSSION

In this article, we have reported on the therapeutic performance
of immunocytokine F16– IL2 and of temozolomide, alone and
in combination, in subcutaneous and intracranial xenografts of
U87MG human glioblastoma.

For both subcutaneous and intracranial U87MG xenografted
mice, the combination of F16 –IL2 with temozolomide gave the
best therapeutic results without additional toxicity, compared with
the drugs as single agents (Supplementary Figure 2). In the case of
subcutaneous glioblastoma, F16–IL2 potentiated the action of
temozolomide, leading to complete tumour eradication in all mice
40 days after beginning the treatment, and to the total remission of
animals, which remained tumour free for over 160 days
(Figure 2A). In addition, in the intracranial model, the combina-
tion treatment was more efficacious, resulting in a 73% decrease in
tumour volume 25 days after the start of therapy (Figure 2B), as
well as in a longer survival of the animals (Figure 2C).

In both subcutaneous and intracranial xenografts, immuno-
cytokine F16–IL2 promoted the recruitment of immune effector cells
into glioblastoma lesions (Figure 3 and Supplementary Figure 3),

in analogy to that previously observed in other immunocytokine
therapies of mice with solid and haematological malignancies
(Carnemolla et al, 2002; Halin et al, 2002, 2003; Mårlind et al, 2008;
Schliemann et al, 2009). The infiltration of leukocytes was not
observed in normal organs from the same mice, thus excluding a
nonspecific inflammation caused by F16 –IL2 (Supplementary
Figure 4). The selective accumulation of F16 –IL2 around tumour
vascular structures in both subcutaneous and intracranial
xenografts (Figure 4), the focal recruitment of immune effector
cells (Figure 3), and the therapeutic effect on glioblastoma tumours
of the F16– IL2 plus temozolomide combination therapy (Figure 2)
support the anticancer role of effector cells stimulated by the
immunocytokine.

Our group has previously shown that, surprisingly, the
therapeutic effect of IL2-based immunocytokines against murine
tumours is identical in immunocompetent and immunocompro-
mised mice, and that NK cells are mainly responsible for the
therapeutic action (Carnemolla et al, 2002; Halin et al, 2003;
Ebbinghaus et al, 2005). By contrast, immunocytokines based on
other cytokines (e.g., tumor necrosis factor, IL12, interferon-g,
IL15, and granulocyte macrophage colony-stimulating factor)
exhibit a clear dependence on T cells (Borsi et al, 2003; Halin
et al, 2003; Ebbinghaus et al, 2005; Kaspar et al, 2007). To
document further possible mechanisms for the antitumour activity
of the immunosuppressive reagent temozolomide in association
with the immunostimulatory immunocytokine F16– IL2, we have
studied apoptosis and cell proliferation in glioblastoma xenografts
after three doses of the four treatments: combination of F16– IL2

Human IL2 Vasculature
A

B

F16-IL2

F16-IL2
+ TMZ 

F16-IL2

F16-IL2
+ TMZ 

Figure 4 Immunofluorescence analysis of F16– IL2 fusion protein
localisation in subcutaneous (A) and intracranial (B) glioblastoma
xenografts, 24 h after the third injection of therapeutic agents (serial tissue
sections). Scale bars indicate 100 mm.
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with temozolomide, F16– IL2 alone, temozolomide alone, and
saline 10% DMSO. Results show a clear increase in apoptosis and
complete suppression of proliferation in the combination treat-
ment group, thus supporting a cytostatic plus cytotoxic explana-
tion of therapeutic efficacy (Figure 5 and Supplementary Figure 6).

In our study, F16 –IL2 seems to be more effective as a single
agent in the intracranial model, whereas the combination of
F16–IL2 with temozolomide shows a higher efficacy in the
subcutaneous model (Figure 2). We have conducted two indepen-
dent therapy experiments with the intracranial model (Figure 2B
and C), which have confirmed both the therapeutic activity of
F16–IL2 on its own and the additive therapeutic benefit observed
in combination with temozolomide. There are a number of reasons
why the same tumour cells (U87MG) may respond differently to
therapy when implanted subcutaneously or orthotopically (in this
case, intracranially). One first cause may be that the subcutaneous
therapy study started when tumour masses were rather big
(300 mm3; Figure 2A). In the intracranial study, no magnetic
resonance imaging monitoring of lesion size at different time
points was possible, but control experiments with the same tumour
model suggest that lesions of B1–2 mm3 were present at day
12 from tumour cell implantation (when our therapy started).
Moreover, we have observed in other mouse models of malig-
nancies (melanoma, lymphoma, neuroblastoma, breast, and
kidney cancer) that IL2-based immunocytokines may show a
minimal therapeutic activity on their own, but strongly synergise
with other therapeutic regimens, leading to complete tumour
eradication (Schliemann et al, 2009; Balza et al, 2010; Frey et al,
2010; Giavazzi et al, manuscript in preparation). In other studies,

IL2-based immunocytokines showed a very potent therapeutic
activity even when used as a single agent (Carnemolla et al, 2002;
Menrad and Menssen, 2005; Mårlind et al, 2008). Finally, different
therapeutic activities in subcutaneous and orthotopic models of
glioblastoma have previously been reported by other groups
(Friedman et al, 1995; Blouw et al, 2003; Graf et al, 2003; Yamini
et al, 2007).

Two IL2-based immunocytokines (L19-IL2 and F16–IL2) are
currently being investigated in phase I and phase II clinical trials in
patients with cancer (Neri and Bicknell, 2005). These fully human
immunocytokines can be studied in immunocompetent mouse
models of cancer only in an acute setting, as they become
immunogenic after a few injections (Carnemolla et al, 2002).
Furthermore, although L19 reacts with equal affinity with its
cognate human and murine antigens (Pini et al, 1998; Fattorusso
et al, 1999), F16 recognises only human and monkey antigens (but
not the rodent counterpart; Brack et al, 2006; Mårlind et al, 2008),
thereby avoiding the therapy experiment in a syngeneic tumour
model. The predictable effect of IL2-based immunocytokines in
immunocompetent patients would be broader and stronger
in tumour suppression, because of the involvement of T-cell and
B-cell activation. With regard to the role of the blood–brain
barrier in brain tumours, we have documented that the tumour-
targeting ability of immunocytokine F16–IL2 is comparable in
subcutaneous and intracranial mouse xenografts (Figure 4).

The results of this preclinical therapy study may justify the
clinical evaluation of F16 –IL2 in combination with temozolomide
for the treatment of human glioblastoma. F16–IL2 has exhibited
an excellent safety profile in cynomolgus monkeys and is currently

CTRL 

TMZ

F16-IL2

+ TMZ 

F16-IL2

NC Apoptosis Vasculature Proliferation

Figure 5 Immunofluorescence analysis of apoptosis and proliferation in subcutaneous glioblastoma xenografts, 24 h after the third injection of therapeutic
agents. Results show a clear increase in apoptosis and the complete suppression of proliferation in the combination F16– IL2þ temozolomide treatment
group. Scale bars indicate 50mm.
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being studied in two phase Ib clinical trials, in combination with
doxorubicin (breast and ovarian cancer) or in combination with
paclitaxel (breast and lung cancer).
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