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An Integrated Preprocessing 
Approach for Exploring Single-Cell 
Gene Expression in Rare Cells
Junyi Shang   1,3, David Welch2,3, Manuela Buonanno   2, Brian Ponnaiya2, Guy Garty2, 
Timothy Olsen1, Sally A. Amundson   2* & Qiao Lin1*

Exploring the variability in gene expressions of rare cells at the single-cell level is critical for 
understanding mechanisms of differentiation in tissue function and development as well as for 
disease diagnostics and cancer treatment. Such studies, however, have been hindered by major 
difficulties in tracking the identity of individual cells. We present an approach that combines single-cell 
picking, lysing, reverse transcription and digital polymerase chain reaction to enable the isolation, 
tracking and gene expression analysis of rare cells. The approach utilizes a photocleavage bead-based 
microfluidic device to synthesize and deliver stable cDNA for downstream gene expression analysis, 
thereby allowing chip-based integration of multiple reactions and facilitating the minimization of 
sample loss or contamination. The utility of the approach was demonstrated with QuantStudio digital 
PCR by analyzing the radiation and bystander effect on individual IMR90 human lung fibroblasts. 
Expression levels of the Cyclin-dependent kinase inhibitor 1a (CDKN1A), Growth/differentiation factor 
15 (GDF15), and Prostaglandin-endoperoxide synthase 2 (PTGS2) genes, previously shown to have 
different responses to direct and bystander irradiation, were measured across individual control, 
microbeam-irradiated or bystander IMR90 cells. In addition to the confirmation of accurate tracking of 
cell treatments through the system and efficient analysis of single-cell responses, the results enable 
comparison of activation levels of different genes and provide insight into signaling pathways within 
individual cells.

Rare cells, considered as low-abundance cells (<1000/mL)1, are highly important for many applications including 
disease diagnosis, cancer research and environmental analysis2. Rare cells of interest include circulating tumor 
cells (CTC), circulating fetal cells, and stem cells. For example, intact fetal cells in maternal blood can be isolated 
and characterized for noninvasive prenatal diagnosis3. Isolation and analysis of CTCs is critical for diagnosis and 
prognosis of many cancers as well as estimating the risk of metastatic relapse4. Single-cell analysis, which has been 
extensively used for examining cell heterogeneity, may serve as an important tool for detecting cell-to-cell varia-
tion or responses in rare cells. Cell heterogeneity, as manifested by different stages, genetic lesions, or expression 
programs, is associated with distinct outcomes or therapeutic responses. For example, cells from the same tumor 
may exhibit distinct phenotypic or epigenetic states, and such intratumoral heterogeneity can cause treatment 
failure and recurrence of disease5. Due to the increasing awareness of analyzing cellular response on a cell-by-cell 
basis6–9, methods for single-cell gene expression profiling, which assay gene patterns in individual cells, have 
been developed to assist in the study of rare cell expression variability and enable characterization of intracellular 
molecular mechanisms and pathways10.

Single-cell gene expression analysis has also proved useful for studying the cellular response to ionizing radi-
ation11. Ionizing radiation is commonly used as a probe of cellular damage and repair mechanisms. Following 
ionizing radiation, cells activate biochemical pathways that consist of DNA damage cell-cycle checkpoint path-
ways and the DNA repair pathways, which promote cell survival while keeping DNA integrity12. Diverse cellular 
activities are engaged in the components of these pathways, such as apoptosis, cell cycle arrest, stress signaling 
and DNA repair13. These responses may be induced by alterations in protein modification or changes in sub-
cellular localization as well as changes in gene expression profiles14–16. For their central role in elucidating the 
mechanisms underlying cellular radiation response, alterations in gene expression have been studied extensively 
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in populations of cells post irradiation17–19. While few gene expression studies have covered the cellular response 
of individual cells to ionizing radiation, gene expression patterns in single irradiated cells have been explored 
via conventional quantitative RT-PCR20. A recent approach of using low-density Taqman real-time PCR has 
extended the ability of quantitative measurement from 3 genes to 48 genes in one single irradiated cell11. An inter-
esting application of single-cell gene expression analysis in radiation studies is exploring the bystander effect, in 
which non-irradiated cells demonstrate several responses seen in nearby irradiated cells. While this appears to 
be mediated by signal transmission between irradiated and nearby non-irradiated cells via direct physical con-
tact21 or through the culture medium22, the exact nature of the signal and the mechanisms of stress transmission 
remain to be determined. These bystander mechanisms have implications for the assessment of radiation risk in 
situations from low-dose environmental exposures, to particle therapy for cancer, to manned Space missions23. 
The microbeam facility at the Center for Radiological Research is particularly well suited for more definitive study 
of the bystander effect24. While a low dose of particle radiation delivered to a cell population follows a Poisson 
distribution20, allowing calculation of the percentage of cells not directly traversed by a particle, the microbeam 
can deliver a precise number of particles (including one) to a specified cell in the population. Therefore, the 
microbeam enables irradiation with a precise number of particles to each individual hit cell, while the non-hit 
single cells are not traversed by a particle.

Following the microbeam irradiation of single cells, microfluidic devices can be used to facilitate handling the 
preprocessing functions (e.g., cell lysis, RNA purification, etc.) for gene expression measurements. Microfluidic 
platforms featuring rapid and sensitive biochemical synthesis and analysis that also allow automation, integra-
tion and parallelization, have been increasingly used for gene expression profiling25–27. To date, microfluidics 
for single-cell gene expression have integrated functional components involving single cell isolation and lysis28, 
RNA purification29, and RT-PCR30. While demonstrating a modular and integrable platform, a highly integrated 
microfluidic tool requires complex device design and complicated off-chip control instrumentation. For exam-
ple, microfluidic single-cell isolation that uses valve-controlled chambers31 relies on multilayer soft lithography, 
increasing the complexity of fabrication and pneumatic control. Microfluidic droplet-processing single-cell anal-
ysis devices typically require complex control with heating modules, particularly with the integration of droplet 
generation and droplet thermo cycling32. We have previously developed a bead-based approach for performing 
RT-qPCR at the single-cell level on a microfluidic device, which featured integrated cell trapping, cell lysis, RT and 
qPCR on chip with high sensitivity and efficiency of the RT-qPCR reaction compared to off-chip RT-qPCR33,34. 
While this approach has demonstrated sensitivity and efficiency in single-cell gene expression analysis, one lim-
itation is that the cell trapping unit uses a geometric constraint to capture one single cell out of a group of cells, 
which does not allow tracking the identity of an individual cell. Commercial options also exist for performing 
single-cell gene expression analysis, such as the C1/BioMark system (Fluidigm, inc). Unfortunately, the input 
cells are sorted randomly, which hinders the tracking of individual cells from the time of irradiation to analysis.

This paper presents an approach that combines single-cell picking, lysing, reverse transcription (RT) and pho-
tocleavage to enable the isolation, tracking and gene expression analysis of rare cells. A single-cell capillary picker 
introduces single cells into a microfluidic device, termed the Preprocessing for Gene-Expression Measurement 
(PreGEM) chip, which performs gene-expression preprocessing. This approach permits the isolation and quick 
lysis of individual cells, while avoiding the complex microenvironment required for culturing cells on chip35, 
thereby enabling the study of microbeam-irradiated single cells and bystander effects, or other rare cells. The 
PreGEM chip enables synthesizing and delivering stable cDNA for downstream gene expression analysis. The 
chip tracks the identity of individual cells in a single microfluidic channel, which is readily scalable by paral-
lelization. A bead-based protocol is used to achieve mRNA capture and the RT reaction, greatly simplifying 
both the design and operation of the microchip. Furthermore, instead of applying thermal denaturation (95 °C) 
to release single-stranded DNA (ssDNA), which tends to cause evaporation issues36, a photocleavage approach 
has been used to release cDNA from the beads realized via a photocleavable link between the bead and cDNA. 
Finally, the approach maximizes the choice of platforms for downstream analysis, such as qPCR real-time gene 
expression analysis, QuantStudio digital PCR sensitive detection or NanoString multi-gene expression analysis. 
We demonstrate the preprocessing approach using QuantStudio digital PCR by measuring expression levels of 
the radiation responsive genes37,38 Cyclin-dependent kinase inhibitor 1a (CDKN1A) and Growth/differentiation 
factor 15 (GDF15) as well as of the Prostaglandin-endoperoxide synthase 2 (PTGS2) gene (both radiation and 
bystander responsive39) in individual control, microbeam-irradiated or bystander IMR90 human lung fibroblasts 
after 4-hour co-culture. The results confirm the ability of the preprocessing approach to enable accurate tracking 
of single cells and efficient analysis of single-cell responses, as well as allow the comparison of activation levels of 
different genes and signaling pathways within individual cells.

Results
We first performed on-chip RNA capture validation, then characterized on-chip RT efficiency and bead-based 
reaction efficiency, as well as quantifying the releasing efficiency of cDNA from beads. We then demonstrated 
single-cell analysis with the integrated system from microbeam irradiation, cell picking, and on-chip reactions, all 
the way through QuantStudio dPCR. The integration of the system allows the exploration of cell-to-cell variability 
in response to microbeam irradiation and in bystander cells.

Validation of RNA capture on the Pre-GEM microchip.  Before characterizing efficiencies of down-
stream reactions, the on-chip capture of mRNA via 5′-PC-Biotin-(dT)25-3′ Streptavidin magnetic beads was 
validated using XenoRNA template. The value of ΔRn, indicating the magnitude of the fluorescent signal and, 
therefore, amplification generated by PCR, was 3.7 for the positive control (105 XenoRNA with 3.5 × 106 beads) 
after 40 cycles of bead-based PCR. Referring to the method section, the remaining solutions after bead capture 
were mixed with bead-based solution, and RT-PCRs were performed to quantify remaining templates in the 
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solution after the first capture. It was found that the ΔRn values remained below the threshold (Fig. 1). Thus, we 
can conclude that 3.5 × 106 beads were sufficient to capture essentially all of the polyAdenylated templates, and an 
undetectable amount of free RNA templates were residual in the binding waste.

On-chip RT characterization and interference of beads with reaction efficiency.  Starting with 
20k, 50k and 100k copies of XenoRNA, the on-chip bead-based RTs followed by off-chip bead-based qPCRs 
were conducted to test repeatability and characterize reaction efficiency (Fig. 2a). We found that under the given 
experimental conditions, the PCR efficiency defined by (10−1/k −1) × 100%, where k is the slope of the Ct as a 
function of the logarithm of the template copy number, for our bead-based approach was 90.5%. To characterize 
the on-chip RT efficiency, we conducted the bead-based PCR testing following in-tube RT. The PCR efficiency Eb 
for the bead-based PCR with in-tube RT was 83.2%, meaning the bead-based on-chip RT has a 1.08-fold increase 
in efficiency compared with that of in-tube RT. This improved efficiency for on-chip reaction likely resulted from 
more efficient molecular interactions in the microscale environment25,40. Meanwhile, we ran a solution-based 
PCR without introducing beads following in-tube RT. Some bead interference was observed, affecting the reac-
tion efficiency, as the presence of beads during the PCR reaction yielded higher Ct values than the solution-based 
reactions. In terms of the reaction efficiency, it was found in Fig. 2b that under the given experimental conditions, 
the PCR efficiency Es for the solution-based PCR testing (86.3%) was higher than the PCR efficiency Eb for the 
bead-based PCR (83.2%), which was likely attributable to enhanced molecular interactions in the absence of the 
beads. The reaction efficiency was not dependent on template copy number, however. Based on these results, 
we calculated a correction factor that can be used to estimate the corrected threshold cycle of the bead-based 
approach in order to offset the influence of beads on the reaction. The corrected threshold cycle can be evaluated 
by Cts = Ctb × log(1 + Eb)/log(1 + Es), where Ctb, Cts, Es, and Eb denote threshold cycle of the bead-based positive 
controls, threshold cycle of the corrected positive controls, solution-based PCR efficiency, and bead-based PCR 
efficiency, respectively.

Figure 1.  Quantified detection of RNA trapping efficiency using 3.5 × 106 beads. There was no detectable 
residual XenoRNA template in the binding waste.

Figure 2.  (a) Mean and standard deviation of on-chip bead-based RT followed by offchip bead-based qPCR. 
(b) Mean and standard deviation of in-tube RT followed by bead-based offchip qPCR and solution-based 
offchip qPCR, respectively.
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Characterization of the releasing efficiency of cDNA from the beads via on-chip photocleav-
age.  It is also important to know the releasing efficiency of cDNA from the beads via on-chip photocleavage. 
Therefore, an experiment was designed to characterize the release efficiency (Fig. 3). The first arm of the experi-
ment used on-chip cell lysis, mRNA capture, and RT processing of a small number (10) of IMR-90 cells obtained 
by dilution. Without photocleavage, the RT products (cDNA on beads) were collected and analyzed by qPCR. We 
next performed on-chip lysis of 10 cells, mRNA capture and RT, followed by on-chip photocleavage via UV irra-
diation (peak wavelength: 365 nm). The beads were separated from the cleaved RT product (cDNA), and qPCR 
analyses were performed separately using the cDNA cleaved from the beads and the remaining beads. Looking 
at the amplification curves for the housekeeping gene GAPDH, there is negligible amplification of the cleaved 
beads, indicating the cDNA has been effectively removed from the beads by the UV irradiation. We have also 
noticed that the threshold cycle Ctb of cDNA-on-beads amplification (Positive Control: A1, A2 and A3) are higher 
than the Ct of cDNA in solution (C1, C2 and C3), which would be expected, given that we have already shown 
that the bead-based approach has a lower PCR efficiency than solution-based reactions (Fig. 3b). Evaluating the 
releasing efficiency of cDNA from the beads requires the corrected threshold cycle Cts, which has been defined as 
previously defined. Thus, the releasing efficiency defined as (1 + Es)−Ct/(1 + Es)−Cts is estimated to be (mean ± s.d.) 
95.6% ± 3.5% using experimentally determined cycle threshold (Ctb and Ct) and PCR efficiency (Es and Eb).

Microbeam-irradiated and bystander single cells.  Having characterized the bead-based process 
on chip, we were ready to integrate the PreGEM chip with the cell picker and study the single-cell response 
to microbeam irradiation as well as the bystander effect. 30 Individual control, 30 microbeam-irradiated and 
30 bystander single cells were one by one picked from microbeam dishes via the cell picker and transferred to 
the microchips and processed for cell lysis, mRNA capture, RT and photocleavage. The recovered cDNAs from 
the on-chip reaction were then used to run digital PCR reactions with analysis on the QuantStudio platform. 
The QuantStudio uses limiting dilution of the reaction mix to count individual molecules, providing absolute 
quantification of gene expression levels using Poisson statistics. Expression levels of radiation responsive genes 
CDKN1A, GDF15 and PTGS2 were measured to demonstrate the utility of our single-cell preprocessing pipeline 
in radiation studies. CDKN1A and GDF15 are representatives of p53-regulated radiation response genes pre-
viously shown to respond predominantly in directly irradiated cells and not in bystanders39,41, while PTGS2 as 
one of the most broadly studied genes in bystander studies42–45 is a representative of NFκB-regulated radiation 

Figure 3.  Schematic of experiment flow and qPCR following on-chip cDNA synthesis using magnetic beads, A: 
perform PCR with cDNA on beads, B: photocleave beads and run PCR with beads only, C: use the photocleaved 
cDNA product from B to run PCR. Solid, dashed and dash-dot curves represent independent experiments per 
experiment group.
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response genes, and has been shown to respond almost identically in directly irradiated and bystander cells39,41. 
Figure 4 presents the distribution of individual control cells, bystander cells and irradiated cells based on the 
quantities of PTGS2, CDKN1A and GDF15 in each cell. One interesting observation is the elevated variability in 
expression levels in both bystander cells and irradiated cells compared to controls. For example, the expression 
levels of CDKN1A among irradiated cells distribute in a range of 15 to 165 counts while bystander cells have a nar-
rower range of 0 to 45 counts, compared to that the control cells fall within a range of 0 to 25 counts. Also, it was 
found that the expression levels of both CDKN1A and GDF15 in irradiated cells are significantly higher than the 
expression levels for both genes in bystander cells (p < 0.001). The average fold-changes for CDKN1A and GDF15 
in irradiated cells are 7.56 and 7.37, respectively, while the average fold-changes for these two genes in bystander 
cells are 2.54 and 2.19, with respect to the mean value of the two genes in control cells. While for PTGS2, the aver-
age fold-changes are 6.77 and 5.24 in irradiated cells and bystander cells, respectively.

Figure 4.  Left column: Significantly different distributions of transcript numbers of CDKN1A, PTGS2 and 
GDF15 as measured by digital PCR from individual control, bystander and microbeam-irradiated IMR90 cells. 
Right column: Comparisons of mean quantities of three gene products: CDKN1A, PTGS2 and GDF15 averaged 
over 30 individual control, bystander and microbeam-irradiated IMR90 cells. One asterisk (*) indicates p < 0.05 
and three asterisks (***) indicate p < 0.001.
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In order to compare the expression levels of the three genes within individual cells, regression analyses were 
applied to data points corresponding to expression levels of CDKN1A compared with those of PTGS2 and GDF15. 
We found that a linear model was not significant to explain the relationship between the expression levels of 
CDKN1A and PTGS2, which represent two different signaling pathways, in individual control, bystander and 
irradiated cells (Fig. 5a,c,e). Conversely, expression of the two p53-regulated genes, GDF15 and CDKN1A, was 
significantly correlated within individual cells (p < 0.05). Additionally, the r values were calculated in terms of 
the expression levels of CDKN1A and GDF15 for sets of control, bystander and irradiated cells. A strong linear 

Figure 5.  Scatter plots of expression levels of CDKN1A against PTGS2 (a,c,e,g) and CDKN1A against GDF15 
(b,d,f,h). Grey shading represent 95% confidence level interval for predictions from a linear model (blue dashed 
line).

https://doi.org/10.1038/s41598-019-55831-2


7Scientific Reports |         (2019) 9:19758  | https://doi.org/10.1038/s41598-019-55831-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

relationship was found for CDKN1A against GDF15 among irradiated cells (r = 0.80), while the correlation 
decreased between these genes in bystander cells due to elevated variance (r = 0.65).

Discussion
To support our microbeam studies of the radiation bystander effect, we have developed a system to perform 
single-cell gene expression measurements following irradiation with the microbeam. This system empowers our 
single-cell irradiation studies, allowing individual microbeam-irradiated cells or non-hit bystander cells to be 
tracked, lysed, and prepared for analysis. Our approach could also be applied to studies of rare cells in many other 
contexts. Gene expression variability in rare cells is of great interest for applications including cancer diagnosis46, 
cancer drug development47 and prenatal diagnosis48. While much can be learned through studying gene expres-
sion response in bulk cell populations, such analysis of gene expression dilutes the contribution of these rare cells 
to the pattern of the population. Information that covers the diversity and complexity of the cells as well as their 
unique molecular signatures is thereby lost.

The utility of the integrated preprocessing system was demonstrated by interfacing with QuantStudio digital 
PCR. The end-to-end analyses from microbeam irradiation to digital PCR gene expression measurements indi-
cate cell-to-cell variability among individual control, microbeam-irradiated as well as bystander cells. It is critical 
to know that such variability is mainly due to the cell-to-cell differences in gene expression rather than being 
introduced by measurement noise. As can be seen from Fig. 4, the mean quantities of each gene in irradiated and 
bystander cells are greater than the mean of the gene in individual control cells. While the measurement noise 
would be expected to decrease with elevated abundance of transcripts, the variance in irradiated and bystander 
cells is larger than the variance in controls. This would indicate that there is minimal effect on dispersion from 
measurements and the variance of the single-cell data reflects actual cell-to-cell differences.

The response of lung fibroblast cells to radiation has been extensively studied by microarray and 
qRT-PCR11,49–51. For example, global gene expression four hours after bystander and direct alpha particle expo-
sure of lung fibroblast cells was measured, revealing disparate roles of two major radiation response pathways, 
p53 and NFκB, in the bystander response. Activation of the p53 response pathway was found to be minimal in 
bystander cells, in contrast with the NFκB pathway, which appeared to respond identically in bystander and irra-
diated cells39. Additionally, lung fibroblasts were exposed to alpha-particle radiation at a dose range of 0–1.5 Gy, 
after which the GDF15 gene, regarded as a marker for lung injury, was assessed at the protein level and 3-fold 
higher expression levels were found in exposed cell culture media 24 hours after exposure52. The single-cell data 
presented in Fig. 4 are consistent with these studies, which could be explained by the previous observation that 
p53-regulated genes like CDKN1A and GDF15 were expressed at elevated levels in directly irradiated cultures, 
while showing little or no change in bystanders39. In contrast, the response pattern of NFκB regulated genes such 
as PTGS2 was found to be virtually identical in bystander and irradiated cells.

What was missed in the above studies was the heterogeneity of responses within bystander and irradiated 
populations. While studies in populations gave an averaged cellular response, it is clear that the presented genes 
were not uniformly expressed across even a small population of cells (n = 30) within each treatment set. Within 
irradiated cells, expression levels for any particular gene may not be uniformly elevated among the cells, in addi-
tion to inherent cell-to-cell differences revealed in the controls (Fig. 4). Signaling and response mechanisms in 
bystander cells are complex, involving both direct contact and gap junctions between bystanders and irradiated 
cells53,54 as well as communication through extra-cellular signals in the culture media55,56. Thus, it is possible that 
the distance between an irradiated cell and a non-hit bystander, the concentration gradient of signaling molecules 
in the media, and the movement of the media could contribute to the observed differences in gene expression 
across bystander cells.

Within the same signaling pathway, CDKN1A and GDF15 both are p53-induced genes57, and it is clear from 
Fig. 5h that they are significantly correlated in microbeam-irradiated cells, and to a lesser extent in control and 
bystander cells. It is known that GDF15, which contains two p53 binding sites in its promoter region, is a direct 
target gene of p5358. Radiation-induced DNA damage can induce GDF15 expression in a p53-dependent manner. 
It has also been found that GDF15 holds a moderate but significant association with p53 after DNA damage59, 
which would indirectly reveal the correlation of genes CDKN1A and GDF15 within the p53 pathway.

Next consider the pair of CDKN1A and PTGS2, which represents activation of different pathways including 
p53 and NFκB. The former gene plays essential roles in the DNA damage response60 and the latter counteracts 
p53 activity as well as inhibits DNA damage-induced apoptosis61,62. As seen from Fig. 5, the correlations between 
the two genes in controls and bystanders are weak and positive while the two genes were found to be negatively 
related in irradiated cells. The negative trend observed between CDKN1A and PTGS2 in irradiated cells may 
imply a transcriptional cross talk between NF-κB and p53, in which both pathways inhibit each other’s ability to 
stimulate gene expression and this process is likely dependent on the relative levels of the two transcripts63. It has 
been suggested that stimulation of NF-κB promotes resistance to programmed cell death while the activation of 
p53 is associated with the induction of apoptosis or cell cycle arrest following DNA damage64,65. If this is indeed 
the case, it is possible that NF-κB activation occurs simultaneously with the induction of p53 in a few individual 
cells shown in Fig. 5e, which exhibited equally high levels of expression of both genes, but that activation of the 
two pathways is not tightly linked within the same cell.

Conclusions
The data presented here demonstrate the integrated preprocessing approach for single-cell irradiation studies, 
coupled to qPCR or digital PCR, provides a powerful method to investigate the variability of gene expressions in 
rare cells with microbeam irradiation, and many other applications where rare cells are of interest.
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Methods
Cells.  Normal human diploid lung fibroblasts (IMR-90) were obtained from the American Type Culture 
Collection (ATCC® CCL-186; Manassas, VA, USA). Cells at passage 10–12 were grown in Eagle’s Minimum 
Essential Medium (CellGro, Manassas, VA, USA) supplemented with 12.5% heat-inactivated (56 °C, 30 min) 
fetal calf serum, 400 mM L-alanyl-L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin (Sigma-Aldrich 
Corp., St. Louis, MO, USA). The cells were maintained at 37 °C in a humidified incubator with 5% CO2 in air.

Cell irradiation.  Microbeam irradiations were performed at the Radiological Research Accelerator Facility 
(RARAF)24, Columbia University. Twenty-four hours before the experiment, cells were seeded in two 12.5 cm2 
flasks at 70–80% confluence. The day of the experiment, one flask was incubated for 30 minutes with 100 nM 
Hoechst 33342 and the other with 200 nM MitoTracker Green (Thermo Fisher Waltham, MA USA). Cells from 
both flasks were then trypsinized and plated 1:1 on custom-made microbeam dishes20 and allowed to attach for 
at least 1 h (Fig. 6). Immediately before irradiation, the culture medium was removed from the microbeam dish. 
The microbeam dish was positioned adjacent to the microbeam exit window and a moisture containment collar 
was placed over the objective lens to keep the cells from becoming dehydrated during the approximately 15 min 
irradiation time. The RARAF microbeam system has integrated image analysis, which was used to visualize the 
nuclei stained with Hoechst 33342. A computer automated nuclear irradiation protocol found the location of 
every stained nucleus on the dish. We used the RARAF 5 MV Singleton Accelerator to deliver five doubly charged 
helium particles (He2+), simulating an alpha particle, with an energy of 6.0 MeV to the center of each stained 
nucleus. The ion beam was measured to have a width of <5 µm for all irradiations, and based on SRIM calcula-
tions (Stopping Range of Ions in Matter)66, each He2+ particle had a linear energy transfer (LET) of approximately 
100 keV/µm. Cells showing nuclear stain were microbeam-irradiated while the MitoTracker Green-stained cells 
were not targeted and therefore were designated as “bystander” (Fig. 6). The particle fluence was measured by a 
gas proportional counter positioned above the cells. After every nuclear stained cell on the plate had been irra-
diated the dish was removed from the irradiation endstation, fresh medium was added to the dish, and the dish 
was placed in the incubator at 37 °C until ready for cell picking at 4 hours post irradiation. All control cells were 
stained with Hoechst 33342 and sham irradiated.

Cell picking.  Cells were viewed on a custom microscope using a 10x objective with live imaging (pco.edge 
5.5, PCO, Kelheim, Lower Bavaria, Germany). Custom software allowed for imaging and lighting control as well 
as computer adjustment of the position of the pipette mounted on a 6 axis stage (X, Y, Z, azimuth, elevation and 
retraction; Zaber Technologies Inc., Vancouver, BC). 40 uL of 0.25% trypsin-EDTA was added to the microbeam 
dish prior to picking to aid in cell release. To pick a cell, the pipette was positioned directly adjacent to a cell 
of interest on the microbeam dish. Multi-color illumination, with the use of a Lumencor Aura Light Engine 
(Lumencor, Beaverton, OR), a light source (Morrell Instruments, Mellville, NY) and a camera (PCO-Tech Inc, 
Romulus, MI), allowed for simultaneous imaging of both the nuclear stain and cytoplasmic stain, thus permitting 
determination of the cell as “irradiated” or “bystander”, respectively. Single cells were aspirated into the micro-
pipette along with 1–3 µL of 0.25% trypsin-EDTA. After picking a cell, the micropipette was moved out of the 
microbeam dish and positioned within the input well of a PreGEM chip, where the picked cell was ejected directly 
into lysis buffer (Thermo Fisher, Waltham, MA).

Figure 6.  A co-culture of Hoechst-stained IMR-90 cells (blue) with MitoTracker green-stained IMR-90 cells 
(green) was established on microbeam dishes; at the endstation only Hoechst-stained cells were irradiated 
while the cytoplasmic-stained cells were designated as bystanders; single-cell picking was conducted 4 h after 
irradiation using a capillary micropipette with computer controlled positioning motors.
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Fabrication of PreGEM chip.  The chip (Fig. 7a) is fabricated using standard soft lithography microfabri-
cation techniques67. SU-8 photoresist (MicroChem Corp., Newton, MA) was spun-coated on a silicon wafer and 
patterned with photolithography to define the liquid channel mold. Then, PDMS (Dow Corning) was poured over 
the mold and an additional vapor barrier33 was embedded in the PDMS. Sheets bearing the microfluidic features 
were then peeled off the mold followed by inlet and outlet hole punching. The molded PDMS was sealed to a glass 
slide using oxygen plasma bonding.

On-chip RNA capture.  Different copy numbers of XenoRNA template (2 × 104, 5 × 104 and 105, Thermo 
Fisher Scientific Inc.) were introduced to the microchip, and were captured by 3.5 × 106 beads (Thermo Fisher 
Scientific Inc). Separating the magnetic beads from the remaining solution using a magnet, the effluent solution 
was transferred to micro tubes and mixed with another solution containing 3.5 × 106 beads, which was followed 
by off-chip RT. In the end, 40-cycle qPCRs were run to detect the amount of un-captured templates.

On-chip RT characterization.  The efficiencies of the on-chip bead-based RT were investigated using var-
ious copy numbers of XenoRNA templates (2 × 104, 5 × 104 and 105, Thermo Fisher Scientific Inc.). The on-chip 
RTs were first conducted after mixing RT reagents, XenoRNA, biotinylated oligo(dT)25 primer (Integrated DNA 
Technologies Inc.) and 3.5 × 106 streptavidin magnetic beads. Subsequently, PCRs were performed with the prod-
ucts of RT using the qPCR system. In comparison for the on-chip efficiency, in-tube RTs were performed using 
a thermocycler followed by qPCR characterization. Additionally, to characterize the effects of beads on reaction 
efficiency, bead-based PCRs were subsequently performed with the products of in-tube RT by mixing and bind-
ing biotinylated cDNA to streptavidin beads, comparing the bead-based approach with the standard bench-top 
solution-based approach.

Single-cell processing on the PreGEM chip.  The input well of the PreGEM chip was pre-filled with 
the lysis buffer, so as to immediately lyse the input cell after it was picked and placed within the input well. Next, 
mRNA templates in the cell lysate were collected by photocleavable 5′-PC Biotin-(dT)25-3′ bead tether, which 
was made by incubating magnetic streptavidin beads (Thermo Fisher Scientific Inc.) with photocleavable bioti-
nylated oligo(dT)25 (Integrated DNA Technologies Inc.). The principle of mRNA capture relies on base pairing 
between the polyA tails of the mRNA and oligo(dT)25 immobilized on the surface of the beads. In the reaction of 
reverse transcription (RT), the bead-bound oligo(dT)25 functions as a primer for synthesis of cDNA. Extracted 
mRNA were moved from inlet well to reaction chamber using a magnet, followed by the introduction of reverse 
transcription mix (dNTP, RT buffer, MgCl2 solution, Reverse Transcriptase, RNase inhibitor). After RT (10 min 
at 25 °C and 50 min at 42 °C), the microchip was exposed under a UVA lamp (Sylvania Inc) photocleaving the PC 
linker, which released the cDNA from the beads.

Figure 7.  (a) Schematic of the side view of a PDMS PreGEM chip made by soft lithography. The microfluidic 
chip consists of an inlet for introduction of reagents, cell lysis and mRNA capture using magnetic beads as 
well as a reaction chamber for on-bead RT. (b) a bead-based process on the PreGEM chip: mRNA capture 
by Oligo(dT)25 on beads, cDNA synthesis on beads during RT, and cDNA release by photocleaving the PC 
(photocleavable) Biotin linker on beads.
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In-tube RT, qPCR and digital PCR (dPCR).  In-tube RTs were run using a thermocycler (Eppendorf) with 
a standard protocol (10 min at 25 °C and 50 min at 42 °C). qPCRs were performed using 96-well reaction plates 
run on the 7900HT Fast Real-Time PCR (Applied Biosystems). 5 μL RT products, 6.25 μL nuclease-free water, 
1.25 μL Taqman gene expression assay (Hs99999905_m1, Thermo Fisher Scientific Inc.) and 12.5 μL Taqman 
gene expression master mix were loaded on the plates, which were run for 45 cycles. The QuantStudio 3D digital 
PCR system (Thermo Fisher Scientific Inc.) was used to conduct digital PCRs. Starting samples in a final vol-
ume of 15 μL that consisted of bead-excluded RT product, Taqman gene expression master mix (Thermo Fisher 
Scientific Inc.), Taqman gene expression assay (Hs99999142_m1, Hs00153133_m1, Hs00171132_m1, Thermo 
Fisher Scientific Inc.) and nuclease-free water were loaded onto Digital PCR Chips (Applied Biosystems) via the 
QuantStudio 3D Digital Chip Loader (Applied Biosystems). The chips were immersed in oil to avoid evapora-
tion and sealed with UV sealant (Applied Biosystems). This was followed by running 40 cycles of dPCR using 
GeneAmp® PCR system 9700 Thermocycler, which is adapted for digital PCR reactions. The chips were then 
loaded onto the QuantStudio™ 3D Digital PCR Instrument, and the end-point fluorescence of each well on the 
chips was measured using QuantStudio™ 3D Digital PCR software v3.0. The fluorescence data were read and 
analyzed using QuantStudio 3D Analysis Suite Cloud Software.

Statistical analysis.  Statistical differences between two groups of cells were determined using unpaired 
two-sample t-test or one-way ANOVA followed by post-hoc Tukey test, where necessary. Pearson correlation 
coefficient (r value) was used to measure the linear relationship between expression levels of two genes. Defined 
as the covariance of two variables divided by the product of their standard deviations and calculated as follows: 
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, where x and y represent variables and n is the number of experiments. The 

Kolmogorov-Smirnov test was used to test the normality of the samples and to decide whether the distribution 
functions of two samples are significantly different. R (version 3.1.1) was used to perform statistical analysis.
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