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ABSTRACT

MicroRNAs (miRNAs) regulate gene expression by
binding to partially complementary sequences on
target mRNA transcripts, thereby causing their
degradation, deadenylation, or inhibiting their trans-
lation. Genomic variants can alter miRNA regula-
tion by modifying miRNA target sites, and multi-
ple human disease phenotypes have been linked to
such miRNA target site variants (miR-TSVs). How-
ever, systematic genome-wide identification of func-
tional miR-TSVs is difficult due to high false posi-
tive rates; functional miRNA recognition sequences
can be as short as six nucleotides, with the human
genome encoding thousands of miRNAs. Further-
more, while large-scale clinical genomic data sets
are becoming increasingly commonplace, existing
miR-TSV prediction methods are not designed to an-
alyze these data. Here, we present an open-source
tool called SubmiRine that is designed to perform
efficient miR-TSV prediction systematically on vari-
ants identified in novel clinical genomic data sets.
Most importantly, SubmiRine allows for the prioriti-
zation of predicted miR-TSVs according to their rela-
tive probability of being functional. We present the re-
sults of SubmiRine using integrated clinical genomic
data from a large-scale cohort study on chronic ob-
structive pulmonary disease (COPD), making a num-
ber of high-scoring, novel miR-TSV predictions. We
also demonstrate SubmiRine’s ability to predict and
prioritize known miR-TSVs that have undergone ex-
perimental validation in previous studies.

INTRODUCTION

MicroRNAs (miRNAs) are small RNA molecules of about
22 nucleotides in length that are processed from hairpin-
loop structures formed mostly by RNA polymerase II tran-

scripts in the nucleus. The animal miRNA biogenesis path-
way is a subset of the larger RNA interference (RNAi) path-
way, in which the RNAi-induced silencing complex (RISC)
transports miRNAs to mRNA recognition sequences (‘tar-
get sites’). Upon binding, the miRNA down-regulates the
target gene’s expression, predominately via mRNA destabi-
lization and decay (1).

The miRNA regulatory mechanism was discovered in the
nematode Caenorhabditis elegans in 1993, with the identifi-
cation of small RNAs encoded by lin-4 regulating the gene
lin-14 through binding in the 3′UTR (2). Since then, the
miRNA pathway has been identified in every animal ex-
cept for those in two of the earliest evolving lineages––the
ctenophores and placozoans (3,4)––and many miRNAs
(and their target sites) are conserved across species. In hu-
mans, the number of identified miRNAs is constantly in-
creasing as sequencing technologies improve, with current
inventories in the thousands (5,6). Many roles have been
found for miRNAs in the context of the study and treat-
ment of human disease. These include their use as dis-
ease biomarkers, as potential therapeutic molecules, and
as drivers of genetic disease through mutation (7–11). Ge-
nomic variants can alter miRNA functionality through
mutation of the primary miRNA’s sequence, the miRNA
processing machinery (e.g. Dicer, Drosha and Argonaute),
or the miRNA’s target sites. Mutations in the processing
machinery or primary sequence can have severe down-
stream effects (10–12), whereas mutations that occur within
miRNA binding sites likely have more subtle, localized ef-
fects, manifesting as relatively moderate deregulation of
gene expression. Thus, the mechanistic effects of variants in
the miRNA processing machinery and primary sequences
are relatively easier to predict than variants in miRNA
target sites. Furthermore, mapping genomic variants onto
functional miRNA target sites is significantly more diffi-
cult than mapping to primary sequences (and the genes en-
coding miRNA-processing proteins), as determining func-
tional loci for miRNA target sites is not trivial. The sig-
nificance of variants in non-coding regions of the genome
(13) and the role of gene expression in driving human dis-
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ease phenotypes (14) suggest that variants in miRNA tar-
get sites are important to human disease susceptibility and
progression. It has been shown that miRNA binding sites
are under selection (15,16), providing further evidence that
disrupting their recognition sequences can have significant
phenotypic effects. Numerous miRNA target site variants
(miR-TSVs) have been identified and linked to human dis-
eases (see Supplemental Table S2), mostly through candi-
date gene approaches. However, with the increasing number
of GWAS hits being identified and with the advancements
being made to technologies for whole genome-scale analy-
sis in clinical applications, it seems likely that many more
miR-TSVs will be uncovered. This points to an urgent need
for methods that can be used to systematically predict miR-
TSVs in a genome-wide fashion.

Despite the fact that miRNAs were discovered over ten
years ago, methods to confidently identify and predict
miRNA target sites are plagued by high false positive rates.
This is due in large part to our limited knowledge of how
miRNA regulation is directed. For example, miRNAs have
generally been understood to bind the 3′UTR of their tar-
gets at sites containing perfect Watson-Crick complemen-
tarity to the miRNA seed region––nucleotides 2–7 (and
possibly 8) from the 5′ end of the miRNA. Additionally,
having an adenine on the 3′UTR across from the first nu-
cleotide of the miRNA is thought to enhance the acces-
sibility of RISC (1,17). Using these criteria, a six-to-eight
nucleotide sequence is generally sufficient for miRNA tar-
get recognition. Thus, candidate miRNA target sites oc-
cur quite frequently, yet very few of these are likely to be
functional. The increasingly large number of known hu-
man miRNAs further exacerbates this issue, as it increases
the number of unique 6–8mer sequences that match puta-
tive miRNA target sites. In addition, miRNA binding sites
that contradict the requirement for perfect seed pairing have
been identified (18), and recent high-throughput screens
suggest that such non-canonical binding sites (and binding
sites outside of the 3′UTR) are potentially more common
than has been appreciated (19,20). It is not yet clear whether
these non-canonical binding sites function to the same de-
gree (or even by the same mechanism) as canonical binding
sites, and bioinformatic methods have not yet been devel-
oped to account for all of their activities.

Nonetheless, many methods to predict functional versus
non-functional miRNA target sites have been developed,
and their accuracy has been demonstrated by comparing
their predictions against experimental data (21–26). These
methods utilize features such as site conservation, neighbor-
hood sequence context, and thermodynamic properties to
distinguish functional sites. As a consequence of this com-
plexity, running any one target prediction program genome-
wide can be a laborious process. Therefore, the predictions
made by these methods are generally run once on the ref-
erence genome, with the results then made available in an
online database. While having this kind of public resource
is helpful for common tasks such as identifying known
miRNA target sites, it does not address our ability to an-
alyze the effect of sequence variants on miRNA function-
ality. A few of the aforementioned target prediction meth-
ods provide source code to run custom sequences locally
(21,22,24,26), but analyzing the effects of sequence varia-

tion on miRNA binding genome-wide is beyond the scope
of these methods. Historically, clinically associated miR-
TSVs have been identified by a candidate gene (or SNP)
approach, limiting the scale of the search enough to make
this analysis feasible. Thus, the issues with using these tar-
get prediction methods for analyzing miR-TSVs are multi-
fold: (1) running on a custom data set is non-trivial; (2) run-
ning on a custom data set is time consuming; and (3) the
methods were not designed to run on multiple alleles, so
comparing allelic differences must be done manually. While
tools have been developed for analyzing damaging variants
in coding regions of the genome, such tools for analyzing
lower-impact variants outside of coding regions have not
been extensively developed [see (27) for a recent review].

Recently, a few methods have been developed for ana-
lyzing miR-TSVs across the genome. These methods uti-
lize target prediction methods (as described above) to score
the alleles of variants independently and identify miR-
TSVs through changes in the associated target scores. How-
ever, similarly to the target prediction tools, they generally
present only the results of publicly reported variants and
miRNAs in online databases or supplemental tables (28–
34). The restricted set of variants and miRNA sequences
they can analyze limits their usefulness and applicability
to the large-scale clinical genomic data sets that are more
frequently becoming available. Furthermore, these methods
are designed to be run independently of experimental data
(i.e. miRNA expression and gene expression). Therefore,
these methods produce many miR-TSV predictions that are
likely false positives; these methods also do not provide a
mechanism to prioritize those that are most likely to be
functional. In this work, we present an efficient open-source
software tool called SubmiRine that has been designed
specifically to address these issues, providing a powerful
method for systematically analyzing miR-TSVs genome-
wide that is especially suited for use in a clinical research
context. SubmiRine performs miR-TSV prediction de novo,
allowing for the analysis of novel variants and miRNAs, in-
tegration of miRNA and gene expression data, and prioriti-
zation of miR-TSV predictions by relative significance with
respect to a data set-specific background model.

MATERIALS AND METHODS

Data

SubmiRine was developed and tested using a large clin-
ical genomic data set stemming from the Lung Genome
Research Consortium (LGRC; http://www.lung-genomics.
org) investigating genetic mechanisms related to chronic
lung disease. From these data, we utilized a subset of sam-
ples that correspond to lung biopsies classified as either
chronic obstructive pulmonary disease (COPD; 116 sam-
ples) or control (43 samples); matched genotype, gene ex-
pression, and miRNA measurements were available for all
of these samples. First, normalized gene expression data
from Agilent microarrays were downloaded from GEO (ac-
cession GSE47460). Samples were genotyped with the Illu-
mina HumanOmni 2.5M Beadchip, which measures ∼2.5
million SNPs having a minor allele frequency (MAF) of
2.5% or greater, designed around the 1000 Genomes Project
data. Lastly, miRNA expression was measured via small
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RNA sequencing with Illumina’s GAIIx and HiSeq and
batch corrected with Combat (35). Trimmed, size-selected
reads were mapped to hg19 and miRBase v18 (6), and quan-
tified by log2 transformation of reads per million (RPM)
values normalized within each sample, using a pseudocount
of one for each microRNA. Having this type of robust clin-
ical genomic data set in-hand provides a powerful oppor-
tunity for looking at miRNA regulatory variants by inte-
grating multiple relevant data points matched to each clini-
cal sample. Specifically, miRNA expression data allows for
the identification of both known and novel miRNAs de-
tected in the sample, as well as their isomiRs (i.e. miRNA
species processed upstream or downstream of the canon-
ical 5′ locus, producing a miRNA with a shifted seed se-
quence) (36,37), thereby improving our ability to identify
known and novel target sites that are likely to be active
in vivo. The combination of gene expression and genotype
data allows for the identification of variants of clinical in-
terest (through genome wide association), as well as vari-
ants that may alter gene regulation, thereby being candidate
miR-TSVs. Thus, we have used this rich data set as a rep-
resentative of the data that can be utilized from modern,
large-scale clinical genomic studies with respect to miRNA
regulation. We present the results of SubmiRine using this
data set as a proof-of-concept of our method, but also to
predict novel miR-TSVs that may relate to COPD suscepti-
bility and progression. As the number of genome-wide asso-
ciation studies (GWASs) continues to grow, leading to the
identification of more and more human genomic variants
associated with disease phenotypes, methods such as Sub-
miRine will allow for the direct evaluation of possible bio-
logical mechanisms responsible for the underlying pheno-
type.

Preprocessing clinical genomic data for targeted search of mi-
croRNA target site variants

Clinical genomic data sets that integrate genotype, gene ex-
pression, and miRNA expression information provide an
ideal platform for enabling systematic, genome-wide iden-
tification of functional miR-TSVs. However, no existing
method is designed to utilize these data for performing
dynamic searches of miR-TSVs. SubmiRine was designed
specifically to harness these data sets for disease context-
specific prediction. Figure 1 represents the standard Sub-
miRine workflow that is used in this manuscript and will be
described in the following sections. First, we utilized stan-
dard methods for analyzing our COPD clinical genomic
data to pre-process variants and miRNAs of clinical interest
as input for SubmiRine. Specifically, using genotype, gene
expression data, and RefSeq protein annotations, we first
identified cis-eQTLs localized to 3′UTRs using MatrixE-
QTL (38). This allowed us to focus on variants that cor-
respond to a gene expression phenotype consistent with the
hypothesis of a functional miR-TSV. Second, we used Plink
(39) to filter out variants that were not associated with the
disease phenotype. This step is optional if no disease asso-
ciation is being tested. Together, we used these filtered vari-
ants to generate a single FASTA-formatted file containing
all candidate 3′UTR alleles and their relative expression.
Next, normalized miRNA expression values were used to

identify candidate miRNAs that are present in the sam-
ple. A second FASTA formatted sequence file was gener-
ated for each identified miRNA, with its mean expression
recorded. Notably, this allows for isomiRs to be consid-
ered in addition to canonical miRNAs. These two FASTA
files are the output of the pre-processing steps for the stan-
dard SubmiRine workflow diagrammed in Figure 1A and
are the only required input to SubmiRine. Thus, alterna-
tive pre-processing procedures can be utilized without af-
fecting SubmiRine’s functionality. SubmiRine’s use of these
two FASTA files as input exemplifies the major advantages
SubmiRine exhibits over other miR-TSV prediction tools
(Table 1): it allows for analysis of novel and multi-allelic
variants (both polymorphisms and indels), analysis of novel
miRNAs, and prediction informed by expression data. Ad-
ditionally, SubmiRine can perform traditional miRNA tar-
get site prediction where the input 3′UTR sequences are as-
sumed to be mono-allelic. Sample input files and the source
code can be found online at http://research.nhgri.nih.gov/
software/SubmiRine.

Prediction of microRNA target site variants

SubmiRine identifies and prioritizes candidate miR-TSVs
using a multi-step process. The first step involves the Sub-
miRine Search module, using the pre-processed clinical data
as its input (Figure 1B). First, candidate miRNA target
sites are identified on all 3′UTR alleles in preparation for
scoring with TargetScan6 context+ scores (21). Context+
scores require that miRNA binding sites be canonical 6mer,
7mer-1a, 7mer-m8 or 8mer sites. Thus, the identification
of all candidate binding sites requires searching for all 6–
8mer sequences corresponding to the seed sites of the input
set of expressed miRNAs. SubmiRine performs this search
rapidly against a Burrows-Wheeler transform of the input
3′UTR sequences. Once all candidate miRNA binding sites
are identified, each context+ score is computed using the
sequence neighborhood surrounding each site.

Multiple studies have demonstrated the importance of
miRNA abundance in predicting functional target sites
(25,40). Logically, a miRNA must be present and expressed
at high enough levels to significantly repress its targets,
and individual targets must compete for available miRNAs.
Thus, after predicting all context+ scores, SubmiRine uti-
lizes miRNA expression values in order to weight target
scores by abundance of the candidate miRNA. This is com-
puted by multiplying the miRNA’s normalized expression
value by the raw context+ score of each candidate bind-
ing site. The raw context+ score is referred to as the ‘bi-
nary score,’ and the miRNA abundance-weighted score is
referred to as the ‘empirical score.’ We retain both the bi-
nary and empirical scores, as they each may be meaning-
ful for assessing candidate miR-TSVs. For example, given
that miRNA abundance values can vary significantly be-
tween miRNA species, the most highly expressed miRNAs
(e.g. let-7) can generate extremely high empirical scores for
very low-scoring candidate targets. Thus, while the empiri-
cal score has been shown to reduce false positive rates (25),
the unweighted binary score is also important to consider.

After all candidate target sites have been identified and
scored, SubmiRine compares all target sites across the set
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Figure 1. The standard SubmiRine workflow. (A) Pre-processing steps used to select candidate variants (the ‘Test Model’) and decoy variants (the ‘Back-
ground Model’) for miR-TSV prediction. The SubmiRine Search module is then run independently on (B) the Test Model and (C) the Background Model.
SubmiRine Search takes two FASTA files as input, one for 3′UTRs and one for miRNAs, and each FASTA record contains representative expression
values. SubmiRine Search outputs the scored set of candidate miR-TSVs identified in the input model. (D) The SubmiRine Compare module is then used
to prioritize the miR-TSVs from the Test Model by comparing them to the decoy miR-TSVs from the Background Model. SubmiRine Compare computes
the SLP score (Sum of Log-scaled Probabilities), representing the joint, empirical probability of the scores computed for each candidate miR-TSV.
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Table 1. Comparison of miR-TSV prediction methods

Variant types SubmiRine mrSNP PolymiRTS3 MirSNP MicroSNiPer mirsnpscore Patroclesa

Single Nucleotide Polymorphisms (SNPs)––publicly
reported

� � � � � � �

Single Nucleotide Polymorphisms (SNPs)––novel � � �
Insertions/deletions (INDELs)––publicly reported � � �
Insertions/deletions (INDELs)––novel �
Combinations of variants in phase/haplotypes � � �
Variants with >2 alleles �
Non-3′UTR variants
Testable limit (maximum no. of variants per run)b None None None None 6 1 NA
MicroRNA sequences
Publicly reported (miRBase) � � � � � � �
isomiRs �
Novel miRNAs �

For each miR-TSV prediction method (columns), the types of variants, variant relationships, and microRNA sequences that can be analyzed (rows) are
indicated by check marks. Aside from SubmiRine, the only methods that can handle novel variants––to our knowledge––are mrSNP and MicroSNiPer.
However, these can only handle novel bi-allelic SNPs and score them independently of other variants that may occur in the region.
aThe Patrocles online database is non-functional at the time of this writing. Its stated abilities are based upon the description provided in the associated
manuscript (28).
bThe testable limit refers to, for a hypothetical list of variants of interest to the user, how many variants the public version of each tool allows the user to
test at once. ‘None’ implies no limit exists. Regarding mirsnpscore, runs can be based upon a single SNP, a single gene or a single miRNA. Note that tools
with a limit could be downloaded and run (or queried) locally to bypass any limitation.

of alleles for a particular 3′UTR and identifies miRNA tar-
get sites whose score differs in at least one allele. If a target
site does not exist on a particular allele, its score is con-
sidered to be zero. This score difference allows for iden-
tification of variants that create or destroy miRNA bind-
ing sites altogether, as well as variants that merely alter the
predicted binding strength of a particular miRNA between
alleles. Collectively, these variant-miRNA pairs represent
the set of candidate miR-TSVs. Finally, because the input
3′UTR alleles were derived from cis-eQTLs and therefore
have allele-specific expression values, SubmiRine ignores all
candidate miR-TSVs that have scoring differences inconsis-
tent with the direction of change in gene expression. Fol-
lowing this comparison, SubmiRine produces one output
file containing all of the raw target site predictions (with
both binary and empirical scores), and a second output file
reporting only candidate miR-TSVs with target site scor-
ing differences between alleles. miR-TSVs are reported by
their change in binary and empirical score (Δbinary and
Δempirical), and the scores of the strongest target site (i.e.
the most negative) in the allele group are also reported. Ad-
ditionally, two similar files are produced where all target
sites for a particular miRNA that occur in the same UTR
are summed, representing a miRNA-wise (‘mir-wise’) view
of target prediction opposed to the site-specific (‘site-wise’)
view described above [see (21,23,24,41) for more detail]. In
this work, we focus on the site-wise predictions because we
do not have a large density of SNPs per 3′UTR, but the
mir-wise predictions are produced for cases where they may
provide more global information relative to site-wise pre-
dictions.

Defining a background model with decoy variants

The list of candidate miR-TSVs identified in the Sub-
miRine Search module can be quite large, especially for
sets of 3′UTRs and miRNAs generated from genome-wide
scans. Thus, determining which miR-TSVs are the most

likely to be functional (and have the strongest impact) re-
quires prioritizing the list of predicted miR-TSVs. Sub-
miRine prioritizes the predicted miR-TSVs by comparing
them to a background model consisting of decoy 3′UTR
variants. Here, decoy variants are defined as genomic vari-
ants that occur in a 3′UTR but do not correlate with allele-
specific gene expression. Because SubmiRine was designed
to run on custom clinical genomic data sets, the decoy vari-
ant set can be generated alongside the clinically relevant set
during standard pre-processing (Figure 1A).

During pre-processing, we identified local 3′UTR cis-
eQTLs (i.e. variants in 3′UTRs whose genotype is correlated
with expression of the underlying gene) to select variants
that may be functional miR-TSVs. MatrixEQTL models
the genotype-gene expression interaction as a quantitative
trait using a linear model (or, optionally, a variation-based
model), and assigns a p-value to each variant based upon
its probability of being a true eQTL. While likely eQTLs
are selected on the lower tail of this p-value distribution
where p ≈ 0 (we used a cutoff of FDR = 0.05), unlikely
eQTLs are conversely predicted at larger values of p, with
the most confident negative predictions occurring on the
upper tail of the distribution where p ≈ 1. These correspond
to variants that do not fit a linear model relative to the gene
expression quantitative trait, or fit a linear model with a
slope ≈ 0. Thus, our background model contains a set of
3′UTR variants that lie on the upper tail of the p-value dis-
tribution produced by MatrixEQTL, representing true de-
coy variants. While comparisons of variant sets at differ-
ent p-value intervals indicate that most variants outside of
the lower tail of the eQTL p-value distribution can be used
for building a background model, our selection of variants
specifically from the upper tail does a slightly better job
of selecting for miR-TSVs with low-scoring �binary and
�empirical metrics. More importantly, we confirmed that
almost any background model based on observed variants
was preferable to a background model based on simulated
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sequence variants, which have no experimental evidence of
being non-functional miR-TSVs and are not representa-
tive of true negative examples (see the supplemental text
and Supplemental Figures S2–S6 for more detail). Using
the 3′UTRs with the selected decoy variants (i.e. the back-
ground model), SubmiRine Search is run a second time in
the same fashion as for the clinically relevant set to generate
decoy miR-TSVs (Figure 1C). These decoy miR-TSVs can
be used to determine, for each miRNA, how often partic-
ular target site scores (and variant-driven scoring changes)
occur in a non-functional, background model.

Prioritizing predictions by microRNA regulation-altering po-
tential

Qualitatively, to prioritize predicted miR-TSVs for fur-
ther clinical study, each candidate miR-TSV should be as-
sessed for the repressive strength of the created (or de-
stroyed) binding site, the magnitude of the variant’s ef-
fect on miRNA binding, the availability (abundance) of the
miRNA, and the relative significance of these metrics com-
pared to others in the genome. SubmiRine utilizes the back-
ground model to make these assessments quantitatively in
the SubmiRine Compare module (Figure 1D). Specifically,
for each predicted miR-TSV from the clinically relevant set
(Figure 1B), SubmiRine compares the binary score, em-
pirical score, Δbinary score and Δempirical score to the
distribution of corresponding metrics observed in the de-
coy (non-functional) miR-TSVs (Figure 1C). Using these
four scoring metrics, SubmiRine Compare computes a total
of six empirical probabilities reflecting how common each
metric for a candidate miR-TSV is expected to be in non-
functional data. The six probabilities of this form are de-
fined in Supplemental Table S1. In practice, a series of em-
pirical cumulative distribution functions (eCDFs) are built
with the background model to compute these probabilities
directly. To prevent probabilities of 0 and 1, each eCDF con-
tains two extra pseudocount values (one above the observed
maximum and one below the observed minimum) such that
empirical probabilities follow Laplace’s Rule of Succession.
Note that two of the six empirical probabilities are com-
puted relative to a background set containing only the sub-
set of decoy miR-TSVs that correspond to the miRNA as-
sociated with the candidate miR-TSV being tested; this al-
lows us to model competition among sites of a particular
miRNA implicitly.

Once these six empirical probabilities have been com-
puted against the background model, SubmiRine Compare
computes the product of all six probabilities to produce a
single, combined metric by which all predictions can be pri-
oritized. We call this metric the SLP (Sum of Log-scaled
Probabilities) score, computed as a natural log. Thus, we
consider each of the probabilities to be equally weighted, as
the scoring scheme is unsupervised. To improve this met-
ric would require a large number of validated predictions
to distinguish true from false positives, yet no such data
set currently exists. However, we have found that the un-
weighted product performs well with the set of known miR-
TSVs we were able to test, suggesting all six empirical prob-
abilities are meaningful and have predictive value (see Re-
sults).

Implementation details

In order to accommodate large-scale, clinical genomic data
sets, SubmiRine was designed to be an open-source pro-
gram that can run efficiently on a single processor with suf-
ficient RAM. Comparatively, every existing target site and
miR-TSV prediction method is primarily presented as a pre-
computed database and are not designed for runs with cus-
tom sequence data in the context of a high-throughput anal-
ysis pipeline (21,23–25,28–33,42). To our knowledge, sev-
eral target prediction methods do provide open-source code
that can be installed and run locally (21,22,24,26), but no
such miR-TSV prediction tool currently exists. Genome-
wide scans using the open-source target prediction tools
mentioned above are inefficient in the context of an anal-
ysis pipeline, as they require scanning the genome once
for every input miRNA to identify candidate target sites.
Additionally, many require computationally intensive steps
within the scoring framework, including miRNA-to-target
sequence alignments (21,22,24,26), secondary structure pre-
dictions (22,24,26), and analysis of target site conserva-
tion across species (21,26). To perform target prediction ef-
ficiently in SubmiRine, we utilized TargetScan6 context+
scores for a few reasons. First, context+ scores are com-
puted independently of target site conservation, making
them well-suited for scoring variant effects in miRNA tar-
gets, but also avoiding the need to align input 3′UTR se-
quences across species. Second, context+ scores are based
on candidate target sites that follow the rules of canoni-
cal seed pairing (i.e. 6mer, 7mer-1a, 7mer-m8 or 8mer tar-
get sites). This allows miRNA binding site candidates to
be identified via simple string searches, where the number
of search strings is linear with respect to the size of the
input miRNA set. Thus, SubmiRine indexes the full set
of 3′UTR sequences with a Burrows-Wheeler transform,
allowing all candidate target sites to be identified rapidly
without scanning the genome once for every miRNA. If
necessary, future versions of SubmiRine could incorpo-
rate certain non-canonical seed sites (such as bulge sites
(20)) by extending the set of possible seed sequences for
each miRNA. SubmiRine utilizes the open-source ‘py-
burrows-wheeler’ implementation of the Burrows–Wheeler
algorithm (http://code.google.com/p/py-burrows-wheeler/).
Third, TargetScan6 context+ scores do not require ad hoc
RNA secondary structure predictions, which are compu-
tationally expensive––especially when analyzing a large set
of miRNAs and 3′UTRs. Although secondary structure
predictions are not performed, the ‘AU content’ metric
that contributes to TargetScan6 context+ scores has been
shown to be highly correlated with free energy estimates
of target site accessibility (i.e. �G-open) (22,26). Also, the
seed-pairing stability (SPS) metric pre-computed for Tar-
getScan 6 context+ scores reflects the free energy estimate
of miRNA seed/target binding. Therefore, our use of Tar-
getScan 6 context+ scores does consider secondary struc-
ture information to some extent, but without the caveat of
having to predict binding structures on the fly. TargetScan6
context+ scores do require minimal miRNA-to-target se-
quence alignment in order to assess 3′ supplemental pair-
ing contributions, and this step remains the most intensive
part of SubmiRine, consuming over half of the runtime. To-
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gether, these implementation details greatly improve scala-
bility for genome-wide target prediction.

SubmiRine utilizes a Python implementation of Tar-
getScan developed within the framework of the miRmap
tool (26), with modifications to account for a more recent
version of TargetScan (version 6) that includes the seed
pairing stability and miRNA target abundance scoring fea-
tures (21). While miRmap has external library dependen-
cies for certain scoring features, we do not utilize these li-
braries for TargetScan scoring, and therefore do not require
such dependencies. The core scoring algorithm in the Sub-
miRine framework is the SubmiRine Search module writ-
ten in Python, which is designed to run on either a clini-
cally relevant set of 3′UTRs or a background model of de-
coy 3′UTR variants. In most cases (including the applica-
tion described in this manuscript), it is desirable to compare
the output of the clinically relevant set against the back-
ground model and compute the empirical probabilities used
for miR-TSV prioritization. This is performed with the Sub-
miRine Compare module––an independent R script––that
accepts two output files from the SubmiRine Search module
as input (i.e. the output from the clinically relevant model
and the background model). Sample use cases are provided
with the distribution of the SubmiRine source code online
at http://research.nhgri.nih.gov/software/SubmiRine.

Performance

As described above, the majority of existing target predic-
tion and miR-TSV prediction tools are not open-source,
so we could not compare the efficiency of SubmiRine to
all of these methods. However, we were able to compare
the miRNA target site search and scoring steps of Sub-
miRine to the equivalent steps of TargetScan6 (context+
scores only) (21), miRanda (24), and PITA (22). As a bench-
mark data set, we used all 3′UTR sequences in Ensembl
that have corresponding RefSeq protein identifiers and gen-
erated two alleles per 3′UTR by adding a single, simulated
SNP or single-nucleotide deletion on each UTR. This in-
cluded 18 605 3′UTRs that are found genome-wide, result-
ing in 37 210 3′UTR alleles. In total, this data set comprised
roughly 47.62 Mb of sequence. As the miRNA input set,
we utilized all mature sequences for human miRNAs from
miRBase (6), representing 2042 miRNA species at the time
of this writing. We anticipated that this benchmark data
set would represent the largest input data set that might be
used, although it is significantly larger than what we gener-
ated from the COPD clinical genomic data set. Compara-
tively, with the COPD data, our test and background mod-
els contain 8.08 Mb and 336.6 kb of 3′UTR sequence, re-
spectively, and 418 miRNAs were identified with expression
above 10 RPM (see above).

In order to make a fair comparison between different
methods, we searched only for canonical seven to eight
nucleotide seed sites with each method, allowing no mis-
matches or GU-wobbles (-strict option in miRanda). As
SubmiRine performs additional functions beyond target
site identification and scoring, we only considered run-
time through these steps, which are restricted to the Sub-
miRine Search module. Specifically, this includes the com-
putation of the Burrows-Wheeler Transform, candidate tar-

get site searching, and scoring with context+ scores. No-
tably, PITA was not scalable to this large of a data set,
so we calculated its runtime on a small sample of the in-
put 3′UTR sequences (all miRNAs) and extrapolated its
runtime accordingly. SubmiRine processed the benchmark
data set in 2.35 h, representing a >6-fold increase in speed
relative to the next fastest comparison tool (TargetScan6,
at 14.16 h), and speed improvements of roughly 11-fold
and 400-fold to miRanda (26.26 h) and PITA (1023.59 esti-
mated hours), respectively. These speed-ups are not surpris-
ing given the computationally intensive secondary struc-
ture and sequence alignment steps performed by miRanda
and PITA, but the improved speed when compared to Tar-
getScan6 is purely a result of faster candidate target site
identification via the use of a Burrows–Wheeler transform
in SubmiRine.

Because SubmiRine has to compare target sites to iden-
tify miR-TSVs, each candidate target site must be stored
in memory; thus, the memory footprint can be quite large,
scaling linearly with the number of targets identified. Thus,
we can compute a rough estimate of the memory (RAM)
requirements a priori by estimating the expected number of
target sites, which is a function of the amount of UTR se-
quence and the size of the input miRNA set being analyzed
(i.e. an estimate of the proportion of k-mers that will match
a miRNA seed site, extrapolated according to the amount
of UTR sequence). Realistically, the true number of target
sites identified will also be dependent on the redundancy of
the input miRNA set and the non-randomness inherent to
UTR sequence data, and additional memory overhead is re-
quired outside of storing target sites. Nonetheless, our runs
on the benchmark and COPD data sets suggest that 3–5 kb
of RAM per expected target site is required for larger data
sets, where the number of expected target sites, E[|T|], can
be estimated by the equation:

E[|T|] = M
4s

[D − U(S − 1)]

where M is the number of miRNAs, S is the minimum seed
site length, D is the amount of DNA sequence (in bases) and
U is the number of UTR records. Peak memory usage was
25.4 Gb for the benchmark data set, 2.4 Gb for the COPD
background model, and 263.4 Mb for the COPD eQTL test
model. Thus, for general clinical genomic data use cases, a
standard desktop or laptop should have sufficient memory,
but larger machines may be required for unfiltered, genome
wide searches.

RESULTS

COPD

SubmiRine was run on our COPD clinical genomic data
set following the pipeline illustrated in Figure 1. The pre-
processing steps produced a total of 93 3′UTRs containing
127 SNPs in the target model and 1608 3′UTRs contain-
ing 2106 decoy SNPs in the background model. Concur-
rently, we applied a threshold to include only miRNAs that
were expressed at a level of 10 RPM or higher in at least
one of the samples in the cohort, and the mean expression
was recorded across the cohort as the representative expres-
sion value. This produced a total of 418 miRNAs. Using

http://research.nhgri.nih.gov/software/SubmiRine
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Figure 2. Highest-scoring miR-TSV prediction on the COPD data set. (A) The primary miR-363 locus and secondary structure are displayed, along with
the quantified miRNA-Seq reads mapping to this region. Also shown is the locus on the 3′UTR of SPG21 containing the rs7322 SNP. Highlighted in
green is the predicted 8mer miRNA target site predicted on the rs7322(A) allele only for the miR-363-3p(+1) isomiR. Based on the SLP score computed by
SubmiRine, this represents the highest-scoring miR-TSV prediction the COPD data set (see Table 2). (B) The rs7322 cis-eQTL relationship with SPG21.
Consistent with the predicted miR-TSV in (A), the rs7322(A) allele is associated with lower SPG21 expression. (C) The rs7322(A) allele is also moderately
associated with the COPD phenotype, being more frequent in cases than controls.

these pre-processed data, SubmiRine produced 467 putative
miR-TSVs that were consistent with the expression changes
reported in the eQTL models (out of 1074 miR-TSVs to-
tal), with SLP scores ranging from −0.875 to −26.074. The
top 12, non-redundant predictions are presented in Table 2,
with the top prediction further detailed in Figure 2.

The highest scoring predictions presented in Table 2 rep-
resent a broad range of potential miR-TSVs. For example,
SNPs that are predicted to alter the sequence neighborhood
of very strong target sites for highly expressed miRNAs rep-
resent miR-TSVs that have a relatively indirect effect on
miRNA binding. In contrast, other high scoring predictions
directly create or abolish a strong miRNA seed site, but do
so for moderately expressed miRNAs. It is unclear if either
of these characteristics should be more heavily weighted
than the other or if they are equally important. Addition-
ally, we highlight the fact that two of the top miR-TSV pre-
dictions are not based on the canonical mature miRNA, but
rather on an isomiR.

To further demonstrate the results obtained from Sub-
miRine, Figure 2 summarizes the data behind the highest
scoring miR-TSV prediction: the creation of a miR-363-3p

isomiR binding site by the A/G SNP rs7322 on the 3′UTR
of SPG21. Figure 2A displays the secondary structure of the
primary miR-363 locus (pri-miR-363), along with the quan-
tified mature miRNA reads mapped to this region. Note
that the canonical mature miR-363-3p exhibits the largest
read population of 132.2 reads per million (rpm) and that
the 5′ shifted isomiR miR-363-3p(+1) is also moderately ex-
pressed at 13.5 rpm. Next, the two alleles of rs7322 are dis-
played within the SPG21 3′UTR, and the only predicted
miRNA target site occurring between these miRNA and
3′UTR combinations is highlighted: rs7322(A) and miR-
363-3p(+1). Thus, the canonical form of miR-363-3p is not
predicted to target this locus on SPG21, but the miR-363-
3p(+1) isomiR is predicted to bind the rs7322(A) allele (bi-
nary score = −0.3714) and not the rs7322(G) allele (binary
score = 0). The six empirical probabilities and SLP score
computed by SubmiRine for this miR-TSV are shown. P1
shows that, relative to all target sites in the background
model, this binary score is ‘stronger’ than over 99.4% of the
decoy target sites. However, when considering only other
potential target sites for miR-363-3p(+1), P2 demonstrates
that this site is stronger than 99.9% of the decoy target sites.
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Figure 3. SubmiRine SLP score distribution of known miR-TSVs and predicted COPD-related miR-TSVs. Histogram showing the number of candidate
miR-TSVs predicted at different SLP score cutoffs from the COPD data set relative to the test set of known miR-TSVs identified in previous studies.
The test set (see Supplemental Table S2) is divided into subsets representing known miR-TSVs whose miRNA was identified in our lung samples (‘Test’),
and known miR-TSVs whose miRNA was not identified (or identified below our RPM threshold) in our lung samples, resulting in its expression being
simulated at 100 RPM [‘Test (Simulated)’].

Table 2. Top COPD-related miR-TSV predictions by SubmiRine

Gene SNP miRNA [miRNA] SNP Effect SLP Score

SPG21 rs7322 miR-363-3p(+1) 13.5 rpm 8mer site creation −26.074
ETFDH rs17843966 miR-100-5p 3977.1 rpm Neighborhood alteration −25.513
DIP2A rs2839340 miR-125a-5p 3373.8 rpm Neighborhood alteration −25.171
ASPRV1 kgpl663794 miR-501-3p 31.0 rpm 8mer site creation −22.132
MRPL20 kgp3485594 miR-4677–3p 14.4 rpm 8mer site deletion −20.719
ASPRV1 rs3087933 miR-16–5p 5650.2 rpm 6mer/7mer-1a alteration −20.538
GTF3C4 kgp6017974 miR-30a-3p(+1) 247.8 rpm 8mer site creation −20.413
DIP2A rs2839340 let-7a-5p 49792.1 rpm Neighborhood alteration −20.255
ZNF419 kgp3109439 miR-136-5p 8.8 rpm 8mer site deletion −19.700
HDAC7 kgpl0188643 miR-143-3p 146844.8 rpm Neighborhood alteration −19.080
SCAMP4 rs8730 miR-151a-5p 1351.6 rpm 7mer-m8 site creation −18.997
PHLPP2 kgp7275857 miR-182-5p 1570.0 rpm 7mer-m8 site deletion −18.004

The gene, SNP, and miRNA for each of the top 12 non-redundant miR-TSVs predicted by SubmiRine on the COPD data set are displayed. Each miRNA’s
mean expression is reported in reads per million (rpm), along with the predicted effect of each miR-TSV and SLP score. The full list of COPD miR-TSV
predictions is provided in Supplemental Table S3. Please note that site creation and deletion are conceptually equivalent. In this table, the designation is
based on the effect of the minor allele as determined in the genome-wide association analysis.

Thus, P2 demonstrates that this particular site is predicted
to be highly competitive for available miR-363-3p(+1). Be-
cause this isomiR is not particularly highly expressed, the
empirical score (P3) is not quite as significant as the bi-
nary score (P1). Probabilities P4 − P6 show that the Δbinary
and Δempirical scores correspond to similar levels of signif-
icance as those described above. Figure 2B and C demon-
strate the relevance of rs7322 to the COPD clinical pheno-
type. Figure 2B demonstrates that the genotype at rs7322
is associated with differential SPG21 expression levels (p =
1.53 × 10−15), with the rs7322(A) allele corresponding to
lower expression, consistent with the miR-TSV prediction.
We note that the expression of miR-363-3p(+1) does not sig-
nificantly differ among the rs7322 genotype subpopulations
(data not shown), rejecting the possibility that the observed
rs7322-SPG21 eQTL is an artifact of varying miR-363-
3p(+1) levels. Finally, Figure 2C shows that the rs7322(A) al-

lele is more frequent in the COPD cases than in the controls
(p = 0.0373), suggesting this miR-TSV prediction could be
associated with COPD susceptibility. Together, these results
demonstrate that the top predictions by SubmiRine on the
COPD data set appear to be consistent with a potentially
functional and clinically relevant miR-TSV and may war-
rant experimental verification.

Validation of known SNPs affecting miRNA target sites

In order to assess the accuracy of SubmiRine, we tested its
ability to predict and prioritize known miR-TSVs along-
side the novel predictions made from the COPD clinical
data. Currently, many miR-TSVs have been reported in
the literature, but only a handful have been experimentally
validated to the point of demonstrating functional, allele-
specific miRNA regulation in vivo. Since the goal of Sub-
miRine is to both predict miR-TSVs and prioritize them
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Figure 4. Novel miR-TSV predictions on variants of previously validated miR-TSVs. Using the miRNA expression data from the COPD data set, Sub-
miRine predicted novel high-scoring candidate miR-TSVs on MDM4 and HLA-C in addition to the experimentally validated miR-TSVs reported in the
original studies (see Supplemental Table S2).

by their probability of being functional, we utilized only
known miR-TSVs that have been experimentally validated
in our ‘test set’. In total, we identified 26 such cases in the lit-
erature (see Supplemental Table S2). Using this test set, we
evaluated SubmiRine’s ability to identify known miR-TSVs
as well as to efficiently prioritize them via the SLP score,
highlighting miR-TSVs (both known and novel COPD pre-
dictions) that are the most likely to be functional.

Despite our relatively strict criteria for selecting cases
for the test set, we anticipate that some of the validated
miR-TSVs we include could be false positives. Validation
of miR-TSVs is often demonstrated in vitro through over-
expression of the candidate miRNA, yet miRNA expression
levels have been shown to affect the ability of target genes
to be repressed (25,40). Thus, over-expressing a miRNA be-
yond normal physiological levels could produce false posi-
tive interactions. Furthermore, many validated miR-TSVs
were first identified in silico using a single candidate gene
and the entire set of miRNAs annotated in miRBase (6),
which may include many tissue-specific and low-confidence
miRNAs not relevant to the clinical phenotype. For exam-

ple, rs3134615, which lies in the 3′UTR of MYCL1, was
predicted to have allele-specific expression due to binding
of miR-1827 to the G allele only, which is associated with
small-cell lung cancer (see Supplemental Table S2). How-
ever, miR-1827’s expression was not validated in vivo, and
there is very minimal experimental evidence for miR-1827
presented in miRBase, suggesting it may not even be a real
miRNA. Nonetheless, transfection of a miR-1827 construct
successfully repressed MYCL1 in an allele-specific fashion.

Starting with the 26 miR-TSVs in our test set, we fil-
tered out any miR-TSVs where the associated SNP was
not included in our input 3′UTR data, as well as miR-
TSVs corresponding to non-canonical target sites, which
cannot be scored by the TargetScan context+ scores utilized
in SubmiRine. In total, these filtering steps removed seven
miR-TSVs from the test set, including four cases of non-
canonical seed sites, two SNPs that do not map to 3′UTRs,
and one SNP whose record is deprecated in dbSNP and
could not be mapped (see Supplemental Table S2). Of the
19 remaining test miR-TSVs, five correspond to miRNAs
that were not identified in our lung tissue samples (miR-
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367, miR-510, miR-513a, miR-1827 and miR-3148), and
one was expressed below our cutoff threshold of 10 RPM
(miR-433). Thus, for each test miR-TSV, if the miRNA was
identified above 10 RPM in our lung tissue samples, we
utilized the detected mean expression value; otherwise, we
‘simulated’ the miRNA’s expression by imputing it into our
COPD data set at a moderate expression level of 100 RPM.
Note that, with the exception of miR-1827, all of the miR-
NAs for which expression was simulated were shown to be
expressed in the respective miR-TSV study, supporting the
fact that some miRNAs are tissue-specific and simply may
not have been detected in the lung. While these miRNA ex-
pression values could be specific to lung tissue, we nonethe-
less used these values as a proxy for the relative expression
of each miRNA in vivo so that the test miR-TSVs could be
scored alongside the COPD predictions.

To test the 19 remaining validated miR-TSVs, we added
the 3′UTRs of each test miR-TSV into our COPD data set
of eQTLs, using dummy expression values to reflect the al-
lele predicted to have lower expression. We then ran Sub-
miRine on the COPD data merged with the validated miR-
TSVs and compared the results side-by-side. Figure 3 and
Supplemental Table S2 show that SubmiRine identified all
19 test miR-TSVs, but reported two as false positives (i.e.
having a SLP score of zero). Both of these cases (rs12537
and rs3853839) correspond to miR-TSVs where the Tar-
getScan context+ score of the target site is greater than zero,
corresponding to a prediction of a non-functional target
site. Surprisingly, both of the publications reporting these
miR-TSVs used TargetScan to identify the putative target
sites, but included the sites despite their positive scores.
These cases either represent false negatives from TargetScan
or false positives due to non-physiological experimental
conditions during validation. In fact, in the case of rs12537,
the comparison of expression levels between MTMR3 alle-
les was not significant in all cases and did not show differen-
tial expression following transfection of miR-181 inhibitors
as expected. In the case of rs3853839, the G allele (predicted
to disrupt the target site) also shows significant repression as
a result of miR-3148 transfection, suggesting binding may
not be specific and may be the result of miRNA saturation.

The majority of the 17 test miR-TSVs with a non-zero
SLP score were very highly scored by SubmiRine. Two of
the 17 scored higher than any predicted miR-TSV from the
COPD set, including the miR-148 binding sites on HLA-
C and HLA-G. The miR-148 binding site in HLA-C is al-
tered by rs67384697, which encodes a single nucleotide dele-
tion within a haplotype containing multiple other nearby
variants. Thus, recovery of this validated SNP demonstrates
that SubmiRine can successfully handle indel variants and
combinations of variants (see Table 1). Also among the
highest scoring predictions are the miR-191 binding site
on MDM4, the miR-125 binding site on BMPR1B and
the miR-510 binding site (with simulated expression) on
HTR3E. Two of the three lowest-scoring test miR-TSVs
correspond to SNPs that do not alter the seed region of the
predicted target site but still manage to score in the 66th
and 85th percentile, respectively, of all miR-TSVs predicted
in the COPD data; rs1044129 slightly alters the AU con-
tent of the neighborhood surrounding the target site, and
rs193302862 increases the 3′ supplemental pairing of the

miR-24-5p target site. The other fifteen test miR-TSVs are
predicted to alter the target’s seed region, with two altering
the seed type (e.g. 6mer to a 7mer-m8 site) and the other 13
completely destroying (or creating) a seed site. These results
indicate that SubmiRine is able to identify and highly prior-
itize experimentally validated miR-TSVs. Notably, these re-
sults demonstrate that miRNA abundance influences Sub-
miRine SLP scores without overwhelming them. Validated
miR-TSVs that correspond to lowly expressed miRNAs are
still recovered at relatively high SLP scores, and simulated
miR-TSVs reflect a broad range of SLP scores despite hav-
ing equivalent levels of miRNA expression (see Figure 3 and
Supplemental Figure S6). Furthermore, considering these
validated miR-TSVs alongside predicted miR-TSVs from
the COPD data helps contextualize the strength of the novel
predictions from the clinical genomic data. Additional anal-
yses to demonstrate the predictive value of the SLP score
and the underlying empirical probabilities are presented in
the supplementary text (see Supplemental Figures S7 and
S8).

Using SubmiRine to predict novel miRNA binding site alter-
ations in validated SNPs

In addition to recovering 17 known miR-TSVs, SubmiRine
identified a handful of additional high-scoring predictions
on the 3′UTRs from test miR-TSVs for uninvestigated miR-
NAs (Figure 4). First, we predicted that the SNP rs4245739
found in MDM4 with C allele-specific binding to miR-191
also has an overlapping binding site predicted for miR-887,
which has almost as strong of a predicted effect. Second, in
HLA-C, the deletion encoded by rs67384697 is reported as
part of a larger haplotype (43). We investigated additional
variants in this region, and predicted that the G>T SNP at
position 324 of the aligned UTR (43) creates a very strong
binding site for two miRNAs that overlap in seed sequence:
miR-146 and miR-589. Interestingly, because SubmiRine
uses miRNA-Seq reads to define candidate miRNAs, we
also detected a substantial level of an isomiR of miR-146
(miR-146(−1), which is processed one nucleotide upstream
on the 5′ end of the canonical miR-146), and predicted that
324G enhances the binding of the miR-146 isomiR to HLA-
C by altering a 7mer-1a site to an 8-mer site. The original
study on HLA-C investigated other SNPs in this region and
showed experimentally that they did not alter miRNA func-
tions, but this particular SNP at position 324 and the corre-
sponding miRNAs were not reportedly tested. While these
novel predictions may be influenced by our use of miRNA
expression values from lung tissue, these miRNAs are all
reported as relatively highly expressed in miRBase (6) and
may be worth investigating further to determine the degree
to which they contribute to their respective disease mecha-
nisms.

DISCUSSION

In this work, we present the tool SubmiRine, which we
have developed for analyzing miRNA target site variants
(miR-TSVs) identified in clinical genomic data sets. Sub-
miRine is an open-source computational framework writ-
ten in Python and R that allows researchers the ability to
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efficiently predict both miRNA target sites and miR-TSVs
on a genome-wide scale. Furthermore, it provides a scoring
mechanism for prioritizing miR-TSVs that are more likely
to be functional. We demonstrated SubmiRine’s effective-
ness using both a novel COPD clinical genomic data set
and a set of known miR-TSVs that have been validated
elsewhere. Using the clinical genomic data, we have pre-
dicted a number of miR-TSVs that may indeed be func-
tional. This includes novel predictions related to COPD, but
also a handful of alternative miR-TSV predictions that may
coordinate with known miR-TSVs from our validation set.
SubmiRine’s scoring scheme is based on empirical proba-
bilities computed relative to a background model of decoy
variants. We show that known miR-TSVs score highly rela-
tive to novel predictions in COPD, demonstrating that Sub-
miRine’s SLP score has high precision.

To our knowledge, SubmiRine is the first miR-TSV pre-
diction tool developed to analyze clinical genomic data sets
in a high-throughput fashion. Existing tools are limited to
pre-computed predictions reported in an online database
and do not have a mechanism to prioritize predictions rel-
ative to expected functional significance. SubmiRine is de-
signed specifically for such clinical contexts and, in addi-
tion to providing more informative output, is shown to be
much faster than existing target prediction tools. Our un-
derlying use of TargetScan6 context+ scores enables identi-
fication of miRNA target sites having canonical seed site
sequences (6–8mers), which we show encompass the ma-
jority of known miR-TSVs. While a subset of known miR-
TSVs from our validation set do not correspond to canon-
ical miRNA seed sites or do not fall in 3′UTRs, we ex-
pect that canonical 3′UTR miR-TSVs will tend to have the
strongest effects, especially from a genome-wide perspec-
tive. Previous reports have shown that non-canonical target
sites and target sites outside of the 3′UTR tend to be less re-
pressive (44). However, as the community’s understanding
of miRNA regulation by these alternative mechanisms im-
proves, SubmiRine’s scoring method can be easily adapted.

As genomic data begins to work its way into more clin-
ical settings, the need for high-throughput tools to assess
genomic variants of clinical importance is becoming imper-
ative, particularly given how the widespread use of genome-
wide association studies (GWASs) to identify variants asso-
ciated with a given condition has become standard practice.
However, the vast majority of GWAS hits are not associated
with specific biological mechanisms, greatly limiting their
potential use for development of therapeutics. It is hoped
that tools such as SubmiRine––ones that can be used in the
context of real genomics use cases to assess the effect of a
specific kind of variation––can speed up the process of iden-
tifying promising targets worthy of experimental verifica-
tion, with an eye towards downstream translational studies
having tangible clinical applicability.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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González,J., Chen,K.C. et al. (2014) Evidence for the biogenesis of
more than 1,000 novel human microRNAs. Genome Biol., 15, R57.

6. Griffiths-Jones,S., Grocock,R.J., van Dongen,S., Bateman,A. and
Enright,A.J. (2006) miRBase: microRNA sequences, targets and gene
nomenclature. Nucleic Acids Res., 34, D140–D144.

7. Pereira,D.M., Rodrigues,P.M., Borralho,P.M. and Rodrigues,C.M.P.
(2012) Delivering the promise of miRNA cancer therapeutics. Drug
Discov. Today, doi:10.1016/j.drudis.2012.10.002.

8. Soifer,H.S., Rossi,J.J. and Sætrom,P. (2007) MicroRNAs in disease
and potential therapeutic applications. Mol. Ther., 15, 2070–2079.

9. Davidson,B.L. and McCray,P.B. (2011) Current prospects for RNA
interference-based therapies. Nat. Rev. Genet., 12, 329–340.

10. Ryan,B.M., Robles,A.I. and Harris,C.C. (2010) Genetic variation in
microRNA networks: the implications for cancer research. Nat. Rev.
Cancer, 10, 389–402.

11. Merritt,W.M., Lin,Y.G., Han,L.Y., Kamat,A.A., Spannuth,W.A.,
Schmandt,R., Urbauer,D., Pennacchio,L.A., Cheng,J.-F., Nick,A.M.
et al. (2008) Dicer, Drosha, and outcomes in patients with ovarian
cancer. N. Engl. J. Med., 359, 2641–2650.

12. Jazdzewski,K., Murray,E.L., Franssila,K., Jarzab,B.,
Schoenberg,D.R. and de La Chapelle,A. (2008) Common SNP in
pre-miR-146a decreases mature miR expression and predisposes to
papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U.S.A., 105,
7269–7274.

13. Ward,L.D. and Kellis,M. (2012) Interpreting noncoding genetic
variation in complex traits and human disease. Nat. Biotechnol., 30,
1095–1106.

14. Emilsson,V., Thorleifsson,G., Zhang,B., Leonardson,A.S., Zink,F.,
Zhu,J., Carlson,S., Helgason,A., Walters,G.B., Gunnarsdottir,S. et al.
(2008) Genetics of gene expression and its effect on disease. Nature,
452, 423–428.

15. Yu,Z., Li,Z., Jolicoeur,N., Zhang,L., Fortin,Y., Wang,E., Wu,M. and
Shen,S.-H. (2007) Aberrant allele frequencies of the SNPs located in

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv256/-/DC1


3898 Nucleic Acids Research, 2015, Vol. 43, No. 8

microRNA target sites are potentially associated with human cancers.
Nucleic Acids Res., 35, 4535–4541.

16. Chen,K. and Rajewsky,N. (2006) Natural selection on human
microRNA binding sites inferred from SNP data. Nat. Genet., 38,
1452–1456.

17. Lewis,B.P., Burge,C.B. and Bartel,D.P. (2005) Conserved seed
pairing, often flanked by adenosines, indicates that thousands of
human genes are microRNA targets. Cell, 120, 15–20.

18. Didiano,D. and Hobert,O. (2006) Perfect seed pairing is not a
generally reliable predictor for miRNA-target interactions. Nat.
Struct. Mol. Biol., 13, 849–851.

19. Chi,S.W., Zang,J.B., Mele,A. and Darnell,R.B. (2009) Argonaute
HITS-CLIP decodes microRNA-mRNA interaction maps. Nature,
460, 479–486.

20. Helwak,A., Kudla,G., Dudnakova,T. and Tollervey,D. (2013)
Mapping the human miRNA interactome by CLASH reveals
frequent noncanonical binding. Cell, 153, 654–665.

21. Garcia,D.M., Baek,D., Shin,C., Bell,G.W., Grimson,A. and
Bartel,D.P. (2011) Weak seed-pairing stability and high target-site
abundance decrease the proficiency of lsy-6 and other microRNAs.
Nat. Struct. Mol. Biol., 18, 1139–1146.

22. Kertesz,M., Iovino,N., Unnerstall,U., Gaul,U. and Segal,E. (2007)
The role of site accessibility in microRNA target recognition. Nat.
Genet., 39, 1278–1284.

23. Krek,A., Grün,D., Poy,M.N., Wolf,R., Rosenberg,L., Epstein,E.J.,
MacMenamin,P., da Piedade,I., Gunsalus,K.C., Stoffel,M. et al.
(2005) Combinatorial microRNA target predictions. Nat. Genet., 37,
495–500.

24. Betel,D., Koppal,A., Agius,P., Sander,C. and Leslie,C. (2010)
Comprehensive modeling of microRNA targets predicts functional
non-conserved and non-canonical sites. Genome Biol., 11, R90.

25. Coronnello,C., Hartmaier,R., Arora,A., Huleihel,L., Pandit,K.V.,
Bais,A.S., Butterworth,M., Kaminski,N., Stormo,G.D. and
Oesterreich,S. (2012) Novel modeling of combinatorial miRNA
targeting identifies SNP with potential role in bone density. PLoS
Comput. Biol., 8, e1002830.

26. Vejnar,C.E. and Zdobnov,E.M. (2012) MiRmap: comprehensive
prediction of microRNA target repression strength. Nucleic Acids
Res., 40, 11673–11683.

27. Fernald,G.H., Capriotti,E., Daneshjou,R., Karczewski,K.J. and
Altman,R.B. (2011) Bioinformatics challenges for personalized
medicine. Bioinformatics, 27, 1741–1748.

28. Hiard,S., Charlier,C., Coppieters,W., Georges,M. and Baurain,D.
(2010) Patrocles: a database of polymorphic miRNA-mediated gene
regulation in vertebrates. Nucleic Acids Res., 38, D640–D651.

29. Deveci,M., Catalyürek,U.V. and Toland,A.E. (2014) mrSNP:
software to detect SNP effects on microRNA binding. BMC
Bioinformatics, 15, 73.

30. Ziebarth,J.D., Bhattacharya,A., Chen,A. and Cui,Y. (2012)
PolymiRTS Database 2.0: linking polymorphisms in microRNA
target sites with human diseases and complex traits. Nucleic Acids
Res., 40, D216–D221.

31. Barenboim,M., Zoltick,B.J., Guo,Y. and Weinberger,D.R. (2010)
MicroSNiPer: a web tool for prediction of SNP effects on putative
microRNA targets. Hum. Mutat., 31, 1223–1232.

32. Liu,C., Zhang,F., Li,T., Lu,M., Wang,L., Yue,W. and Zhang,D.
(2012) MirSNP, a database of polymorphisms altering miRNA target
sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs.
BMC Genomics, 13, 661.

33. Thomas,L.F., Saito,T. and Sætrom,P. (2011) Inferring causative
variants in microRNA target sites. Nucleic Acids Res., 39, e109.

34. Bulik-Sullivan,B., Selitsky,S. and Sethupathy,P. (2013) Prioritization
of genetic variants in the microRNA regulome as functional
candidates in genome-wide association studies. Hum. Mutat., 34,
1049–1056.

35. Johnson,W.E., Li,C. and Rabinovic,A. (2007) Adjusting batch effects
in microarray expression data using empirical Bayes methods.
Biostatistics, 8, 118–127.

36. Cloonan,N., Wani,S., Xu,Q., Gu,J., Lea,K., Heater,S., Barbacioru,C.,
Steptoe,A.L., Martin,H.C., Nourbakhsh,E. et al. (2011) MicroRNAs
and their isomiRs function cooperatively to target common biological
pathways. Genome Biol., 12, R126.

37. Morin,R.D., O’Connor,M.D., Griffith,M., Kuchenbauer,F.,
Delaney,A., Prabhu,A.-L., Zhao,Y., McDonald,H., Zeng,T.,
Hirst,M. et al. (2008) Application of massively parallel sequencing to
microRNA profiling and discovery in human embryonic stem cells.
Genome Res., 18, 610–621.

38. Shabalin,A.A. (2012) Matrix eQTL: ultra fast eQTL analysis via large
matrix operations. Bioinformatics, 28, 1353–1358.

39. Purcell,S., Neale,B., Todd-Brown,K., Thomas,L., Ferreira,M.A.R.,
Bender,D., Maller,J., Sklar,P., de Bakker,P.I.W., Daly,M.J. et al.
(2007) PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.

40. Mullokandov,G., Baccarini,A., Ruzo,A., Jayaprakash,A.D., Tung,N.,
Israelow,B., Evans,M.J., Sachidanandam,R. and Brown,B.D. (2012)
High-throughput assessment of microRNA activity and function
using microRNA sensor and decoy libraries. Nat. Methods, 9,
840–846.

41. Sumazin,P., Yang,X., Chiu,H.-S., Chung,W.-J., Iyer,A.,
Llobet-Navas,D., Rajbhandari,P., Bansal,M., Guarnieri,P., Silva,J.
et al. (2011) An extensive microRNA-mediated network of
RNA-RNA interactions regulates established oncogenic pathways in
glioblastoma. Cell, 147, 370–381.

42. Bruno,A.E., Li,L., Kalabus,J.L., Pan,Y., Yu,A. and Hu,Z. (2012)
miRdSNP: a database of disease-associated SNPs and microRNA
target sites on 3′UTRs of human genes. BMC Genomics, 13, 44.

43. Kulkarni,S., Savan,R., Qi,Y., Gao,X., Yuki,Y., Bass,S.E.,
Martin,M.P., Hunt,P., Deeks,S.G., Telenti,A. et al. (2011) Differential
microRNA regulation of HLA-C expression and its association with
HIV control. Nature, 472, 495–498.

44. Hafner,M., Landthaler,M., Burger,L., Khorshid,M., Hausser,J.,
Berninger,P., Rothballer,A., Ascano,M., Jungkamp,A.-C.,
Munschauer,M. et al. (2010) Transcriptome-wide identification of
RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell, 141, 129–141.


