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INTRODUCTION 
 

Acute lymphoblastic leukemia (ALL) is a deadly 

malignancy for both children and adults, mainly observed 

in children aged between 2 and 5 years old [1]. Although 
over 80% of pediatric patients can experience 5-year 

survival after conventional chemotherapeutics [2], the 

survival rate is still low in adult patients [3, 4]. 

Genomically, higher prevalence of ALL genetic subtypes 

with poor prognosis (e.g., BCR-ABL) and lower 

subtypes with favorable outcomes (e.g., hyperdiploidy) 

were presented in adults, therefore, it can partially 

explain the different survival rate between pediatric and 

adult patients [4, 5]. However, the genetic determinant 
for age-specific leukemogenesis is still controversial. 

 

On the other hand, germline variants can strongly 

influence both susceptibility and treatment outcomes  
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ABSTRACT 
 

Inherited predispositions to acute lymphoblastic leukemia have been well investigated in pediatric patients, but 
studies on adults, particularly Chinese patients, are limited. In this study, we conducted a genome-wide 
association study in 466 all-age Chinese patients with Acute lymphoblastic leukemia (ALL) and 1,466 non-ALL 
controls to estimate the impact of age on ALL susceptibility in the Chinese population. Among the 17 reported 
loci, 8 have been validated in pediatric and 1 in adult patients. The strongest association signal was identified at 
ARID5B locus and gradually decreased with age, while the signal at GATA3 exhibited the opposite trend and 
significantly impact on adult patients. With genome-wide approaches, germline variants at 2q14.3 rank as the 
top inherited predisposition to adult patients (e.g., rs73956024, P = 4.3 × 10-5) and separate the genetic risk of 
pediatric vs. adult patients (P = 3.6 × 10-6), whereas variants at 15q25.3 (e.g., rs11638062) have a similar impact 
on patients in different age groups (overall P = 2.9 × 10-7). Our analysis highlights the impact of age on genetic 
susceptibility to ALL in Chinese patients. 
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of ALL. Through genome-wide association studies 

(GWAS), multiple inherited predispositions to ALL in 

pediatric patients have been identified, including single 

nucleotide polymorphisms (SNPs) at loci of ARID5B, 

IKZF1, GATA3, etc. [6–20]. Association of some SNPs 

are greatly impacted by clinical characteristics (e.g., age, 

ethnicity, and subtypes) [8, 13–17, 19, 21], which can be 

validated by a series of replication studies in independent 

patient cohorts [22–29]. Recently, with the GWASs 

performed in specific ethnicity and meta-analysis with a 

large sample size conducted based on GWASs, four 

novel loci were identified including Hispanic specific 

locus (i.e., rs2836365 in ERG) [13], and hyperdiploid 

subtype specific locus (e.g., rs210143 in BAK1) [17]. 

Therefore, a total of 17 pediatric ALL susceptibility loci 

with genome-wide significance have been reported after 

several years of investigations. However, studies on 

inherited predispositions to ALL risk for Chinese patients 

are limited [30], particularly validations for the recently 

reported loci. Besides, there are relatively fewer studies 

on adult patients [31], especially on adolescents and 

young adults [10]. We thus conducted GWAS in all-age 

Chinese patients with ALL, to evaluate the reported 

GWAS signals and screen novel genetic variants, which 

have age-related different effects on ALL. 

 

MATERIALS AND METHODS 
 

Subject and genotyping 

 

Peripheral blood was obtained from 1,466 non-ALL 

controls, as well as 466 B-linage ALL patients (381 

childhood [0-14 yrs] and 85 adult patients [14-68 yrs] 

who were treated with standard protocol in West China 

Hospital of West China Second Hospital (e.g., CCGC-

ALL2015, registered in http://www.chictr.org.cn/ with 

ID: ChiCTR-IPR-14005706). Clinical information was 

obtained from the record system at our hospitals, 

including gender, age at diagnosis, and molecular 

subtypes. Fusion-based molecular subtypes were 

determined by fluorescence in situ hybridization. 

 

A total of 811,852 SNPs were genotyped with Precision 

Medicine Research Array (ThermoFisher) and filtered 

based on minor allele frequency, call-rate, Hardy-

Weinberg equilibrium, etc., according to previous 

standard steps [8]. Subsequently, imputation was 

conducted by well-established methods (i.e., Michigan 

Imputation Server [32]) with the filtered SNPs. After 

setting r2 = 0.5 as a cutoff threshold, 9,466,286 SNPs 

were finally used for subsequent association analysis. 

 

Statistical analysis 

 

Four GWAS approaches were conducted: all patients  

vs. non-ALL control, pediatric patients (< 14yrs) vs.  

non-ALL controls, adult patients vs. non-ALL controls, 

and pediatric patients vs. adult patients. For the reported 

loci, subtype-specific associations were evaluated. For 

statistical analysis, the association of SNP genotypes 

with the indicated phenotypes (e.g., ALL susceptibility 

of all-age patients) were estimated by comparing the 

genotype frequency between ALL cases and non-ALL 

controls, or different age groups with logistic regression 

model after adjusting for gender and the top three 

principal components. P value, odds ratio (OR) and 

95% confidence interval (95% CI) was estimated by 

using PLINK (version 1.90) [33]. 

 

RESULTS 
 

To investigate the inherited predispositions to ALL in 

the Chinese population, GWAS was performed with all 

imputed SNPs after stringently filtering. A total of 

1,466 non-ALL controls and 466 B-linage ALL 

patients were included in this study with baseline 

characteristics illustrated in Table 1, including 381 

pediatric (< 14 yrs] and 85 adult patients (≥ 14yrs). For 

childhood ALL (< 14yrs), only one locus (i.e., 

ARID5B) reached genome-wide significance (P < 5 × 

10-8) (Figure 1), suggesting no novel strong genetic 

predisposition to ALL in the Chinese population with 

current sample size. Subsequently, we retrieved the 

association results for all 21 SNPs at 17 reported loci 

from ALL patients and non-ALL controls. In pediatric 

patients, a total of 7 SNPs at 6 loci were significantly 

associated with ALL susceptibility regardless of 

molecular subtypes, including SNPs at ARID5B, 

IKZF1, BMI-PIP4K2A, CEBPE, CDKN2B-AS1, and 

BAK1 (Table 2). The top signal at ARID5B was 

rs7090445 (P = 2.7 × 10-14, Odds ratio [OR] = 1.96, 

[95% CI: 1.60-2.24]), which was reported as the 

potential causal variant for ARID5B locus. rs11770117 

(P = 0.03, OR = 1.27 [1.01-1.62]) at IKZF1 locus 

exhibited independent association with ALL 

susceptibility even after adjusting for the top signal at 

IKZF1 locus (i.e., rs11978267, P = 0.003, OR = 1.40 

[1.12-1.75]) with Padjust = 0.04, which is consistent with 

previous observation in Hispanics [8]. Additionally, 

rs4266962 (P = 0.01, OR = 1.64 [1.11-2.43]) also 

exhibited significance independent of rs7088318 at 

BMI-PIP4K2A locus. Among three recently identified 

loci with a large sample size of the Caucasian 

population, only rs210143 (P = 0.007, OR = 1.41 

[1.10-1.81]) at BAK1 locus can be validated in our 

Chinese patients (Table 2), indicating ethnicity-specific 

and shared mechanism of leukemogenesis. However, in 

adult patients, only SNPs at GATA3 locus (rs3824662) 

exhibited significant association with ALL 

susceptibility (P = 0.0005, OR = 1.79 [1.29-2.50]) 

(Table 2), suggesting the different genetic basis of 

adult from pediatric patients. 

http://www.chictr.org.cn/
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Table 1. Clinical characteristics of all-age ALL patients. 

Clinical features  Childhood (N=381) Adult (N=85) 

Age at diagnosis (years); median ± SD 4.7± 3.1 32± 12.8 

Gender   
Male, N (%) 210 (55.1%) 48 (56.5%) 

Female, N (%) 171 (44.9%) 37 (43.5%) 

WBC (× 109/L); median ± SD 10.2 ± 84.8  20.63 ± 99.0 

Molecular subtype   
ETV6-RUNX1 76 1 

TCF3-PBX1 18 0 

BCR-ABL (Ph+) 16 46 

Hyperdiploid* 31 0 

*Hyperdiploid subtype was not determined in 161 out of 466 patients, because it 
is not routinely tested before 2016 in pediatric ALL and never tested in adults. 

 

Since the significance of some GWAS signals is greatly 

impacted by clinical features, we thus estimated their 

associations with ALL susceptibility in Chinese patients 

considering ethnicity, age, and molecular subtype. The 

best example for ethnic specificity is the causal missense 

variant (i.e., rs3731249) in CDKN2A. Risk allele 

frequency (RAF) of rs3731249 is absent (0%) in our 

cohort, which is consistent with that in a public database 

(i.e., 0% in East Asian vs. 3.3% in Caucasians according 

to gnomAD [34]) (Figure 2A), and thus perfectly explain 

the racial difference at this locus. The insignificance of 

rs17481869 at 2q22.3 locus and rs76925697 at 9q21.31 

locus can also be explained by ethnicity specific risk 

allele frequency. In pediatric ALL patients, the novel 

Hispanic-specific ALL risk signal at ERG locus exhibited 

marginally significant association with ALL 

susceptibility in Chinese patients (P = 0.07, OR = 1.18 

[0.99-1.41]), and reached statistical significance in 

patients without common fusion (P = 0.02, OR = 1.29 

[1.04-1.61]), which has been validated in previous study 

[28]. However, rs1121404 (P = 0.34, OR = 1.13 [0.88-

1.45]) at WWOW identified in Chinese specific GWAS 

cannot be validated in our cohort. Association analysis 

was next performed in different genetic subtypes. 

Although association of rs7088318 at BMI-PIP4K2A 

locus with ALL susceptibility did not reach statistical 

significance in the whole patient cohort (P = 0.21, OR = 

1.11 [0.94-1.31]), risk allele of this SNP was enriched in 

 

 
 

Figure 1. GWAS results of ALL susceptibility in all-age Chinese patients. Association between SNPs and ALL was evaluated in 466 ALL 

cases and 1,466 non-ALL controls. P value was estimated by logistic regression test and -log10 P (y-axis) were plotted against the respectively 
chromosomal position of each SNP (x-axis). Only genotyped but not imputed SNPs were illustrated. 



 

www.aging-us.com 12459 AGING 

Table 2. Association of the GWAS hits with ALL susceptibility in Chinese patients. 

SNP ID Position* Genes 

Childhood 
Adult 

(N = 85) 

Age 

difference all (N = 381) 
ETV6-RUNX1  

(N = 77) 

no fusion B-ALL  

(N = 219) 

P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value 

rs17481869 2:146124454 ZEB2 1 NA 1 NA 1 NA 1 NA 1 

rs886285 5:131765206 C5orf56 0.85 1.02 (0.86-1.21) 0.84 1.04 (0.74-1.45) 0.29 1.12 (0.91-1.37) 0.29 1.20 (0.86-1.66) 0.5 

rs210143 6:33546930 BAK1 0.007 1.41 (1.10-1.81) 0.41 1.22 (0.76-1.94) 0.017 1.45 (1.07-1.96) 0.15 1.33 (0.90-1.96) 0.007 

rs11978267 7:50466304 IKZF1 0.003 1.40 (1.12-1.75) 0.09 1.45 (0.95-2.21) 0.006 1.45 (1.11-1.88) 0.55 1.14 (0.73-1.78) 0.41 

rs11770117 7:50473763 IKZF1 0.03 1.27 (1.01-1.62) 0.39 1.23 (0.77-1.97) 0.01 1.51 (1.10-2.05) 0.34 1.25 (0.79-1.96) 0.89 

rs28665337 8:130194104 MYC 0.27 1.46 (0.74-2.90) 0.43 1.60 (0.50-5.18) 0.35 1.29 (0.76-2.19) 0.54 1.39 (0.49-3.95) 0.32 

rs3731249 9:21970916 CDKN2A 1 NA 1 NA 1 NA 1 NA 1 

rs10811641 9:22014137 CDKN2B-AS1 0.013 1.24 (1.04-1.47) 0.024 1.45 (1.05-2.01) 0.13 1.17 (0.96-1.42) 0.7 1.07 (0.76-1.49) 0.31 

rs17756311 9:22053895 CDKN2A 0.4541 1.36 (0.61-3.06) 0.42 1.77 (0.45-7.01) 0.34 1.45 (0.68-3.10) 0.37 1.90 (0.47-7.69) 0.76 

rs76925697 9:83747371 TLE1 1 NA 1 NA 1 NA 1 NA 1 

rs3824662 10:8104208 GATA3 0.1526 1.14 (0.95-1.35) 0.73 1.06 (0.76-1.49) 0.032 1.25 (1.02-1.54) 0.0005 1.79 (1.29-2.50) 0.05 

rs4266962 10:22341574 BMI-PIP4K2A 0.013 1.64 (1.11-2.43) 0.98 1.01 (0.52-1.95) 0.013 1.98 (1.16-3.38) 0.89 1.05 (0.54-2.01) 0.55 

rs7088318 10:22852948 BMI-PIP4K2A 0.21 1.11 (0.94-1.31) 0.46 1.13 (0.82-1.57) 0.05 1.21 (1.00-1.49) 0.12 1.61 (0.88-2.95) 0.8 

rs7090445 10:63723577 ARID5B 2.7×10-14 1.96 (1.60-2.24) 0.002 1.69 (1.21-2.34) 8.2×10-13 2.29 (1.85-2.82) 0.36 1.16 (0.84-1.60) 0.003 

rs35837782 10:126293309 LHPP 0.09 1.17 (0.98-1.40) 0.56 1.10 (0.79-1.55) 0.044 1.23 (1.00-1.51) 0.67 1.08 (0.77-1.51) 0.33 

rs4762284 12:96612762 ELK3 0.72 1.03 (0.87-1.23) 0.43 1.15 (0.81-1.61) 0.35 1.10 (0.90-1.36) 0.71 1.07 (0.75-1.52) 0.61 

rs2239630 14:23589349 CEBPE 0.007 1.29 (1.07-1.54) 0.016 1.53 (1.08-2.15) 0.013 1.30 (1.06-1.60) 0.21 1.26 (0.88-1.80) 0.033 

rs1121404 16:79089869 WWOX 0.34 1.13 (0.88-1.45) 0.88 1.03 (0.72-1.48) 0.7 1.04 (0.83-1.31) 0.28 1.34 (0.78-2.31) 0.56 

rs2290400 17:38066240 IKZF3 0.51 1.07 (0.88-1.29) 0.84 1.04 (0.72-1.51) 0.64 1.06 (0.84-1.32) 0.6 1.10 (0.77-1.56) 0.79 

rs10853104 17:47092076 IGF2BP1 0.53 1.08 (0.84-1.39) 0.5 1.17 (0.74-1.86) 0.96 1.01 (0.75-1.36) 0.81 1.08 (0.59-1.95) 0.3 

rs2836365 21:39768274 ERG 0.069 1.18 (0.99-1.41) 0.39 1.17 (0.82-1.67) 0.022 1.29 (1.04-1.61) 0.94 1.02 (0.70-1.47) 0.88 

*Chromosomal locations are based on hg19. Bold genes indicate that SNPs at this locus exhibit significance with ALL 
susceptibility at least in one association test. P values and ORs were estimated by the logistic regression test, and bold P 
values indicate P<0.05. OR, odds ration; CI, confidence interval. 

 

B-ALL patients with no common fusions (P = 0.05,  

OR = 1.21 [1.00-1.49]). Similarly, rs35837782 at 

hyperdiploid-specific LHPP locus exhibited marginally 

significant association with ALL susceptibility in the 

whole cohort (P = 0.09, OR = 1.17 [0.98-1.40]), but 

achieved statistical significance in B-ALL patient with no 

common fusions (P = 0.04, OR = 1.23 [1.00-1.51]), 

which is also observed for rs2836365 in ERG (P = 0.02, 

OR = 1.29 [1.04-1.61]). Consistent with the observation 

in Hispanics [13], an enriched risk allele of rs2836365 

 

 
 

Figure 2: Frequency of the ethnic and age specific loci. (A) Risk allele frequencies were illustrated in SNPs with absent variant allele in 

Chinese population according to gnomAD database; (B) Risk allele frequencies of SNPs at ARID5B and GATA3 loci in patients with different 
age group. 
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was observed in the TCF3-PBX1 subtype at rs2836365. 

In contrast, ETV6-RUNX1 subtype specific SNPs 

rs10853104 at IGF2BP1 locus (P = 0.53, OR = 1.08 

[0.84-1.39]) at 17q21.32 cannot be validated in our 

cohort even after considering different subtypes. 

 

Next, we evaluated the impact of age on genetic 

predisposition. Among all the reported GWAS loci, four 

were significantly associated with age at diagnosis, 

namely ARID5B, GATA3, BAK1 and CEBPE (Table 2). 

Particularly, all signals lost their association with ALL 

susceptibility in adults except rs3824662 at GATA3 locus. 

As an example, the impact of rs10821936 at ARID5B 

locus gradually decreased from <5 yrs (RAF= 0.55, P = 

2.6 × 10-12, OR = 2.27 [1.29-2.09]), 5-14 yrs, (RAF = 

0.46, P = 6.4 × 10-5, OR = 1.63 [1.29-2.09]), to ≥14 yrs 

(RAF = 0.39, P = 0.24, OR = 1.23 [0.87-1.72]). 

Contrastly, rs3824662 at GATA3 locus exhibited the 

opposite trend, with increased impact from <5 yrs (RAF 

= 0.33, P = 0.43, OR = 1.09 [0.87-1.36-2.09]), 5-14 yrs 

(RAF = 0.37, P = 0.03, OR = 1.31 [1.03-1.67]), and ≥14 

yrs (RAF = 0.43, P = 0.0005, OR = 1.79 [1.29-2.50]) 

Figure 2B. To investigate the impact of age on ALL 

susceptibility, we compared allele frequencies of each 

SNP between pediatric and adult patients with GWAS 

approach by using logistic regression model (λ=1.03 for 

the quantile-quantile plot). Although no locus reached 

genome-wide significance, one novel locus was 

identified at 2q14.3 with the top signal of rs73956024  

(P = 3.6 × 10-6) (Figure 3A and Table 3). Additionally, to 

identify novel ALL susceptibility loci in different age of 

Chinese patients, we also preformed GWASs in pediatric 

and adult patients separately. Only ARID5B locus 

reached genome-wide significance in pediatric patients, 

but none for adult patients, probably because of the small 

sample size. Interestingly, signals at 2q14.3 locus, which 

was described above, also ranked the top in adult (e.g., 

rs73956024, P = 4.5 × 10-5, OR = 2.31 [1.55-3.45]) but 

not significant in pediatric patients (Figure 3B and Table 

3), with RAF of 0.08 in pediatric patients compared with 

0.21 and 0.10 in adult patients and non-ALL controls, 

respectively. Moreover, rs11638062 at 15q25.3 has 

impact on ALL susceptibility in both pediatric (P = 4.2 × 

10-5
, OR = 1.67 [1.31-2.14]) and adult patients (P = 4.7 × 

10-6
, OR = 2.53 [1.70-3.77]), and the overall susceptibility 

of this locus reached marginally genome-wide 

significance for all-age patients (P = 2.9 × 10-7, OR = 

1.80 [1.44-2.25]) (Figures 1, 3C and Table 3). However, 

validation in independent patient cohorts is needed due to 

the small sample size of our study. 

 

DISCUSSION 
 

Most inherited dispositions to ALL have been revealed in 

Caucasians through genome-wide approaches but limited 

in Chinese patients. Although subsequent validations 

have been proceeded for the early identified loci (e.g., 

ARID5B), the impact of the novel loci identified recently 
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Figure 3. Regional association plot of the novel loci. Association of SNPs at 15q25.3 with ALL susceptibility in adult (A) and childhood 
(B). (C) Association of SNPs at 2q14.3 with ALL susceptibility in all-age patients. Genotyped and imputed SNPs were labeled in circles and 
squares, respectively. 
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Table 3. Association status of the novel loci. 

SNP ID Position* Genes 
Childhood Adult All-age patients Adults vs. Children 

P value OR (95% CI) P value OR (95% CI) P value  OR (95% CI) P value  OR (95% CI) 

rs11638062 15:86620033 AGBL1 4.2×10-5 1.67 (1.31-2.14) 4.7×10-6 2.53 (1.70-3.77) 2.9×10-7 1.80 (1.44-2.25) 0.06 1.53 (0.98-2.38) 

rs16977928 15:86684441 AGBL1 0.0003 1.80 (1.31-2.48) 0.023 1.94 (1.09-3.43) 2.3×10-5 1.90 (1.41-2.56) 0.97 1.01 (0.55-1.85) 

rs73956024 2:128513332 HS6ST1 0.13 0.81 (0.64-1.05) 4.3×10-5 2.31 (1.55-3.45) 0.96 1.01 (0.78-1.30) 3.6×10-6 3.11 (1.93-5.04) 

*Chromosomal locations are based on hg19. Bold genes indicate that SNPs at this locus exhibit significance with ALL 
susceptibility at least in one association test. P values and ORs were estimated by the logistic regression test, and bold P 
values indicate P < 0.05; OR, odds ration; CI, confidence interval. 

 

with a large sample size has not been evaluated, 

particularly those ages-, ethnicity- and subtype-specific 

variants. In this study, we systematically investigated the 

reported GWAS signals for ALL susceptibly in all-age 

Chinese patients, and estimated the impact of clinical 

features, particularly age at diagnosis on ALL 

susceptibility. A total of 11 SNPs located at 9 out of 17 

loci can be validated in Chinese patients in the whole 

cohort or specific subgroup. The inconsistency is 

probably due to the racial difference of inherited 

predispositions to ALL and the small sample size 

(particularly for some molecular subtypes). Except for 

the absence of missense variants in CDKN2A (i.e., 

rs3731249), causal variants at 2q22.3 and 9q21.31 loci 

may be tagged by other variants rather than rs17481869 

and rs76925697, risk alleles of which are absent in East 

Asia. Therefore, we checked the linkage equilibrium 

(LD) block of these two SNPs in our cohort. No 

statistically significant signal was identified, suggesting 

racial specificity of these two loci. For ETV6-RUNX1 

subtype specific locus in IGF2BP1, although only 77 

patients carried ETV6-RUNX1 fusion, the risk allele 

frequency of rs10853104 has no obvious difference 

between patient and non-ALL controls (12.3% vs. 

12.4%), suggesting that insignificance of this locus is 

probably induced by ethnic specificity rather than the 

small sample size. Moreover, similar trends were also 

observed for the rest of the insignificant variants, while 

enlarging sample size may increase the statistical power 

for evaluating the significance of some subgroup specific 

loci, such as ERG and LHPP (P = 0.07 and 0.08 in all 

pediatric patients). 

 

For the GWAS approach, no novel locus has been 

identified, arguing for a larger sample size to identify 

potential novel susceptibility locus in Chinese patients in 

the future. However, we identified a potential novel 

locus (i.e., 15q25.3) that may have an impact on the 

susceptibility of all-age patients. Since we do not have 

an independent replication cohort, we checked the 

association of this locus in GWAS in previous reports 
with multi-ethnic populations to validate this signal [8]. 

Marginally significant was observed for the top signal at 

this locus (i.e., rs11638062) with P = 0.09. Interesting, 

another SNP at this locus (i.e., rs16977928 with P = 2.3 

× 10-5 in our all-age GWAS of ALL susceptibility), 

which is in moderate LD with rs11638062 (r2 = 0.27, D’ 

= 0.66) in Caucasians, exhibits statistical significance in 

multi-ethnic population (P = 0.007). After considering 

ethnicity, despite the association trend in Caucasians and 

blacks, rs16977928 is only significant in Hispanics (P = 

0.01), who are a mixture between Native American and 

Caucasians. Since the ancestors of Native Americans are 

considered to descend from East Asians [35], the causal 

variant for this locus may exhibit an ethnicity-specific 

manner in the East Asian population. Moreover, 

rs11638062 is located in the AGBL1 gene, poly-

morphism in which was also associated with lung cancer 

risk in the Chinese population, suggesting its potential 

role on tumorigenesis [36]. On the other hand, 

rs73956024 is located in an enhancer region upstream of 

HS6ST1 in B cells according to the public resource [37], 

and thus could be considered as a possible eQTL to 

possibly impact the expression level of the adjacent 

genes, including HS6ST1. 

 

In the case of the impact of age on ALL, the difference 

of risk allele frequencies for the reported GWAS loci 

between patients and non-ALL controls decreased in 

adults compared with that in childhood except signals at 

GATA3 locus, suggesting the majority of the known 

GWAS signals are age-specific for pediatric patients. 

Therefore, we conducted the first GWAS approach to 

screen ALL susceptibility locus in adult patients. 

rs3824662 at GATA3 locus exhibits association at 

candidate level rather than genome-wide significance. 

On the other hand, a novel locus at 2q14.3 not only 

exhibits the most significant association with 

susceptibility in adult patients but also has the strongest 

impact on age at diagnosis, suggesting its potential role 

on age-specific leukemogenesis. Although no known 

gene located in the LD region of these SNPs, multiple 

ENCODE candidate cis-regulatory elements were 

identified, indicating the possible epigenetic effect of 

the causal variant in this region. Moreover, due to the 
limited samples and previous research on adult patients, 

validation for this locus is needed in independent 

cohorts with a large sample size in the future. 
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