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abstract

PURPOSE Acute care use (ACU) is a major driver of oncologic costs and is penalized by a Centers for Medicare &
Medicaid Services quality measure, OP-35. Targeted interventions reduce preventable ACU; however, iden-
tifying which patients might benefit remains challenging. Prior predictive models have made use of a limited
subset of the data in the electronic health record (EHR). We aimed to predict risk of preventable ACU after
starting chemotherapy using machine learning (ML) algorithms trained on comprehensive EHR data.

METHODSChemotherapy patients treated at an academic institution and affiliated community care sites between
January 2013 and July 2019 who met inclusion criteria for OP-35 were identified. Preventable ACU was defined
using OP-35 criteria. Structured EHR data generated before chemotherapy treatment were obtained. MLmodels
were trained to predict risk for ACU after starting chemotherapy using 80% of the cohort. The remaining 20%
were used to test model performance by the area under the receiver operator curve.

RESULTS Eight thousand four hundred thirty-nine patients were included, of whom 35% had preventable ACU
within 180 days of starting chemotherapy. Our primarymodel classified patients at risk for preventable ACUwith an
area under the receiver operator curve of 0.783 (95% CI, 0.761 to 0.806). Performance was better for identifying
admissions than emergency department visits. Key variables included prior hospitalizations, cancer stage, race,
laboratory values, and a diagnosis of depression. Analyses showed limited benefit from including patient-reported
outcome data and indicated inequities in outcomes and risk modeling for Black and Medicaid patients.

CONCLUSION Dense EHR data can identify patients at risk for ACU using ML with promising accuracy. These
models have potential to improve cancer care outcomes, patient experience, and costs by allowing for targeted,
preventative interventions.
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INTRODUCTION

Acute care use (ACU) including emergency depart-
ment (ED) visits and inpatient (IP) admissions ac-
count for nearly half of the cost associated with
oncologic care in the United States.1,2 As many as
50% of these visits are potentially preventable with
early outpatient interventions.3-6 Furthermore, sub-
stantial regional variation in the costs and frequency of
ACU suggest opportunities for reduction of ACU.1,7

Not only is ACU costly, unplanned ACU negatively
affects patient quality of life and is poor-quality care.8,9

In an effort to improve quality of care, increase
transparency, and reduce costs, the Centers for
Medicare & Medicaid Services (CMS) implemented a
new quality measure, Chemotherapy Measure (OP-
35), which tracks IP admissions or ED visits for pa-
tients age ≥ 18 years for potentially preventable di-
agnoses within 30 days of outpatient chemotherapy
administration.10

Although many of these admissions or ED visits are
avoidable with adequate preventative care, resource
constraints necessitate preventative interventions to
be targeted. Therefore, developing a robust, data-
driven method to identify patients who are most at
risk of ED visits or acute admissions at the time of
chemotherapy initiation would be valuable for health
systems seeking to improve performance on OP-35
metrics. In addition, risk-stratifying patients according
to their likelihood of ACU would prioritize preventative
care to patients most in need, improving patient out-
comes, comfort, and satisfaction during a chemo-
therapy regimen. Artificial intelligence (AI), including
machine learning (ML) has potential to provide this
type of risk assessment to physicians.

AI-driven oncologic care includes deriving novel in-
sights from complex health data to predict patient
outcomes, including cancer survival.11,12 Regulatory
changes have also demanded the use of real-world
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data, such as that derived from electronic health records
(EHRs), to guide clinical assertions and practice
guidelines.13 ML applied to EHRs has been used specifi-
cally to tackle the issue of identifying patients with cancer
at risk for ACU.14-17 Although these studies advance our
knowledge in the field, they were limited to a small number
of available variables in the EHR, used logistic regression
instead of more robust AI models, and/or did not use OP-35
criteria to determine preventable ACU.

As AI enables better use of real-world data, there is an
opportunity to develop clinical decision support tools that
could help identify patients at higher risk of ACU following
chemotherapy and therefore improve clinical and patient
outcomes among these patients. We hypothesized that we
could accurately identify patients with cancer undergoing
chemotherapy who are at risk of preventable ACU, as
defined by CMS’s OP-35 using prechemotherapy EHR
data. We developed, validated, and compared nine ML
models to predict ACU at 3, 6, and 12 months following
the start of chemotherapy among patients seen in oncol-
ogy clinics affiliated with a large academic cancer center
(Fig 1A). We also incorporated patient-reported outcomes
(PROs) to evaluate the impact of these data on predicting
risk for preventable ACU.

METHODS

Setting

This retrospective, prognostic cohort study was performed
at a Comprehensive Cancer Center (CCC). The CCC in-
cludes a large tertiary practice, as well as a community
hospital and community practices. This study followed the
Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis and Minimum Infor-
mation for Medical AI Reporting guidelines.18,19 This study
was approved by the university’s institutional review board

with a waiver of informed consent. The study was approved
by the local ethics committee.

Study Population

Adult patients with cancer were eligible for this study if they
underwent chemotherapy at the CCC between January 1,
2013, and July 10, 2019 (Fig 1B). Patients were excluded if
they failed to meet inclusion criteria for OP-35 (n = 2,272),
on the basis of CMS’s 2019 Chemotherapy Measure Up-
dates and Specifications Report.20 To limit effects because
of loss to follow-up, patients who did not have an encounter
after their episode of care, defined by the 180 days after the
start of chemotherapy, or with a recorded date of death
within the episode of care without record of ACU were
excluded (n = 1,217). Finally, patients were excluded if they
had no vitals, laboratory, medication, diagnosis, and/or
procedural data from the 180 days before chemotherapy
(n = 1,237).

Study Variables

All clinical data were obtained from the EHR. The CCC has a
fully implemented EPIC EHR system, installed in 2008, that
includes demographic, social, vital sign, procedure, diag-
nosis, medication, laboratory, health care utilization, and
cancer-specific data generated before the first date of
chemotherapy.21 Patient demographics and clinical data
were captured at the time of diagnosis and first date of
treatment, including age at treatment, primary cancer type,
sex, insurance payor at treatment, ethnicity, race, and stage
at diagnosis. Charlson comorbidity score was calculated for
each patient on the basis of pretreatment diagnoses.
Deaths were captured from the internal Cancer Registry or
from the patient health records. To limit data leakage
allowing the models to learn from future events, data
generated after patients’ first date of chemotherapy treat-
ment were only used for cohort building and determining

CONTEXT

Key Objective
To predict risk for preventable acute care use (ACU) after starting chemotherapy using comprehensive structured electronic

health record (EHR) data.
Knowledge Generated
We evaluated several machine learning models to predict ACU following chemotherapy using a comprehensive capture of

pretreatment structured variables from the EHR. The top-performing model achieved strong performance (area under the
receiver operator curve = 0.783; 95% CI, 0.761 to 0.806) and identified known and previously underutilized features
associated with ACU, including prior hospitalization and diagnosis of depression. We found inequities in outcomes and risk
predictions for Black and Medicaid patients, suggesting closer monitoring could help achieve equitable outcomes for these
groups.

Relevance
Patients at risk for preventable ACU after starting chemotherapy can be identified using machine learning. Models could risk-

stratify patients using systematically captured EHR data, providing opportunities for clinical decision support tools to help
health systems deliver targeted, preventative interventions to improve patient outcomes.
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patient outcomes and otherwise were not included in any
training or testing data provided to the models. Additionally,
training data were limited to information generated in the
180 days before chemotherapy initiation. Further details
on data cleaning and preprocessing are available in the
Appendix 1.

Outcome Measures

Although CMS uses a 30-day time frame for OP-35 nu-
merator inclusion, our primary outcome was a hospitali-
zation or ED visit that met OP-35 criteria (OP-35 events)
within the episode of care (180 days) following the initiation
of chemotherapy. However, to test model sensitivities, we
analyzed performance at 30, 180, and 365 days after
chemotherapy initiation and additionally analyzed for ED-
only and IP-only events. ED visits resulting in admission
were treated as IP events.

Predictive Models

Patients were randomly assigned to be in the training (80%)
or testing cohort (20%). To predict hospitalization or ED
visits following chemotherapy initiation, nine models were
developed: logistic regression with least absolute shrinkage
and selection operator (LASSO), Ridge, and Elastic Net
penalties; random forests; gradient-boosted trees; multi-
layer perceptron neural networks; support vector ma-
chines; K Nearest Neighbors classifiers; and ensemble
voting models that used equal voting on the predictions

from other models. Additional details of model building,
training, and selection are included in the Appendix 1.

Evaluation Metrics

To evaluate model performance, the models were validated
on the 20% test set, not used previously for model de-
velopment, on the basis of the area under the receiver
operator curve (AUROC) with 1,000-fold bootstrap to de-
termine CIs.

Patient-Reported Outcome Subanalysis

A subanalysis was performed on patients with at least
one 12-item Patient-Reported Outcomes Measurement
Information System (PROMIS) survey completed within
180 days before starting chemotherapy.22,23 Two new
models were trained on this cohort using same pre-
processing, model training, and evaluation steps described
above: one with the original features, and a second with the
inclusion of 14 features derived from the PROMIS data (12-
item survey responses, and the global mental and physical
health scores).24

Evaluation of Disparities in the Model Output

To determine any effect of inherent bias in our models
and data, patients were stratified in the testing cohort by
their race, ethnicity, and insurance status, and then, their
predicted risk-score percentiles were compared with their
true rates of OP-35 events. Empiric cumulative distributions
of predicted risk-score percentiles for subgroups were

Final cohort: patients meeting
inclusion criteria with adequate follow-up 

and data for predictions (n = 8,439)

Excluded patients without pretreatment  
diagnosis, procedure, laboratory, 

treatment, and/or vitals data (n = 1,237)

Patients meeting inclusion criteria
with adequate follow-up (n = 9,676)

Excluded patients with < 180 days
of follow-up or who died within 180 days

with no record of an event (n = 1,217)

Patients met OP-35
inclusion criteria (n = 10,893)

Excluded patients with unknown
cancer type, leukemia, or were

age < 18 years  (n = 2,272)

Patients treated with
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July 2019 at Stanford (N = 13,165)
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FIG 1. Study design and flow diagram. (A) Comprehensive EHR data on patients who met our inclusion criteria were obtained from our database.
Data generated 180 days before the start of chemotherapy were processed and used to train machine learning models to predict risk of preventable
ACU. Data generated after chemotherapy initiation were used to determine patient outcomes. (B) Inclusion criteria included OP-35 denominator
inclusion criteria, follow-up 180 days after the episode of care for patients who did not have ACU, and adequate data tomake predictions. ACU, acute
care use; EHR, electronic health record.
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plotted against each other to assess how the models
predicted each subgroup’s risk for OP-35 events.

Statistical Analysis

Patient clinical characteristics were compared using uni-
variable odds ratios (ORs). The results are presented as
mean 6 standard deviation, unless otherwise noted.

RESULTS

Cohort Characteristics

A total of 8,439 patients were included in the study cohort
who were, on average, age 60.42 (14.48) years, 50% fe-
male, and 45%non-White (Table 1). A total of 2,939 patients
(35%)met our primary outcome of having at least one OP-35
event within the first 180 days after starting chemotherapy
(Appendix Fig A1A). OP-35 events decreased in frequency
the further from chemotherapy initiation (Appendix Fig A1B).
The most common diagnoses associated with these events
included pain, complications of bone marrow suppression,
such as neutropenia and sepsis, and gastrointestinal side
effects, such as emesis (Appendix Fig A1C).

Patients with OP-35 events by 180 days significantly varied
in multiple clinical characteristics than those without. For
instance, these patients were on average 2.5 years younger
at diagnosis (OR 0.988 per year; 95% CI, 0.985 to 0.991;
P , .0001), more likely to be male (OR 1.113; 95% CI,
1.102 to 1.123; P, .0001), non-White (OR 1.280; 95% CI,
1.252 to 1.309; P , .0001), have stage IV disease (OR
1.873; 95% CI, 1.762 to 1.993; P, .0001), have a smoking
history (OR 1.056; 95% CI, 1.062 to 1.051; P, .0001), and
have a diagnosis of depression (OR 1.422; 95% CI, 1.369 to
1.478; P , .0001).

Model Performance for Predicting Risk of OP-35 Events

Overall, the various ML models performed reasonably well
for determining patient risk for OP-35 events using the 759
EHR-based variables on which they were trained (AUROC
range: 0.740-0.806, Appendix Table A2). Although the
ensemble voting model had the best performance for
predicting events by 180 days (AUROC 0.806; 95% CI,
0.794 to 0.816), the LASSO model performed comparably
(AUROC 0.783; 95% CI, 0.761 to 0.806; AUROC range
during cross-validation = 0.746-0.825, Appendix Figs 2B
and 2C). As LASSO is a regularized form of logistic re-
gression, it is easier to interpret how it is making predictions
than with more complicated models and was therefore
chosen to be our primary model. Although thresholds to
label if a patient is likely to have an event could vary
depending on the clinical use case, at Youden’s index
(probability of event = .278), this model had the following
performance metrics: accuracy = 0.700; F1 score = 0.644;
precision (event) = 0.567; precision (nonevent) = 0.821;
recall (event) = 0.745; recall (nonevent) = 0.821; and area
under the precision-recall curve = 0.702. This model se-
lected 125 of 759 possible features to use in its predictions.
These features included clinical variables used in prior risk

models, such as the number of pretreatment hospitaliza-
tions, advanced stage disease, and white blood cell count,
as well as underutilized features, including a diagnosis of
depression, race, and prior brainstem magnetic resonance
imaging (see Table 2 for the top model features and
Appendix Table A3 for the full feature set).

To test themodel’s discriminative power in a setting similar to
how it might be implemented at the point of care, the testing
cohort was stratified into high-, intermediate-, and low-risk
groups on the basis of their predicted risk score tertile.
Kaplan-Meier survival curves for OP-35 events showed good
separation between risk groups (Fig 2, P, .00001 for each
group by log-rank test). By 180 days after starting chemo-
therapy, 357 (64%) of the 563 high-risk patients had an OP-
35 event, whereas 75 (13%) of the 563 low-risk patients had
an event.

To assess the relative importance of each type of feature
(eg, medications) on the model’s predictions, performance
was evaluated after retraining when withholding each
feature type (Appendix Table A4). All 95% CIs for the
AUROCs of the models with the withheld data overlapped
with that of themodel trained with the full data set; however,
predictive performance generally declined when with-
holding feature types and experienced the greatest decline
when withholding demographic and cancer-specific data
(AUROC 0.779; 95% CI, 0.755 to 0.802).

Model Performance for Alternative Outcomes

The sensitivity of the primary LASSO model for predicting
risk for OP-35 events was tested at alternative time points
(30 and 365 days) and specific ACU setting (ED-only v IP-
only). The performance decreased slightly compared with
the 180-day outcome for both the 30-day (AUROC 0.774;
95% CI, 0.760 to 0.788) and 365-day outcomes (AUROC
0.772; 95% CI, 0.761 to 0.784; Appendix Fig A2A). The
model had improved performance predicting IP-only
events (AUROC 0.798; 95% CI, 0.787 to 0.809), but
substantially worse performance for ED-only events
(AUROC 0.615; 95% CI, 0.595 to 0.635) compared with
the primary outcome; however, a model trained specifically
to predict ED events performed comparably (AUROC
0.781; 95% CI, 0.762 to 0.796).

Effect of Race, Ethnicity, and Insurance Type

Notably, Black, Hispanic or Latino, and Medicaid patients
were predicted to be disproportionately higher risk than
their counterparts (Figs 3A-3C). For instance, 50% of the
Black patients in our cohort were predicted to be at the
67.5th percentile of risk or higher. In the testing cohort,
there was no significant difference in events between Black
and White patients (41.3% v 33.5% with an event, re-
spectively, P = .275); however, the predicted risk percentile
for Black patients was significantly higher (64.156 26.41 v
47.25 6 28.59, P = .0001). Concordantly, the model also
exhibited poor calibration for Black patients (Appendix
Fig A3A). Similarly, 50% of Medicaid patients were predicted
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TABLE 1. Patient Demographics

Patient Characteristic
Total Cohort
(N = 8,439)

Patients With OP-35 Events by
180 Days (n = 2,939)

Patients Without OP-35 Events by
180 Days (n = 5,500) OR (95% CI) P

Age, No. (%)

At diagnosis 58.65 (14.4) 57.02 (15.21) 59.53 (13.88) 0.988 (0.985 to 0.991) , .0001

At first chemotherapy 60.42 (14.48) 58.72 (15.25) 61.33 (13.98) 0.988 (0.985 to 0.991) , .0001

Sex, No. (%)

Female 4,250 (50.4) 1,429 (48.6) 2,821 (51.3) 0.899 (0.890 to 0.907) , .0001

Race, No. (%)

White 4,630 (54.9) 1,495 (50.9) 3,135 (57.0) 0.781 (0.764 to 0.799) , .0001

Asian 1897 (22.5) 669 (22.8) 1,228 (22.3) 1.025 (1.023 to 1.028) , .0001

Black 233 (2.8) 116 (3.9) 117 (2.1) 1.891 (1.601 to 2.232) , .0001

Other or Unknown 1,679 (19.9) 659 (22.4) 1,020 (18.5) 1.269 (1.237 to 1.303) , .0001

Ethnicity, No. (%)

Hispanic or Latino 1,094 (13.0) 453 (15.4) 641 (11.7) 1.381 (1.325 to 1.440) , .0001

Non-Hispanic or non-Latino 7,231 (85.7) 2,477 (84.3) 4,754 (86.4) 0.841 (0.823 to 0.860) , .0001

Other or unknown 114 (1.4) 9 (0.3) 105 (1.9) 0.158 (0.045 to 0.556) .002

Cancer type, No. (%)

Gastrointestinal 1,929 (22.9) 677 (23.0) 1,252 (22.8) 1.015 (1.014 to 1.017) , .0001

Breast 1,383 (16.4) 294 (10.0) 1,089 (19.8) 0.450 (0.403 to 0.502) , .0001

Lymphoma 1,175 (13.9) 718 (24.4) 457 (8.3) 3.567 (3.033 to 4.195) , .0001

Genitourinary 1,165 (13.8) 269 (9.2) 896 (16.3) 0.518 (0.471 to 0.569) , .0001

Thoracic 825 (9.8) 285 (9.7) 540 (9.8) 0.986 (0.984 to 0.988) , .0001

Head and neck 697 (8.3) 228 (7.8) 469 (8.5) 0.902 (0.887 to 0.918) , .0001

Gynecologic 562 (6.7) 196 (6.7) 366 (6.7) 1.002 (1.002 to 1.003) , .0001

Other 703 (8.3) 272 (9.3) 431 (7.8) 1.199 (1.165 to 1.235) , .0001

Cancer stage, No. (%)

Stage I 1,432 (17.0) 368 (12.5) 1,064 (19.3) 0.597 (0.559 to 0.638) , .0001

Stage II 1,679 (19.9) 438 (14.9) 1,241 (22.6) 0.601 (0.566 to 0.639) , .0001

Stage III 1,168 (13.8) 482 (16.4) 686 (12.5) 1.377 (1.322 to 1.433) , .0001

Stage IV 2,318 (27.5) 1,054 (35.9) 1,264 (23.0) 1.874 (1.762 to 1.993) , .0001

Unknown 1,842 (21.8) 597 (20.3) 1,245 (22.6) 0.871 (0.858 to 0.884) , .0001

Treatment details, No. (%)

Time from diagnosis to
chemotherapy, years

1.24 (2.21) 1.16 (2.08) 1.28 (2.27) 0.999 (0.999 to 1.000) .0146

Palliative chemotherapy 795 (9.4) 357 (12.1) 438 (8.0) 1.598 (1.491 to 1.712) , .0001

Insurance, No. (%)

Medicare or Medicaid 3,955 (46.9) 1,318 (44.8) 2,637 (47.9) 0.883 (0.873 to 0.893) , .0001

Private 3,049 (36.1) 1,119 (38.1) 1930 (35.1) 1.137 (1.124 to 1.151) , .0001

Other or Unknown 1,435 (17.0) 502 (17.1) 933 (17.0) 1.008 (1.007 to 1.009) , .0001

Smoking history, No. (%)

Current or former smoker 3,151 (37.3) 1,122 (38.2) 2029 (36.9) 1.056 (1.051 to 1.062) , .0001

Never smoker 4,983 (59.0) 1718 (58.5) 3,265 (59.4) 0.963 (0.960 to 0.966) , .0001

Unknown 305 (3.6) 99 (3.4) 206 (3.7) 0.896 (0.872 to 0.920) , .0001

Comorbidities, No. (%)

Charlson comorbidity points 6.43 (2.82) 6.47 (3.0) 6.41 (2.72) 1.008 (0.992 to 1.024) .3251

Depression 1719 (20.4) 711 (24.2) 1,008 (18.3) 1.422 (1.369 to 1.478) , .0001

Abbreviation: OR, odds ratio.
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to be at the 64th percentile of risk or higher, and these
patients had significantly higher predicted risk percentiles
than those with private insurance (61.976 26.20 v 51.65
6 29.38, P = .002). When examining the interaction
between race and insurance type, there was an additive
effect between being Black and having Medicaid insur-
ance (Fig 3D).

Effect of PROs on Model Performance

Finally, to evaluate the impact PROs have on predictive
performance, new LASSOmodels were trained to predict the
risk for OP-35 events at 180 days on the subset of patients
who had PRO data (n = 1,808). The baseline model on this
data set performed with an AUROC of 0.735 (95%CI, 0.673
to 0.799). With the inclusion of PRO data, performance did

TABLE 2. Key Features of the Primary Model
Variable Name β OR (95% CI) P Variable Type

Prior hospitalizations (No.) 0.30 1.35 (1.20 to 1.51) 8.2E–07 Utilization

Depression 0.29 1.33 (1.13 to 1.56) 4.5E–04 Diagnoses

Alkaline phosphatase level 0.19 1.20 (1.09 to 1.34) 4.4E–04 Labs

Stage IV disease 0.17 1.19 (1.06 to 1.33) 3.1E–03 Cancer-specific

Lipase level 0.16 1.17 (1.06 to 1.29) 1.7E–03 Procedures

Oxygen saturation 0.11 1.12 (1.01 to 1.24) 3.8E–02 Labs

Pulse 0.09 1.09 (1.02 to 1.17) 1.1E–02 Vitals

Brainstem MRI 0.08 1.08 (1.00 to 1.17) 4.4E–02 Procedures

Cancer antigen 19-9 level 0.08 1.08 (1.02 to 1.14) 1.2E–02 Labs

Vitamin B12 level –0.07 0.93 (0.87 to 1.00) 4.2E–02 Labs

C-reactive protein level –0.08 0.92 (0.86 to 0.99) 1.9E–02 Labs

Lipase level –0.09 0.91 (0.85 to 0.98) 7.2E–03 Labs

White race –0.12 0.89 (0.82 to 0.97) 5.2E–03 Demographics

White blood cell count –0.26 0.77 (0.67 to 0.90) 5.5E–04 Labs

Electrolyte maintenance medications –0.34 0.71 (0.58 to 0.87) 9.0E–04 Medication

Abbreviations: MRI, magnetic resonance imaging; OR, odds ratio.
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not significantly change (AUROC 0.736; 95% CI, 0.673 to
0.798), but the model required only 41 features for com-
parable performance as compared to the 125 in the original
model. PROMIS features selected by themodel included the
global physical health score, the self-reported pain score,
and the self-reported quality of life score.

DISCUSSION

Improving the care and outcomes of patients with cancer
undergoing chemotherapy must incorporate insights

learned from AI-driven decision support. In this study, we
identify patients at high risk for preventable acute care, the
target of CMS’s OP-35 measure, using ML models trained
on routinely collected clinical data that demonstrated
strong predictive performance. Our primary model was able
to accurately discriminate patients at high risk for ACU
versus low risk at an actionable level of accuracy. As
payment models move to incorporate more value-based
care measures and regulatory agencies demand the in-
corporation of real-world data to guide clinical practice, the
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open-source, ML-based tool we present has strong clinical
utility and the potential to improve the identification and
mitigation of these high-risk patients.

Our work presents a model focused specifically on OP-35
eligible admissions and ED visits, which can be imple-
mented by health care systems that routinely capture
prechemotherapy data on their patients by following our
methodology. The regression coefficients that were se-
lected by the LASSO model are generally consistent with
previously reported literature about risk factors for ACU
for patients with cancer; for example, previous ED
admissions,25 neutropenia,26 and depression27 have all
been shown to be associated with unplanned admissions in
previous studies. In addition, the model selected novel
features not typically included in risk models, such as
depression and prior brain imaging, indicating that there is
likely loss of predictive information when using a small
subset of clinical variables. The limited declines in pre-
dictive performance when withholding entire feature cat-
egories from the model further suggest that missing
predictive information can be partially recovered from other
parts of the patient record and there are likely many
plausible explanatory models when using dense data.
Compared to previous work predicting ACU in patients with
cancer, we used OP-35 inclusion criteria to identify pre-
ventable ACU, limited data input to only include data up to
the initiation of chemotherapy, and took advantage of the
richness of data offered by the EHR, incorporating more
information about the patient’s overall health to aid with
prediction by using more than 750 EHR-derived features,
whereas prior studies have made use of a much smaller set
of clinical features.14,15,28,29

The very modest gains in predictive performance when
including PROs expands upon recent work integrating
PROs inMLmodels. Seow et al30 developed anMLmodel to
predict cancer patient survival that integrated clinical
characteristics and PROs to achieve strong predictive
performance and calibration; however, it is unclear what
benefit PRO inclusion provided to their predictions, as they
do not report a model when withholding PROs.30 Although
PROs are a critical component of evaluating modern on-
cology care, similar to our study, Grant et al recently showed
that PROs did not improve performance when predicting
ACU, suggesting their use may be somewhat limited in this
particular prediction task.14,31 Importantly, this study shows
that PROs provide some predictive power to determine risk
for ACU, but they do not substantially add to model per-
formance when sufficient structured EHR data are avail-
able for predictions.

Given the prior evidence of inequitable outcomes on the
basis of demographic subgroup and insurer, we felt it was
important to provide race, ethnicity, and insurance data to
our models to study their respective effects.32-36 Our results
further indicate that Black race and Medicaid payor are
predictive of increased risk for ACU. In particular, our

findings that patients with cancer with Medicaid insurance
have higher risk scores for ACU are aligned with previous
findings and suggest that Medicaid is correlated with poor
patient outcomes. Although our analyses are not designed
to address causation, our results support further study of
these discrepancies for evaluation and the identification of
methods to mitigate identified inequalities. Our health care
system strives to equalize resource allocation; however,
these results suggest that Medicaid and Black patients
need closer monitoring than others to achieve equitable
outcomes. This phenomenon is not localized to our health
care system, as others have shown similar results across
diverse settings.37 There is a growing shift in care delivery
that emphasizes equitable outcomes over equal access to
resources. A potential strategy to address this lack of eq-
uitable outcomes would be to ensure Medicaid and Black
patients undergoing chemotherapy have more frequent
follow-up and closer monitoring of symptoms than non-
Hispanic Whites and patients insured by Medicare or
private companies. Such strategies could potentially help
decrease unethical gaps in outcomes. Additionally, the
poor calibration of our models for certain demographic
groups highlights the critical importance of making clini-
cians aware of potential biases in risk models when using
these to make care decisions to limit perpetuation of bias
and exacerbation of inequities.

Clinical implementation of this model can help provide
outpatient physicians a data-driven tool to identify patients
who are at highest risk of unplanned ED or IP admission
and preemptively intervene. We envision a sliding scale of
interventions on the basis of the risk cohort that the patient
falls into, determined by their ML risk score.38 For example,
high-risk patients could be prioritized for advanced home-
based health care,39 frequent nursing follow-up phone calls
tomanage outpatient symptoms and answer questions,40 or
home telemonitoring services.41 Targeting these interven-
tions to high-risk cohorts is a cost-effective way for health
care systems to manage large populations of oncology
patients in a data-driven manner and is already being
implemented in some health systems. A recent report that
prospectively validated a similar ACU prediction model in
radiotherapy patients demonstrated a 10% reduction in
ACU for patients who received more frequent evaluation
after being identified by an algorithm as high risk.29,42 From
the patient’s perspective, ML-guided interventions to re-
duce ACU would be beneficial, as increasing the number of
days at home during chemotherapy and end-of-life on-
cology care is an important metric for quality of life.43

There are several limitations that are important to consider
in this study. First, this study was performed at a large,
academic medical center with multiple specialty oncology
practices. In particular, the small number of Black and
Black Medicaid patients in our analytic cohort, which re-
flects the current catchment area of our institution, may
limit the generalizability of our analysis. Our cancer center is
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expanding its catchment area to include treatment centers
serving more currently under-represented minorities in our
common EHR information platform, which we will use to
confirm our analyses and test interventions. External vali-
dation of this model at both academic and nonacademic
hospitals is needed to ensure generalizability; however, this
may prove difficult because of variations in EHR imple-
mentations resulting in nonparsimonious models. We plan
to develop models on the basis of a common data model,
readily allowing for exportation to other systems. In the
interim, we encourage other health systems to follow our
methodology and expand upon our results. Second, our
model relies upon a large number of clinical variables, and
although many of these values are routinely collected in the
EHR, developing an information technology pipeline that
reliably and accurately retrieves these data from the EHR
for real-time predictions at the point of care could prove
challenging. Third, our model is focused on a binary pre-
diction of ACU within specific follow-up windows; however,
there are many patients who will often have repeat ad-
missions within the same follow-up window, significantly
driving up utilization and costs.26 Future prediction models
could be used to identify the number of ACU events per
patient within prediction windows, giving health care sys-
temsmore granular data to determine which patients would
most likely benefit from preventative admission interven-
tions. Fourth, our utilization and mortality data are limited to
ED visits and admissions in our health care system and

deaths captured by our cancer registry. Therefore, the data
may be missing deaths and acute care services rendered
elsewhere. Finally, although we developed a model for all
patients receiving chemotherapy, regardless of the un-
derlying cancer etiology, it is likely that models for specific
cancer types would have improved performance at the
expense of generalizability.

In conclusion, in this study, we present a data-driven model
to identify chemotherapy patients at high risk for pre-
ventable ACU, as defined by CMS’s OP-35 quality measure.
We found that an ML model trained on a large number of
routinely collected clinical variables can accurately identify
patients at risk for ACU while on chemotherapy before
starting treatment. Our model selected clinical features
used in prior risk models and other less commonly used
features to produce predictions with an actionable level of
accuracy. Additionally, the inherent bias in our models and
data demonstrate inequity in both health care systems and
risk models and suggest Medicaid and Black patients
would benefit from closer monitoring than others to achieve
equitable outcomes. Further work will be needed to validate
our models in other health care systems and assess the
clinical impact of pretreatment risk predictions. Nonethe-
less, ML models can risk-stratify patients, allowing for
differential intensity of monitoring and targeted, preven-
tative interventions, and have potential to improve cancer
care outcomes, costs, and patient experience.
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APPENDIX 1

Data Preprocessing

Vital sign data were first cleaned of values incompatible with life as
determined by clinician input. Next, a time-weighted average of vital
sign data was calculated for each patient, with values close to the first
date of chemotherapy more heavily weighted while still accounting for

historical trends. This was done using the formula fi,j �
�n

t�1 fi,j ,t e
−t /180

�n

t�1e
−t /180

,

where i indicates the feature, j indicates the participant, and t is the
number of days before the start of chemotherapy for that participant.
Missing vitals were then mean imputed if not present. Similarly, a time-
weighted count for each procedure code was generated for each
patient, with more recent procedures receiving higher values using the
above formula. Individual medications were mapped to pharmacologic
classes, and patients were given binary values for prescribed or not in
the 180 days before chemotherapy. Health care utilization features
included the number of prechemotherapy emergency department,
inpatient, and psychiatry department visits, the proportion of emer-
gency department visits that resulted in admission, and the average
length of inpatient stays. For laboratory data, each laboratory was
harmonized to common units, and then, a time-weighted average for
each laboratory feature was calculated using the above formula. K
Nearest Neighbors (KNN) imputation was then used to fill missing
values with patients receiving the mean value of the 10 patients in the
training set with the most similar laboratory profile on the basis of the
laboratory data they did have. The KNN-imputer fit on the training set
was used to impute missing values for both the training and testing
cohorts. Additional features engineered included the total number of
procedures, diagnoses, and medications that a patient had. To limit
sparsity in the data, as most procedures, medications, diagnoses, and
labs were only present in a limited subset of the cohort, features in
these categories present in , 2.5% of the training cohort were ex-
cluded, yielding a total of 759 features. To complete preprocessing,

each of the continuous variables was scaled to a standard normal
distribution.

Models Trained

A total of nine models were trained. These included least absolute
shrinkage and selection operator (LASSO), Ridge, and elastic net
penalties, random forests, gradient-boosted model (GBM) trees,
multilayer perceptron neural networks, support vector machines, KNN
classifiers, and ensemble voting models that used equal voting on the
predictions from the LASSO, ridge, elastic net, random forest, GBM,
and support vector machines for a given outcome. A grid search with
10-fold cross-validation was used to tune hyperparameters and op-
timize performance on the training cohort using the area under the
receiver operator curve metric (see Appendix Table A1 for the
hyperparameter tuning details for each model). Except for the LASSO
model, the best performing model from the grid search was then
selected for evaluation for each outcome-model pair. For the LASSO
model, we selected the most regularized model with a cross-validated
error within 1 standard error of the minimum during cross validation
(ie, the model using a lambda equal to the lambda.1se parameter
returned from the cv.glmnet function).

Analysis Code

All codes were written in Python 3.6 (Python Software Foundation,
https://www.python.org/), and all models were implemented using the
scikit-learn package (version 0.22.1) with the exception of the GBM
models, which were implemented using LightGBM (version 2.3.1), and
the LASSO models, which were implemented in R 4.0.2 (The R Project
for Statistical Computing, https://www.r-project.org/) using the glmnet
package (version 4.1) with feature CIs generated by the selecti-
veInference package (version 1.2.5; Pedregosa F, et al: Scikit-learn:
Machine Learning in Python; Ke G, et al: Curran Associates, 2017, pp
3149-3157; Friedman JH, et al: J Stat Softw 33:1-22, 2010; Tibshirani R,
et al: 2019. https://CRAN.R-project.org/package=selectiveInference).
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Latino patients, and (C) Medicaid versus non-Medicaid patients. ACU, acute care use; LASSO, least absolute shrinkage and selection operator.
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TABLE A1. Hyperparameter Tuning
Model Hyperparameter Values Searched

LASSO lambda Default parameters for cv.glmnet. For primary model: 94 values from
1.24 × 10–1 to 2.17 × 10–5

Ridge C 10–8, 10–7, 10–6, 10–5, 10–4, 10–3, 10–2, 10–1, 1, 101, 102

ELNET C
l1_ratio

10–8, 10–7, 10–6, 10–5, 10–4, 10–3, 10–2, 10–1, 1, 101, 102

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

RF min_sample_split
max_features

2, 5, 10, 100
auto, none

GBM learning_rate
num_leaves

0.01, 0.05, 0.1, 0.5
10, 25, 100

SVM C
kernel

10–4, 10–3, 10–2, 10–1, 1, 101, 102, 103, 104

linear, poly, rbf, sigmoid

KNN N_neighbors
weights

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
uniform, distance

MLP alpha
hidden_layer_size

10–4, 10–3, 10–2, 10–1, 1, 101, 102, 103, 104

(100, 50, 10), (100, 162, 10), (100, 275, 10), (100, 387, 10), (100, 500,
10), (325, 50, 10), (325, 162, 10), (325, 275, 10), (325, 387, 10),
(325, 500, 10), (550, 50, 10), (550, 162, 10), (550, 275, 10), (550,
387, 10), (550, 500, 10), (775, 50, 10), (775, 162, 10), (775, 275, 10),
(775, 387, 10), (775, 500, 10), (1,000, 50, 10), (1,000, 162, 10),
(1,000, 275, 10), (1,000, 387, 10), (1,000, 500, 10)

NOTE. Hyperparameter names are defined in Scikit-learn 0.22.1 and glmnet.
Abbreviations: ELNET, elastic net; GBM, gradient-boosted model; KNN, K Nearest Neighbor; LASSO, least absolute shrinkage and selection operator;

MLP, multilayered perceptron; RF, random forest; SVM, support vector machine.
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TABLE A2. Model AUROCs
Outcome Time Model AUROC AUROC 95% CI

ANY 30 elnet 0.8020 0.7885 to 0.8165

ANY 30 ffnn 0.7937 0.7795 to 0.8080

ANY 30 gbm 0.7940 0.7776 to 0.8105

ANY 30 knn 0.6905 0.6738 to 0.7078

ANY 30 lasso 0.7807 0.7652 to 0.7960

ANY 30 lasso_180d 0.7737 0.7597 to 0.7882

ANY 30 Rf 0.7958 0.7815 to 0.8091

ANY 30 ridge 0.8010 0.7876 to 0.8147

ANY 30 svm 0.7887 0.7745 to 0.8045

ANY 30 voting 0.8115 0.7977 to 0.8256

ANY 180 elnet 0.7939 0.7826 to 0.8049

ANY 180 ffnn 0.7993 0.7880 to 0.8100

ANY 180 gbm 0.8013 0.7903 to 0.8122

ANY 180 knn 0.7403 0.7276 to 0.7534

ANY 180 lasso 0.7813 0.7696 to 0.7930

ANY 180 lasso_180d 0.7833 0.7728 to 0.7953

ANY 180 Rf 0.7878 0.7767 to 0.7994

ANY 180 ridge 0.7967 0.7857 to 0.8072

ANY 180 svm 0.7840 0.7724 to 0.7944

ANY 180 voting 0.8057 0.7948 to 0.8162

ANY 365 elnet 0.7887 0.7780 to 0.8000

ANY 365 ffnn 0.7904 0.7795 to 0.8012

ANY 365 gbm 0.7971 0.7866 to 0.8079

ANY 365 knn 0.7211 0.7086 to 0.7342

ANY 365 lasso 0.7837 0.7725 to 0.7938

ANY 365 lasso_180d 0.7721 0.7607 to 0.7837

ANY 365 Rf 0.7834 0.7727 to 0.7949

ANY 365 ridge 0.7941 0.7837 to 0.8047

ANY 365 svm 0.7884 0.7780 to 0.7998

ANY 365 voting 0.8021 0.7919 to 0.8131

ED 30 elnet 0.6395 0.6060 to 0.6715

ED 30 ffnn 0.6532 0.6265 to 0.6813

ED 30 gbm 0.6165 0.5808 to 0.6581

ED 30 knn 0.5001 0.4755 to 0.5202

ED 30 lasso 0.6086 0.5788 to 0.6385

ED 30 lasso_180d 0.6159 0.5873 to 0.6479

ED 30 Rf 0.6284 0.5981 to 0.6609

ED 30 ridge 0.6417 0.6129 to 0.6705

ED 30 svm 0.5740 0.5422 to 0.6082

ED 30 voting 0.6290 0.5955 to 0.6614

ED 180 elnet 0.6910 0.6732 to 0.7105

ED 180 ffnn 0.6581 0.6381 to 0.6786

ED 180 gbm 0.6639 0.6428 to 0.6840

ED 180 knn 0.5600 0.5383 to 0.5783

ED 180 lasso 0.6651 0.6454 to 0.6845

ED 180 lasso_180d 0.6149 0.5952 to 0.6353

ED 180 Rf 0.6317 0.6115 to 0.6517

ED 180 ridge 0.6730 0.6539 to 0.6920

(continued in next column)

TABLE A2. Model AUROCs (continued)
Outcome Time Model AUROC AUROC 95% CI

ED 180 svm 0.6143 0.5933 to 0.6355

ED 180 voting 0.6658 0.6465 to 0.6848

ED 365 elnet 0.6763 0.6592 to 0.6945

ED 365 ffnn 0.6743 0.6569 to 0.6923

ED 365 gbm 0.6619 0.6426 to 0.6807

ED 365 knn 0.5666 0.5484 to 0.5848

ED 365 lasso 0.6800 0.6635 to 0.6975

ED 365 lasso_180d 0.6084 0.5895 to 0.6259

ED 365 Rf 0.6449 0.6266 to 0.6633

ED 365 ridge 0.6786 0.6608 to 0.6956

ED 365 svm 0.6422 0.6249 to 0.6628

ED 365 voting 0.6784 0.6610 to 0.6959

HOSP 30 elnet 0.8328 0.8192 to 0.8475

HOSP 30 ffnn 0.8304 0.8158 to 0.8457

HOSP 30 gbm 0.8340 0.8188 to 0.8505

HOSP 30 knn 0.7240 0.7053 to 0.7414

HOSP 30 lasso 0.8039 0.7869 to 0.8216

HOSP 30 lasso_180d 0.8056 0.7907 to 0.8212

HOSP 30 Rf 0.8300 0.8162 to 0.8453

HOSP 30 ridge 0.8339 0.8202 to 0.8484

HOSP 30 svm 0.8207 0.8054 to 0.8354

HOSP 30 voting 0.8451 0.8321 to 0.8590

HOSP 180 elnet 0.8056 0.7947 to 0.8173

HOSP 180 ffnn 0.8011 0.7895 to 0.8126

HOSP 180 gbm 0.8152 0.8044 to 0.8270

HOSP 180 knn 0.7534 0.7402 to 0.7678

HOSP 180 lasso 0.7930 0.7822 to 0.8053

HOSP 180 lasso_180d 0.7983 0.7867 to 0.8093

HOSP 180 Rf 0.8044 0.7919 to 0.8166

HOSP 180 ridge 0.8069 0.7962 to 0.8175

HOSP 180 svm 0.7994 0.7878 to 0.8105

HOSP 180 voting 0.8181 0.8075 to 0.8291

HOSP 365 elnet 0.7999 0.7895 to 0.8111

HOSP 365 ffnn 0.8041 0.7926 to 0.8149

HOSP 365 gbm 0.8065 0.7957 to 0.8178

HOSP 365 knn 0.7436 0.7314 to 0.7563

HOSP 365 lasso 0.7879 0.7760 to 0.7992

HOSP 365 lasso_180d 0.7870 0.7765 to 0.7980

HOSP 365 Rf 0.7944 0.7837 to 0.8053

HOSP 365 ridge 0.8003 0.7902 to 0.8124

HOSP 365 svm 0.8000 0.7896 to 0.8120

HOSP 365 voting 0.8108 0.8003 to 0.8215

Abbreviations: ANY, any OP-35 event; AUROC, area under the
receiver operator curve; ED, emergency department visit-only OP-35
events; elnet, elastic net; gbm, gradient-boosted trees; ffnn, multilayer
perceptron neural networks; HOSP, admission-only OP-35 events;
knn, K Nearest Neighbors; lasso, least absolute shrinkage and
selection operator; lasso_180d, performance of LASSO trained for
predicting at 180 days at alternative outcomes; rf, random forests; svm,
support vector machines; voting, ensemble voting.
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TABLE A3. All Least Absolute Shrinkage and Selection Operator Coefficients
Feature Name Beta OR 95% CI P Feature Type

HOSP_N 0.2969 1.3457 1.1959 to 1.5144 8.21E–07 UTIL

ALKP 0.1857 1.2041 1.0857 to 1.3353 4.36E–04 LABS

DEPRESSED 0.2863 1.3314 1.1347 to 1.5622 4.48E–04 DEMO

WBC –0.2551 0.7748 0.6704 to 0.8955 5.50E–04 LABS

ELECTROLYTE MAINTENANCE –0.3414 0.7108 0.5810 to 0.8695 9.03E–04 RX

CEA –0.0918 0.9123 0.8634 to 0.9640 1.09E–03 LABS

ENCOUNTER FOR ANTINEOPLASTIC CHEMOTHERAPY 0.3495 1.4183 1.1437 to 1.7589 1.46E–03 DX

LIPASE 0.1582 1.1714 1.0611 to 1.2931 1.72E–03 PROC

UNLIS MISC DX NUC MED 0.1029 1.1084 1.0381 to 1.1834 2.07E–03 PROC

STAGE_4 0.1712 1.1868 1.0596 to 1.3292 3.07E–03 DEMO

WHITE –0.1174 0.8893 0.8189 to 0.9656 5.24E–03 DEMO

LIPASE –0.0926 0.9115 0.8520 to 0.9752 7.16E–03 LABS

CYANOCOBALAMIN 0.0860 1.0898 1.0236 to 1.1603 7.18E–03 PROC

PULSE 0.0893 1.0934 1.0204 to 1.1716 1.13E–02 VITALS

C199 0.0758 1.0787 1.0166 to 1.1446 1.22E–02 LABS

CRP –0.0822 0.9211 0.8597 to 0.9868 1.94E–02 LABS

ANTB PROTOZOA NES 0.5443 1.7234 1.0903 to 2.7239 1.98E–02 PROC

IA TUM AG QUAN CA 19-9 0.0942 1.0987 1.0123 to 1.1926 2.43E–02 PROC

INSJ PRPH CVC W/O SUBQ PORT/PMP AGE 5 YR/. 0.0830 1.0866 1.0106 to 1.1682 2.47E–02 PROC

IMMUNOHISTO ANTIBODY STAIN 0.1101 1.1164 1.0130 to 1.2304 2.63E–02 PROC

O2SATV 0.1121 1.1186 1.0062 to 1.2436 3.80E–02 LABS

B12 -0.0680 0.9342 0.8749 to 0.9975 4.20E–02 LABS

MRI BRN BRN STEM C–/C+ 0.0792 1.0824 1.0021 to 1.1693 4.41E–02 PROC

M/PHMTRC ALYS ISH EA PRB MNL 0.0795 1.0827 1.0010 to 1.1712 4.73E–02 PROC

PTT –0.0697 0.9326 0.8697 to 1.0001 5.04E–02 LABS

CUL BACT QUAN COLONY CNT URINE 0.0866 1.0904 0.9998 to 1.1892 5.04E–02 PROC

LVL VI-SURG PATH GROSS & MCRSCP XM –0.0781 0.9249 0.8551 to 1.0003 5.10E–02 PROC

METHB –0.0571 0.9445 0.8911 to 1.0011 5.46E–02 LABS

LYM –0.1465 0.8637 0.7419 to 1.0055 5.89E–02 LABS

SEDIMENTATION RATE RBC AUTO –0.0656 0.9365 0.8748 to 1.0025 5.90E–02 PROC

TSH 0.0559 1.0575 0.9978 to 1.1208 5.93E–02 LABS

ED VISIT—HIGH SEVERITY NON LIFE THREAT—LEVEL 4 0.1002 1.1054 0.9955 to 1.2274 6.08E–02 PROC

BLD SMR PRPH INTERPJ PHYS WRTTN REPRT 0.0816 1.0850 0.9955 to 1.1825 6.32E–02 PROC

DUPLEX VESSEL FLOW STUDY 0.0667 1.0690 0.9960 to 1.1473 6.44E–02 PROC

GG IGA IGD IGG IGM EA –0.0588 0.9429 0.8856 to 1.0040 6.63E–02 PROC

CL –0.0622 0.9397 0.8785 to 1.0052 7.02E–02 LABS

THER PROPH/DX NJX IV PUSH SINGLE/1ST SBST/DRUG 0.0857 1.0895 0.9916 to 1.1970 7.42E–02 PROC

LDH 0.0713 1.0739 0.9923 to 1.1622 7.70E–02 LABS

PRST8 SPEC AG TOT –0.0897 0.9142 0.8262 to 1.0114 8.19E–02 PROC

DDIMER –0.0595 0.9423 0.8804 to 1.0084 8.59E–02 LABS

SYPHILIS TST QUAL 0.1855 1.2038 0.9707 to 1.4929 9.12E–02 PROC

ANTB HERPES SMPLX TYP 1 –0.2639 0.7680 0.5572 to 1.0586 1.07E–01 PROC

CHEMOTX ADMN SUBQ/IM HORMONAL ANTI-NEO –0.2839 0.7529 0.5326 to 1.0642 1.08E–01 PROC

INSJ TUN CTR CTR VAD W/SUBQ PORT AGE 5 YR/. 0.1965 1.2171 0.9568 to 1.5483 1.10E–01 PROC

(continued on following page)
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TABLE A3. All Least Absolute Shrinkage and Selection Operator Coefficients (continued)
Feature Name Beta OR 95% CI P Feature Type

ANTB HERPES SMPLX TYP 2 –0.2205 0.8021 0.6122 to 1.0510 1.10E–01 PROC

ANES UPPER GI ENDOSCOPIC PROXIMAL TO DUODENUM 0.0599 1.0618 0.9866 to 1.1427 1.10E–01 PROC

LDLHDL –0.0694 0.9330 0.8549 to 1.0181 1.19E–01 LABS

TOTALCELLCNT 0.0462 1.0473 0.9880 to 1.1102 1.20E–01 LABS

PSA –0.0517 0.9497 0.8895 to 1.0139 1.22E–01 LABS

CALCIUM TOT –0.0936 0.9106 0.8065 to 1.0281 1.30E–01 PROC

MRI SPI CANAL & CNTS C–/C+ 0.0690 1.0714 0.9788 to 1.1728 1.35E–01 PROC

LYMPH –0.0595 0.9422 0.8712 to 1.0189 1.36E–01 LABS

EVAL/MGMT OF NEW PATIENT—LEVEL 4 0.0444 1.0454 0.9859 to 1.1086 1.37E–01 PROC

BAND –0.0527 0.9486 0.8841 to 1.0178 1.42E–01 LABS

ALT –0.0702 0.9322 0.8432 to 1.0306 1.70E–01 LABS

TROPONIN QUAN 0.0593 1.0611 0.9730 to 1.1572 1.80E–01 PROC

RBC –0.2486 0.7799 0.5420 to 1.1220 1.80E–01 LABS

LVEF –0.0390 0.9617 0.9083 to 1.0183 1.81E–01 LABS

DESIGN MLC DEVICE FOR IMRT –0.1954 0.8225 0.6171 to 1.0964 1.83E–01 PROC

CARCINOEMBRYONIC AG 0.0517 1.0530 0.9750 to 1.1373 1.88E–01 PROC

GONAD CHORNC QUAL 0.0391 1.0399 0.9806 to 1.1027 1.92E–01 PROC

NTSTY MODUL RAD TX DLVR CPLX –0.0541 0.9474 0.8722 to 1.0289 1.99E–01 PROC

COMPRHNSV HX/EXAM INIT HOSPITAL MOD SEV 50 MIN 0.0489 1.0501 0.9720 to 1.1346 2.15E–01 PROC

EVAL/MGMT OF NEW PATIENT—LEVEL 5 0.0403 1.0411 0.9764 to 1.1102 2.18E–01 PROC

UPH 0.0367 1.0374 0.9783 to 1.1000 2.20E–01 LABS

ALB –0.1559 0.8556 0.6656 to 1.0998 2.24E–01 LABS

LYMPHATICS & LYMPH NOD IMG –0.0600 0.9418 0.8542 to 1.0384 2.29E–01 PROC

FERRITIN –0.0861 0.9175 0.7963 to 1.0571 2.34E–01 PROC

MCHC –0.1285 0.8794 0.7066 to 1.0946 2.50E–01 LABS

FLUOR GID CTR VAD PLMT RPLCMT/RMVL –0.1512 0.8597 0.6640 to 1.1130 2.51E–01 PROC

BUN 0.0490 1.0502 0.9652 to 1.1427 2.56E–01 LABS

NAN –0.0790 0.9241 0.8054 to 1.0602 2.60E–01 DX

GLU 0.0503 1.0515 0.9611 to 1.1505 2.73E–01 LABS

PSYCH_N 0.0303 1.0308 0.9763 to 1.0884 2.74E–01 UTIL

AGE_AT_CHE 0.8353 2.3055 0.5091 to 10.4416 2.78E–01 DEMO

EVAL/MGMT OF EST PATIENT –0.0372 0.9634 0.8985 to 1.0330 2.95E–01 PROC

MRI ORBIT FACE & NCK C–/C+ 0.0354 1.0361 0.9685 to 1.1083 3.03E–01 PROC

AG 0.0415 1.0424 0.9630 to 1.1283 3.04E–01 LABS

BLD# RETICULOCYTE AUTO –0.0367 0.9639 0.8987 to 1.0339 3.05E–01 PROC

MRI BREAST BILATERAL –0.0347 0.9659 0.9017 to 1.0346 3.22E–01 PROC

THER PX 1 + AREAS EA 15 MIN THER XERSS –0.0326 0.9680 0.9049 to 1.0355 3.44E–01 PROC

GASES BLD PH DIR MEAS XCPT PLS OXIMTRY –0.0508 0.9505 0.8546 to 1.0570 3.49E–01 PROC

CR 0.0378 1.0386 0.9507 to 1.1346 4.01E–01 LABS

TRFRN –0.0332 0.9674 0.8930 to 1.0479 4.16E–01 LABS

ANTB HTLV-II –0.1017 0.9033 0.7067 to 1.1546 4.17E–01 PROC

ANTB VARICELLA-ZOSTER 0.1040 1.1096 0.8606 to 1.4307 4.22E–01 PROC

CONSLTJ & REPRT SLIDES PREPARED ELSEWHERE 0.0247 1.0251 0.9639 to 1.0901 4.31E–01 PROC

IV NFS THER PROPH/DX ADDL SEQUENTIAL NFS . 1 HR –0.0279 0.9725 0.9061 to 1.0438 4.40E–01 PROC

(continued on following page)
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TABLE A3. All Least Absolute Shrinkage and Selection Operator Coefficients (continued)
Feature Name Beta OR 95% CI P Feature Type

HEP B CORE ANTB HBCAB TOT 0.0704 1.0730 0.8864 to 1.2988 4.70E–01 PROC

US VASC ACCESS SITS VSL PATENCY NDL ENTRY 0.0364 1.0370 0.9385 to 1.1458 4.75E–01 PROC

THERAPEUTIC PROPHYLACTIC/DX INJECTION SUBQ/IM –0.0218 0.9784 0.9205 to 1.0400 4.83E–01 PROC

ANES INTRAPERITONEAL UPPER ABDOMEN W/LAPS –0.0234 0.9769 0.9137 to 1.0445 4.93E–01 PROC

C-CNT MISC BDY FLUS XCPT BLD DIFFIAL CNT 0.0371 1.0378 0.9308 to 1.1571 5.03E–01 PROC

WBCFLD –0.0245 0.9758 0.9080 to 1.0487 5.05E–01 LABS

ECHO TTHRC R-T 2D + M-MODE COMPL SPEC & COLOR DOP 0.0317 1.0322 0.9361 to 1.1382 5.25E–01 PROC

CHOL –0.0639 0.9381 0.7643 to 1.1514 5.41E–01 LABS

IRON BNDNG CAP –0.0660 0.9361 0.7570 to 1.1576 5.42E–01 PROC

ECG ROUTINE ECG W/LEAST 12 LDS TRCG ONLY W/O I & R 0.0654 1.0676 0.8566 to 1.3306 5.60E–01 PROC

KRAS GENE ANALYSIS VARIANTS IN CONDON 12 AND 13 0.0303 1.0308 0.9285 to 1.1442 5.70E–01 PROC

CONSLTJ & REPRT MATRL REQ PREPJ SLIDES 0.0182 1.0184 0.9564 to 1.0844 5.70E–01 PROC

VASC EMBOLIZE/OCCLUDE ORGAN –0.0502 0.9510 0.7920 to 1.1420 5.91E–01 PROC

ARTL CATHJ/CANNULJ MNTR/TRANSFUSION SPX PRQ –0.0250 0.9753 0.8879 to 1.0714 6.03E–01 PROC

CK –0.0162 0.9839 0.9235 to 1.0482 6.15E–01 LABS

ANTB HTLV-I –0.0715 0.9310 0.7029 to 1.2333 6.18E–01 PROC

RETICAB –0.0153 0.9848 0.9270 to 1.0462 6.20E–01 LABS

PET IMAGING CT ATTENUATION SKULL BASE MID-THIGH 0.0167 1.0169 0.9514 to 1.0869 6.23E–01 PROC

MONO 0.0179 1.0181 0.9460 to 1.0956 6.32E–01 LABS

CYTP FINE NDL ASPIRATE I & R 0.0288 1.0293 0.9037 to 1.1723 6.64E–01 PROC

GLUC BDY FLU OTH/THN BLD 0.0331 1.0337 0.8753 to 1.2207 6.96E–01 PROC

IAAD EIA HIV 1 AG W HIV 1 HIV 2 ANTBDY SINGLE 0.0152 1.0153 0.9389 to 1.0980 7.03E–01 PROC

PATH CONSLTJ SURG CYTOLOGIC XM 1ST SIT –0.0125 0.9876 0.9235 to 1.0561 7.14E–01 PROC

3-D RADIOTHERAPY PLAN 0.0223 1.0225 0.9024 to 1.1586 7.27E–01 PROC

ED VISIT - HIGH SEVERITY LIFE THREAT—LEVEL 5 –0.0212 0.9790 0.8688 to 1.1032 7.28E–01 PROC

GLOB –0.0470 0.9541 0.7090 to 1.2839 7.56E–01 LABS

EVAL ORAL & PHARYNGEAL SWLNG FUNCJ 0.0104 1.0104 0.9374 to 1.0892 7.86E–01 PROC

ANTB HIV-1 & HIV-2 1 ASSAY –0.0187 0.9815 0.8404 to 1.1462 8.13E–01 PROC

POST-OP/POST-OP F/U VISIT –0.0086 0.9914 0.9097 to 1.0804 8.44E–01 PROC

COMPRHNSV HX/EXAM INIT HOSPITAL HIGH SEV 70 MIN –0.0089 0.9911 0.8938 to 1.0991 8.66E–01 PROC

HGB –0.0267 0.9737 0.6098 to 1.5548 9.11E–01 LABS

IAAD EIA HEP B SURF AG –0.0110 0.9891 0.8145 to 1.2011 9.12E–01 PROC

RADJ TX MGMT 5 TXS 0.0069 1.0069 0.8498 to 1.1930 9.37E–01 PROC

BP_SYSTOLIC –0.0074 0.9927 0.8261 to 1.1929 9.37E–01 VITALS

EVAL/MGMT OF EST PATIENT –0.0016 0.9984 0.9400 to 1.0603 9.57E–01 PROC

LEVEL III-SURG PATH GROSS & MICROSCOPIC XM 0.0008 1.0008 0.9426 to 1.0626 9.79E–01 PROC

URNLS DIP STICK/TABLET RGNT AUTO MIC 0.0009 1.0009 0.9091 to 1.1019 9.86E–01 PROC

Abbreviations: DEMO, demographic and cancer-specific; DX, diagnoses; ED, emergency department; MRI, magnetic resonance imaging; OR, odds ratio;
PROC, procedures; RX, medications; UTIL, utilization.
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TABLE A4. Ablation Analysis AUROCs
Feature Set Ablated AUROC 95% CI

None 0.7832 0.7636 to 0.8088

Demographics and cancer data 0.7787 0.7554 to 0.8019

Procedures 0.7850 0.7624 to 0.8076

Medications 0.7830 0.7601 to 0.8058

Labs 0.7798 0.7568 to 0.8028

Diagnoses 0.7887 0.7663 to 0.8111

Abbreviation: AUROC, area under the receiver operator curve.
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