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Abstract
The SARS-CoV-2 infection affects the lungs, heart, kidney, intestine, olfactory epithelia, liver, and pancreas and brings for-
ward multi-organ dysfunctions (MODs). However, mechanistic details of SARS-CoV-2-induced MODs are unclear. Here, 
we have investigated the role of pancreatic secretory proteins to mechanistically link COVID-19 with MODs using single-
cell transcriptome analysis. Secretory proteins were identified using the Human Protein Atlas. Gene ontology, pathway, and 
disease enrichment analyses were used to highlight the role of upregulated pancreatic secretory proteins (secretome). We 
show that SARS-CoV-2 infection shifts the expression profile of pancreatic endocrine cells to acinar and ductal cell-specific 
profiles, resulting in increased expression of acinar and ductal cell-specific genes. Among all the secretory proteins, the 
upregulated expression of IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF was mainly associ-
ated with disease of diverse organs. Extensive literature and experimental evidence are used to validate the association of 
the upregulated pancreatic secretome with the coagulation cascade, complement activation, renin-angiotensinogen system 
dysregulation, endothelial cell injury and thrombosis, immune system dysregulation, and fibrosis. Our finding suggests 
the influence of an upregulated secretome on multi-organ systems such as nervous, cardiovascular, immune, digestive, and 
urogenital systems. Our study provides evidence that an upregulated pancreatic secretome is a possible cause of SARS-
CoV-2-induced MODs. This finding may have a significant impact on the clinical setting regarding the prevention of SARS-
CoV-2-induced MODs.
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1 Introduction

The ongoing pandemic of Coronavirus disease 2019 (COVID-
19) caused by the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) encompasses a myriad of pathologies 
[1]. In many patients, SARS-CoV-2 infection affects the lungs, 
heart, kidney, intestine, olfactory epithelia, liver, and pancreas, 
resulting in multi-organ dysfunctions (MODs) [2–9]. SARS-
CoV-2 uses the ACE-2 receptor to enter the host cells and 
cause pancreatic injury [10, 11]. Acute pancreatitis (AP) is 
triggered in the pancreas in response to an inflammatory event, 
leading to deleterious local and systemic effects [12] and even-
tually multi-organ damage and dysfunction [13]. There are 
cases of pancreatitis associated with no respiratory symptoms 
[14, 15] and after the clearance of SARS-CoV-2 in the lungs 
[16] of the COVID-19 patients. While the precise mechanisms 
of SARS-CoV-2-induced acute pancreatitis remain unknown 
[17–19], AP pathogenesis is commonly attributed to trypsin 
activation and intracellular signalling [20], the release of pro-
teolytic enzymes such as amylase and lipase [21], reactive 
oxygen species (ROS) [22], inflammatory elements, and the 
release of other mediators into the blood, all of which lead 
to the activation of the systemic inflammatory response [23].

Several aspects of SARS-CoV-2-induced organ damage 
have been studied [24–30]. However, the involvement of spe-
cific pathways, such as those centred on pancreatic infection 
of SARS-CoV-2, needs to be investigated. Here, to mecha-
nistically link the multi-organ dysfunction with the COVID-
19-infected pancreas, we have investigated the role of upregu-
lated pancreatic secretory proteins (pancreatic secretome) in 
COVID-19-associated MODs using single-cell RNA-seq data 
of ex-vivo SARS-CoV-2-infected human pancreas. Further-
more, we validated that an upregulated pancreatic secretome 
is associated with coagulation cascade, complement activa-
tion, renin-angiotensinogen system dysregulation, endothelial 
cell injury and thrombosis, immune system dysregulation, and 
fibrosis using extensive literature and experimental evidence. 
Our finding suggests the influence of an upregulated pancre-
atic secretome on the nervous, cardiovascular, immune, diges-
tive, and urogenital systems. In addition, we report that the 
secretory proteins IL1B, AGT, ALB, SPP1, CRP, SERPINA1, 
C3, TFRC, TNFSF10, and MIF are associated with diseases 
of diverse organs. Thus, our analysis suggests the role of the 
upregulated pancreatic secretome in MODs.

2  Materials and Methods

2.1  Data Sources

Ex-vivo SARS-CoV-2-infected human pancreas single-cell 
RNA-seq data were obtained from the Gene Expression 

Omnibus (GSE159556) [31], which contained two samples 
for mock- and SARS-CoV-2-infected tissues. As described 
by Tang, Xuming et al., the mock-infected pancreas served 
as a control [31]. scRNA-seq data analysis was performed 
using Seurat 4.0.2. [32]. The viral strain used in the study 
is SARS-CoV-2 isolate USA-WA1/2020 (NR-52281).

2.2  Single‑Cell RNA‑seq Data Analysis

2.2.1  Quality Control

For quality control, we have followed the standard pre-
processing workflow given in the vignette of Seurat 
(v.4.0.2) [32]. We checked the quality control thresholds 
used in recent literature [31, 33, 34] and filtered the cells 
with fewer than 200 genes, greater than 20% mitochondrial 
genes, and less than 5% ribosomal genes based on our 
data. In addition, cells with genes expressed in fewer than 
three cells were also filtered. Then we removed the effects 
of the cell cycle on the transcriptome using CellCycleS-
coring. Before running CellCycleScoring, the data were 
normalised and logtransformed using NormalizeData. 
We then removed the doublets using DoubletFinder [35]. 
The doublet prediction was run on each sample separately 
with a 4–7.6% doublet rate based on the loading rate. 
After removing doublets, the two SARS-CoV-2-infected 
samples now have 5821 and 6661 cells, whereas the 2 
mock-infected samples have 3726 and 7869 cells. Next, we 
used the QC-filtered data to identify the top 2000 variable 
genes using FindVariableFeatures with selection.method 
"vst". Next, ScaleData was used to scale and centre the 
data, where the number of genes and percentage of mito-
chondrial genes were the "vars. to.regress". After scaling, 
we performed principal component analysis (PCA) and 
Uniform Manifold Approximation and Projection(UMAP) 
for dimensionality reduction using the first 30 principal 
components. The UMAP plot coloured by COVID-19 and 
mock-infected was also generated and found that the batch 
effect was effectively removed (Supplementary figure S1).

2.2.2  Integration and Clustering

We then used FindIntegrationAnchors to identify anchors 
in Seurat objects and integrated the datasets with Integrate-
Data(). Then, the dataset was scaled using ScaleData. The 
PCA and UMAP were performed using the first 30 dimen-
sions. Next, we used FindNeighbors to compute the nearest 
neighbour graph using the top 30 PCs. We then performed 
the graph-based clustering using FindClusters at a resolution 
of 4.5. The Clustree package was used to choose the final 
resolution [36].
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2.2.3  Cell Type Identification

We first identified genes differentially expressed in a cluster 
with respect to other clusters using FindAllMarkers with 
logfc.threshold = 0.25, min.pct = 0.25, min.diff.pct = 0.25. 
The Benjamini–Hochberg false discovery rate (FDR) was 
0.05. The test used was the Wilcoxon Rank Sum test, and 
the assay was "RNA". We used literature to manually curate 
the DEGs of each cluster to identify cell types. After iden-
tifying the cell type for clusters, we merged the same cell 
type cluster into one. This resulted in nine clusters of acinar 
cells, ductal cells, alpha cells, beta cells, delta cells, PP cells, 
endothelial cells, mesenchymal cells, and immune cells.

2.2.4  DEGs Across SARS‑CoV‑2‑Infected and Mock‑Infected 
Conditions

We have identified differentially expressed genes between 
SARS-CoV-2-infected and mock-infected conditions using 
FindAllMarkers with logfc.threshold = 0.2, min.pct = 0.1 
and FDR = 0.05. We used the Wilcoxon Rank Sum test on 
the "RNA" assay.

2.3  Identification of Secretome

We identified the secretory proteins using the Human Protein 
Atlas [37]. Then, utilising this protein set as input, we regen-
erated the protein interaction network using STRING [38]. 
Finally, we used Cytoscape 3.8.2 to visualise and analyse 
the network [39].

2.4  Enrichment Analysis

We used g:Profiler for GO enrichment analysis and biologi-
cal pathway enrichment analysis using KEGG, Reactome, 
and WikiPathways. Human Phenotype Ontology [40] was 
used to conduct the disease phenotype enrichment analy-
sis. ClueGO, a Cytoscape plug-in, was used to identify the 
functionally grouped GO and pathways [41]. We used the 
DisGeNET Cytoscape app (7.3.0) for gene-disease associa-
tions (GDAs) [42]. We used EnhancedVolcano to generate 
a volcano plot [43]. The Pheatmap package was used for 
generating heatmaps [44].

3  Results and Discussion

Emerging evidence indicates an intricate relationship 
between SARS-CoV-2 infection and multi-organ dysfunc-
tions (MODs), which affects the lungs, heart, kidney, intes-
tine, olfactory epithelium, liver, and pancreas [24–30]. 
Acute pancreatitis (AP) is an inflammation of the pancreas 
that results in local and systemic complications, as well as 

multiple organ malfunctions and damage over time [12–16]. 
SARS-CoV-2-induced multi-organ dysfunctions are cur-
rently mechanistically unclear. The pancreatic secretome 
(the proteins secreted by the pancreas) was therefore inves-
tigated as a potential link between COVID-19 and multiple 
organ dysfunctions.

3.1  SARS‑CoV‑2 Infection Causes Pancreatic 
Endocrine Cells' Expression Profiles to Shift 
to Acinar and Ductal Cell‑Specific Profiles

For this study, we obtained scRNA-seq data from the Gene 
Expression Omnibus under the accession code GSE159556 
for mock-infected and SARS-CoV-2-infected pancreas [31]. 
The clustering analysis of the scRNA-seq data showed 45 
different clusters. These clusters were merged to form nine 
clusters of different cell types, i.e., acinar cells, ductal cells, 
alpha cells, beta cells, delta cells, PP cells, endothelial 
cells, mesenchymal cells, and immune cells. As shown in 
Fig. 1, the cell type identification was based on marker genes 
PRSS2 (acinar cells), KRT19 (ductal cells), GCG (alpha 
cells), INS (beta cells), COL1A1 (mesenchyme cells), PPY 
(PP cells), SST (delta cells), ESAM (endothelial cells), and 
LAPTM5 (immune cells), using reported literature [45].

We identified that CoV2-N, CoV2-orf1ab, CoV2-M, 
CoV2-S, CoV2-ORF7a, and CoV2-ORF8 viral genes are 
expressed across all cell types in the single-cell expression 
analysis (Fig. 2A–H). Furthermore, we found 149 genes in 
acinar, 631 genes in ductal, 107 in alpha, 151 in beta, 28 in 
delta, 3 in endothelial, 11 in pp cells, and 22 genes in mesen-
chyme cells that were differentially expressed. Upregulated 
genes include 125 in acinar, 538 in ductal, 94 in alpha, 139 
in beta, 16 in delta, 3 in endothelial, 9 in pp cells, and 18 in 
mesenchyme cells. There were a total of 712 genes found to 
be upregulated (Table S1). We found that SPINK1, OLFM4, 
ISG15, REG1A, SPP1, REG3A, MMP7, ALB, IL32, PRSS2, 
REG1B genes were upregulated in four or more cell types 
after COVID-19 infection (Table S1). Noticeably, we also 
found that acinar-specific genes PRSS2, REG3A, REG1A, 
SPINK1, and ductal-specific genes SPP1, MMP7 were 
upregulated in pancreatic endocrine alpha, beta, delta, and 
mesenchyme cells (Fig. 2C–E, H). In contrast, the expres-
sion of the marker gene GCG does not alter significantly 
in alpha cells. However, INS expression in the beta cell 
is downregulated in the COVID-19 condition. Therefore, 
our analysis indicates that SARS-CoV-2 infection shifts 
the expression profile of pancreatic endocrine cells to aci-
nar and ductal cell-specific profiles (Fig. 2A–H), resulting 
in increased expression of acinar and ductal cell-specific 
genes. We also identified and analysed the 127 downregu-
lated genes (Table S4) for a possible role in the development 
of MODs. We found 29 genes encoding proteins that are 
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Fig. 1  Cell type identification. UMAP of cell marker genes PRSS2 
(acinar cells), KRT19 (ductal cells), GCG (alpha cells), INS (beta 
cells), COL1A1 (mesenchyme cells), PPY (PP cells), SST (delta 

cells), ESAM (endothelial cells), and LAPTM5 (immune cells). 
UMAP of pancreatic cells showing cell types is depicted in bottom 
panel
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Fig. 2  Volcano plot showing differentially expressed genes. A Acinar cells, B ductal cells, C alpha cells, D beta cells, E delta cells, F PP cells, G 
endothelial cells, H mesenchyme cells
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secretory in nature. However, we could not find their pos-
sible role in MODs.

3.2  Analysis of Pancreatic Secretome

The 712 upregulated genes were subjected to identification 
of the secretory proteins using The Human Protein Atlas 
(Fig. 3A). We found 34 secretory proteins in acinar cells, 
65 in ductal cells, 26 in alpha cells, 28 in beta cells, 10 in 
delta cells, 3 in pp cells, and 6 in mesenchyme cells. Taken 
together, we found 102 upregulated pancreatic secretory 
proteins (pancreatic secretome). Interestingly, the genes that 

were upregulated in four or more cell types after COVID-19 
infection were also noted to be secretory proteins. Further-
more, the upregulated secretome was used to construct the 
protein–protein interaction network using the string data-
base (Fig. 3B). Using network topological parameters, i.e., 
degree and closeness centrality, we revealed ALB, IL1B, 
SERPINA1, CRP, CD44, VTN, TTR, CTSB, SPP1, C3, 
MMP7, and AGT to be influential among all secretory pro-
teins (Table S2).

We explored the roles of upregulated PRSS2, REG3A, 
REG1A, SPINK1, OLFM4, ISG15, IL32, REG1B, ALB, 
IL1B, SERPINA, CRP, CD44, VTN, TTR , CTSB, SPP1, C3, 

Fig. 3  Secretome of pancreatic 
cells infected with SARS-
CoV-2. A Heatmap depicting 
the up-regulation of secretory 
genes in COVID-19-infected 
pancreatic cells. Upregulated 
genes are shown in red. The 
blue colour indicates that genes 
are not upregulated. B Network 
of protein–protein interactions 
in the secretome of COVID-19 
infected pancreatic cells
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MMP7, and AGT  genes using experimental evidence. The 
upregulation of PRSS1 and PRSS2 is a characteristic of 
pancreatitis that causes increased intra-pancreatic trypsin 
activity, resulting in pancreatic damage [46, 47]. PRSS1 
and PRSS2 encode trypsin, a serine protease that can cleave 
complement components C3 into C3a and C3b and C5 into 
C5a and C5b. Inflammation is known to be mediated by 
C3a and C5a [48]. C3 is crucial for the activation of the 
complement system. In pancreatitis, C3 deposition occurs 
around injured acinar cells [49]. It causes neutrophil infil-
tration and the formation of neutrophil extracellular traps. 
Neutrophil infiltration is linked to tissue damage in severe 
acute pancreatitis [50, 51]. Activated trypsin causes pan-
creatic damage and haemorrhage. Trypsin has been linked 
to organ damage in several studies. It reaches other organs 
via the venous flow circulation [52]. Similarly, SPINK1 is 
overexpressed in pancreatitis, and the elevation is associated 
with the disease severity [53]. During pancreatitis, REG1A 
and REG3A have increased expression. REG1A and REG1B 
are involved in islet cell regeneration and diabetogenesis. 
REG3A promotes cell growth and possesses antimicrobial 
properties [54]. SPP1 (osteopontin) is a hydroxyapatite-
binding extracellular structural protein. It participates in 
efficient T-helper 1 cell immune responses and enhances 
mast cell responses to antigen [55]. SPP1 is a cytokine that 
upregulates the expression of IL-12 and IFN-γ. IL-12 stimu-
lates T-helper 1 cell differentiation and IFN-γ release [56]. 
By activating T cell cytokine production, IFN-γ plays an 
important role in viral defense. However, a persistently ele-
vated IFN-γ level exacerbates systemic inflammation, result-
ing in tissue damage and organ failure [57]. MMP7 degrades 
casein, gelatin, and fibronectin while also activating procol-
lagenase [58]. MMP7, in association with MMP1, MMP9, 
and MMP12, can promote thrombosis in atherosclerotic 
plaques and alter the coagulation pathway in inflammatory 
disorders [58]. ALB is the main plasma protein and regulates 
the colloidal osmotic pressure of the blood [59]. IL32 is a 
cytokine that induces cytokines such as TNF-α and IL6 and 
chemokines IL8 and CXCL2 [60]. In addition, it activates 
the signal pathways of NF-kappa-B and p38 MAPK [60]. 
ISG15 induces the production of IFN-γ, as well as ubiqui-
tination of newly-synthesized proteins [61]. It helps in the 
proliferation of natural killer cells and is a chemotactic fac-
tor for neutrophils. It inhibits viral replication and regulates 
the host's damage and repair response [61]. OLFM4 is a 
glycoprotein that assists in cell adhesion and is an antiapop-
totic factor, promoting tumour growth [62]. AGT, a part of 
the renin-angiotensin system (RAS), regulates blood pres-
sure. Inhibition of AGT reduces atherosclerosis and kidney 
dysfunction in polycystic kidney disease [63]. IL-1β, a pro-
inflammatory cytokine [64], induces T and B-cell activation, 
cytokine and antibody production, neutrophil infiltration, 
and activation [65, 66]. IL-1β also induces prostaglandin 

synthesis, fibroblast proliferation, and vascular endothelial 
growth factor (VEGF) production [67–69]. SERPINA1 is 
a serine protease inhibitor and is reported as a potential 
prognostic marker for COVID-19 [70]. CRP is involved in 
inflammation and helps in complement binding to invaders 
and apoptotic cells and aids in opsonin-mediated phagocyto-
sis, production of IL1B, IL6, and TNF-α, and the reduction 
of nitric oxide [71]. CD44 is a cellular adhesion molecule for 
the extracellular matrix (ECM) component hyaluronic acid 
[72]. VTN, an adhesive glycoprotein present in serum and 
ECM, repairs and remodels ECM in different tissues after 
trauma [73]. TTR transports thyroxin and the retinol-retinol 
binding complex to the brain and other parts of the body, 
thereby inducing oxidative stress in endoplasmic stress [74, 
75]. CTSB is involved in extracellular matrix degradation 
[76]. Our analysis suggests that PRSS2, REG3A, REG1A, 
SPINK1 SPP1, MMP7, OLFM4, ISG15, ALB, IL32, and 
REG1B, AGT, IL1B, SERPINA, CRP, CD44, VTN, TTR, 
and CTSB are involved in the complement and coagulation 
cascade, extra-cellular matrix assembly, fluid balance, and 
immune response, and that their dysregulation may lead to 
sepsis.

3.3  Enrichment Analysis of Pancreatic Secretome: 
GO, Biological Pathway, Disease Phenotypes

The 102 upregulated pancreatic secretory proteins were 
examined further for GO keywords, biological pathways, 
and disease phenotypes. We found that serine-type pepti-
dase activity, endopeptidase activity, glycosaminoglycan 
binding, and cytokine activity were among the top enriched 
molecular functions (Fig. 4A). Using ClueGO analysis, we 
found functionally grouped GO [41]. We noted that the top 
enriched biological processes were related to myeloid leuko-
cyte migration (37.62%), regulation of response to wounding 
(7.43%), antimicrobial humoral response (6.93%), serine-
type endopeptidase activity (5.94%), and positive regulation 
of fibroblast proliferation (4.46%) (Fig. 4B). Also, we found 
that the biological processes of metabolism of tetrapyrrole, 
cobalamin, hyaluronan, and retinoid, and the catabolism 
of collagen, aminoglycan, and glycosaminoglycan were 
enriched. We found that myeloid leukocyte migration was 
associated with neutrophil-mediated immunity, neutrophil 
chemotaxis, regulation of macrophage migration, positive 
regulation of protein secretion, endothelial cell apoptotic 
process, vascular endothelial growth factor production, 
interleukin-12-mediated signalling pathway, vasoconstric-
tion, zymogen activation, platelet aggregation, and regula-
tion of coagulation. The biological function of fibroblast 
proliferation was functionally linked to eicosanoid secretion 
and interleukin-8 production (Fig. 4C).

Using the documented experimental evidence, we cor-
roborated the role of enriched biological processes and 
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molecular functions and their implications in MODs. 
Endothelial cells (ECs) regulate the coagulation cascade. EC 
activation and dysfunction have been reported in COVID-19 

patients [77]. It interferes with vascular integrity and leads 
to EC apoptosis, activating the clotting cascade [78]. Plate-
lets bind to cell adhesion molecules (CAM) displayed by 

Fig. 4  Enrichment analysis of the secretome. A Molecular function: 
the y axis represents the number of upregulated genes enriched for a 
molecular function. B Representative biological processes: The per-
centage of biological processes was calculated using the ClueGO tool 
[41]. C Network of functionally grouped biological processes. The 

node represents the biological process. The nodes with two colours 
are shared between two groups of biological processes. The edge rep-
resents the connection between the functionally linked processes. The 
node size reflects the significance of the node. A larger node has more 
significance. The network was generated using ClueGO
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activated EC [79]. Platelets secreted Vascular endothelial 
growth factors (VEGF) induce tissue factor and matrix 
metalloproteinase production in endothelial cells, leading 
to thrombus formation and degradation of the underlying 

basement membrane, which causes vascular permeabil-
ity [79]. A clinical study shows elevated levels of VEGF 
in COVID-19 patients [80]. High levels of VEGF lead to 
plasma extravasation, edema, and increased tissue hypoxia, 
and are also involved in atherosclerosis [81]. As a result 
of increased endothelial permeability, neutrophil migration 
occurs [82]. In COVID-19, over-activation of neutrophils 
in response to infection leads to excessive reactive oxygen 
species (ROS) production, thereby degrading the tetrapyr-
role rings such as hemoglobin's heme and nitric oxide syn-
thase (NOS), as well as vitamin B12's corrin ring [102]. 
The destruction of haemoglobin leads to hypoxia and pro-
tein aggregation, and the destruction of NOS leads to a 
deficiency of nitric oxide (NO) and ultimately to vasocon-
striction [102]. The destruction of the corrin ring results 
in vitamin B12 deficiency, leading to oxidative stress, 
hypercoagulation, and vasoconstriction [83]. Low levels of 
NO, oxygen, and vitamin B12 deficiency are reported in 
COVID-19 patients [83]. ROS also increases matrix metal-
loproteinase (MMP) expression, which increases the produc-
tion of chemokines and cytokines [84]. We observed the 
upregulation of matrix metalloproteinase (Fig. 3A). The high 
molecular weight glycosaminoglycan polymer, hyaluronan 
(HMW-HA), in acute inflammation, binds with fibrin and 
fibrinogen, which leads to increased clot formation [85]. 
HMW-HA is broken down into low molecular weight hyalu-
ronan (LMW-HA), and oligo-HA by neutrophils producing 
ROS [85]. LMW-HA increases the vascular permeability, 
and both oligo-HA and LMW-HA act as damage-associated 
molecular patterns (DAMPs) leading to aggravated cytokine 
storms [85]. High levels of hyaluronans are reported in criti-
cal COVID-19 patients [86]. SARS-CoV-2 infection causes 
retinol and retinoic acid deficiency due to an increased 
catabolic process that results in retinoid signalling defects. 
It causes excessive cytokine secretion, leading to systemic 
effects and MOD [87]. Eicosanoids are arachidonic acid-
derived chemicals are involved in physiological processes 
such as fever, allergy, and pain [88, 89]. Eicosanoids are 
dramatically upregulated in nonsurvivors of sepsis-induced 
multi-organ dysfunction [90]. An increased prostaglandin 
(eicosanoid) level contributes to the cytokine storm [91].

The pathway enrichment analysis of the pancreatic 
secretome revealed that the biological pathways were asso-
ciated with the pancreatic secretion, RAS and bradykinin 
pathways in COVID-19, complement and coagulation cas-
cades, IL-17 signalling pathway, ECM-receptor interac-
tion, protein digestion, and absorption, Type II interferon 
signalling (IFNG), Vitamin B12 and folate metabolism, lung 
fibrosis, hepatitis C and hepatocellular carcinoma, Interleu-
kin-12 family signaling, platelet activation, signalling and 
aggregation, and gene and protein expression by JAK-STAT 
signalling (Fig. 5A–C).

Fig. 5  Enrichment analysis of biological pathways and disease phe-
nome of the secretome. The pathway enrichment analysis of the 
pancreatic secretome illustrates the network of functionally grouped 
pathways for A KEGG pathways, B WikiPathways, and C Reactome 
pathways. The node represents the biological pathway. The nodes 
with two colours are shared between two groups of pathways. The 
edge represents the connection between the functionally linked path-
ways. The node size reflects the significance of the node. A larger 
node has more significance. The figures were generated using the 
ClueGO tool [41]. D The disease phenotypes enrichment analysis of 
pancreatic secretome using Human Phenotype Ontology. The figure 
was generated using g:Profiler [41]
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Using the experimental evidence, we validated the mech-
anistic role of enriched biological pathways and their impli-
cations in MODs. The imbalance in the Renin-Angiotensin 
System (RAS) has been widely associated with COVID-
19 [92]. The RAS regulates blood pressure and fluid and 
electrolyte balance. The kidney secretes renin, which acts 
on angiotensinogen (AGT) to form angiotensin I (Ang I) 
[93]. Here, we found upregulation of AGT in SARS-CoV-
2-infected pancreatic cells. Angiotensin-converting enzymes 
(ACE), present in the endothelial cells of the heart, lung, 
brain, and kidney, convert Ang I to a vasoconstrictor and 
proinflammtory Ang II [93]. Ang II induces macrophage 
and IL-8-mediated neutrophil recruitment into the tissues 
through the endothelial lining of blood vessels [94, 95]. 
Ang II increases the production of cytokines such as TNF-
α, IL-1, and IL-6, and CAM [96]. CAM aids in the initiation 
of atherosclerosis and thrombus formation [96, 97]. Ang 

II mediates transcytosis of plasma low-density lipopro-
tein (LDL) particles across endothelial barriers, marking 
the start of atherosclerosis [98]. In addition, Ang II plays 
a role in tissue fibrosis through angiotensin type 1 recep-
tor (AT1) in cardiac, renal, pulmonary, and abdominal tis-
sues as well as systemic sclerosis [99]. Pulmonary fibrosis 
impairs pulmonary function, affecting the oxygen exchange 
in COVID-19 patients [100, 101]. Therefore, our pathway 
analysis indicates that pancreatic secretions are associated 
with the immune system's hyperactivation and coagulation 
abnormalities, leading to multi-organ failure.

Here, the disease phenotype enrichment analysis of the pan-
creatic secretome using Human Phenotype Ontology revealed 
pancreatic calcification, pancreatic pseudocyst, venous thrombo-
sis, recurrent pancreatitis, pleural effusion, splenic rupture, acute 
phase response, hypotension, abnormal thrombosis, elevated 
C-reactive protein level, amyloidosis, anuria, microangiopathic 

Fig. 6  A Gene-disease association network of secretome genes. The 
figure illustrates a glimpse of the complex network of disease (pink 
nodes) and the upregulated genes (blue nodes). For fuller details and 
an enlarged view, see the Supplementary figure S3. B Enriched dis-

ease classes for secretome. The top enriched disease classes are asso-
ciated with nervous, cardiovascular, metabolic, immune, and diges-
tive diseases
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Fig. 7  Enriched disease classes for secretory proteins. IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF proteins are 
associated with diverse disease terms in the gene-disease association network
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hemolytic anemia, and fat malabsorption disease phenotypes 
(Fig. 5D, and Supplementary Figure S2). The documented 
experimental evidence indicates that pancreatitis leads to acute 
phase response, coagulation, thrombus formation, hemolytic 
anemia, and amyloidosis [86]. Amyloid deposition in the 
heart, kidneys, liver, spleen, nervous system, and digestive tract 
induces inflammation, thrombosis, and immune dysfunction 
that causes systemic complications [86]. Thus, we suggest the 
role of the upregulated pancreatic secretome-associated disease 
phenotypes in MODs. Interestingly, we found that FGB, FGG, 
ANXA2, MDK, AGT, VTN, SERPING1, CD44, and IL1B 
are involved in many processes (Table S3). For example, blood 
coagulation and complement cascade: FGB, FGG, and SER-
PING1[103], vasoconstriction: AGT [63], pro-inflammatory 
response: IL1B [64], host-virus interaction: ANXA2 [104], 
cytokine and growth factor: MDK [105], cell adhesion and 
extracellular matrix organization: CD44 [72] and VTN [73]. 
Furthermore, experimental evidence suggests that SARS-CoV-
2-induced tissue damage, renin-angiotensin system (RAS) 
dysregulation, EC damage, thrombo-inflammation, immune 
response dysregulation, and tissue fibrosis are fundamental 
processes of viral sepsis and MODs in COVID-19 [57]. There-
fore, our finding of an upregulated pancreatic secretome presents 
strong indications of the sepsis-mediated MODs.

3.4  Gene‑Disease Association Network Analysis 
of the Pancreatic Secretome

We generated a gene-disease association network to further 
understand the implications of the upregulated pancreatic 
secretome in MODs (Fig. 6A). The top enriched disease classes 
were associated with nervous, cardiovascular, metabolic, 
immune, and digestive diseases (Fig. 6B), suggesting a multi-
organ impact of the upregulated pancreatic secretome. In addi-
tion, our analysis revealed that IL1B, AGT, ALB, SPP1, CRP, 
SERPINA1, C3, TFRC, TNFSF10, and MIF proteins are associ-
ated with diverse disease terms in the gene-disease association 
network (Fig. 7). In addition, we found that IL1B, AGT, ALB, 
SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF were 
influential as they were linked to 31, 42, 47, 17, 24, 24, 17, 8, 
and 6 neighbouring secretory proteins, respectively, in the pro-
tein interaction network (Fig. 3B). As shown in Fig. 7, we noted 
that IL1B was associated with 231 disease terms and 17 disease 
classes, mainly with nervous system and cardiovascular diseases. 
AGT was associated with 146 diseases and 15 classes, mainly 
with the cardiovascular, nervous system, and digestive systems. 
ALB was linked to 123 diseases and 17 classes, most notably 
urinogenital disease and pregnancy complications, immune sys-
tem, digestive system, and cardiovascular diseases. was linked to 
81 diseases and 13 classes, primarily nervous system, digestive, 
respiratory tract, and cardiovascular diseases, whereas CRP was 
linked to 80 diseases and 16 classes, primarily cardiovascular, 

digestive, metabolic disease, and mental disorders. SERPINA1 
was associated with 59 diseases in 14 categories, primarily with 
respiratory tract and digestive system diseases. C3 was linked to 
54 diseases of 13 different types, primarily cardiovascular dis-
ease and nervous system and immune system diseases. TFRC 
was associated with 52 diseases of 13 classes, mainly hemic and 
lymphatic diseases and immune system diseases. TNFSF10 was 
associated with 49 diseases across eight different categories. Uro-
genital diseases, pregnancy complications, and digestive system 
diseases were among the top enriched disease classes. MIF is 
associated with 49 diseases of 11 classes. Skin and connective 
tissue diseases, mental disorders, and immune system diseases 
were the top enriched disease classes. Thus, our analysis suggests 
that upregulation of IL1B, AGT , ALB, SPP1, CRP, SERPINA1, 
C3, TFRC, TNFSF10, and MIF genes may have systemic effects 
and may impact MODs.

4  Conclusion

The single-cell RNA-seq data analysis of SARS-CoV-2-infected 
pancreatic cells provides evidence of the potential role of the 
pancreatic secretome in SARS-CoV-2 associated multi-organ 
dysfunction. Acinar-specific PRSS2, REG3A, REG1A, SPINK1, 
and ductal-specific SPP1, MMP7 genes are upregulated in alpha, 
beta, delta, and mesenchyme cells. We discovered several key 
secretory proteins that are linked to neurological, cardiovascu-
lar, immunological, digestive, and urogenital dysfunction. Our 
study suggests that the coagulation cascade, complement acti-
vation, renin angiotensinogen system dysregulation, endothelial 
cell injury and thrombosis, immune system dysregulation, and 
fibrosis are potentially associated with a dysregulated pancreatic 
secretome. This study may have a significant impact on clinical 
settings in terms of preventing SARS-CoV-2-induced MODs.
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