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Abstract

Background: High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for
characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented
data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the
limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-
fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets
differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not
clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged
data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use
survival prediction based on Cox regression as an assay to measure the added value of merged data sets.

Results: Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as
performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged
data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic
power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we
found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1.

Conclusions: Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used.
(b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to
death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets
were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different
studies helps to better understand the biases of individual studies and can lead to the identification of strong survival
factors like CYB5D1 expression.
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Introduction

Microarray gene expression data have been integrated to increase

statistical power. Increasing sample size is a bottleneck in DNA

microarray-based gene expression studies as microarray experi-

ments are time consuming, expensive, noisy and limited to the

number of biological samples (particularly, cancer patients). To

circumvent this problem, microarray gene expression data sets

addressing the same or similar biological questions have been

analyzed jointly either by so-called meta analysis [1–5], which

means integration at the level of results derived separately from

individual data sets, or by data merging [6–16]. But data integration

prior to analysis potentially faces problems related to reproducibility

as different microarray platforms use different probes for the same

genes and return expression values on different numerical scales.

Some studies combined data sets generated with the same chip

[6–8,10], or with the same technology platform but different

chips [9,11–14,17,17–19], or with heterogeneous microarray

technologies [15,16,20,21]. The rationale behind combining

data sets generated only from the same chip or platform was to

avoid the cross-platform bias. As it is difficult to measure absolute

mRNA concentrations by hybridization-based expression pro-

filing techniques, one would expect gene-specific systematic

differences between expression values obtained with different

probes. Systematic differences between published data sets may

also result from different pre-processing steps applied by the

authors. For instance, expression levels are sometimes expressed

as absolute values, sometimes as log ratios with respect to a

reference sample. To avoid bias resulting from preprocessing,

Reyal et al [6] restricted their studies to data sets generated with

the same chip (Affymetrix HG-U133A) for which raw data were

available, and re-processed all data sets prior to merging. Other

studies used homogeneous (same technology) [8,9,11–13] or

heterogeneous [15,16,20] data sets, as pre-normalized in the

original studies, and applied a so-called data integration method

prior to data fusion.
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A data integration method serves to project expression

values for the same gene onto comparable scales. Perhaps the

simplest way to approximately achieve this goal is Z-score

normalization [22]. More advanced methods attempt to match

data-set specific parameters of the expression value distribu-

tions between input sets. Data integration methods that have

been used in similar studies before include: Distance Weighted

Discrimination (DWD) [23,11,14–16,24], Combatting Batch

effects (ComBat) [25,12], disTran [26], Median Rank Score

(MRS) [20], Quantile Discretizing (QD) [20] or Z-score trans-

formation [22].

Another necessary processing step in data merging consists of

mapping microarray features to a catalogue of standard gene

names. This in turn will result in the definition of the subset of

common genes to be retained in the merged data set. Here, the

term microarray feature refers to a single hybridization probe, or

a set of probes, for which the platform returns a single expression

value. Commercially available microarrays often contain multi-

ple features for the same gene. What makes the merging of data

sets non-trivial is that different platforms refer to the same genes

by different names. Note further that for the reasons outlined

above, merging of data sets usually leads to a substantial

reduction in the number of genes considered for downstream

analysis. Important genes included in only a part of the input

data sets may be lost.

Some studies [10,15,17,20] used UniGene ID [27] to identify

common genes between different data sets whereas other studies

employed different databases such as RefSeq [28,17] or

Stanford Source database (http://source.stanford.edu) [14,16]

to match probes/probe sets to genes. Note further that some

research teams used directly probe/clone identifiers [14] or

probe set IDs [6–8,12,13] when merging only cDNA or

Affymetrix data set collections, respectively. The latter studies

might have preferred not collapsing features (Probe/probe set)

into genes in order to keep the same annotation as other studies

to validate the same features. An additional reason to keep

original feature IDs is to preserve a large number of features

rather than a a smaller number of genes to make biological/

statistical inferences. Sohal and coworkers [17] used both

UniGene ID and RefSeq ID to make a comparison of common

genes. They concluded that using UniGene IDs achieved

slightly better results than using RefSeq IDs, with a small

margin. In this study, we used our own resource CleanEx [29]

for mapping microarray features to gene names, a database

specifically developed for this purpose.

While some research projects merged the gene expression

values in their original continuous representation [6,11,12,14,15],

some other studies combined the ranks of gene expression values

[7–9,20,30] which are independent from normalization. In these

studies, ranking was used to predict a categorical outcome. Note

that ranking methods replace the continuous values by discrete

integer values which influences the choice of data integr-

ation method. While DWD and ComBat preserve the original

representation of data, MRS, QD and disTran transform the

data representation into discrete values.

In previous studies, merging data sets was applied to derive a

robust gene signature prognostic of survival time (Overall Survival

(OS) [11], or prognostic of survival outcome discretized into two

[6–10,13,20], or more categorical values [12,14–16,20,24], or

diagnostic of tumor subtypes [14–16,24], or predictive of

treatment response [12]. The gene signatures were built by a

supervised machine learning algorithm like Support Vector

Machines (SVM) [7,10,13,20–22] or unsupervised classification

methods like clustering [14–16,24] or statistical method such as

Cox regression model [11] and likelihood ratio test [9]. Such gene

signatures consist of a list of genes, usually associated with weights

that are used to compute a predictive score.

In previous tests, the potential advantage of data merging was

evaluated by means of a quantitative rate of correct classification

or validation of previous results. Note however that different

studies used different performance measures (sensitivity, specificity,

Area Under the Curve (AUC), percentage of concordance in

classification, etc) to this end.

Gene signatures are also evaluated in terms of ‘‘robustness’’ and

‘‘reproducibility’’. Robustness is related to the sample size of the

training set from which a gene signature is built and the size of the

testing set on which it is validated. A predictor generated from a

small training set could have a high prediction accuracy on the

training set but may lose generalization power when it is validated

on an independent testing set. Moreover, performance estimates

obtained with a small testing set have high statistical error, i.e. they

come with a large confidence interval. On the other hand,

reproducibility [31] means the convergence of results obtained

from replicate experiments, possibly carried out in different labs

and relying on different technologies. Reproducibility is assessed

by cross-data set validation, i.e. the evaluation of a gene signature

derived from one data set, with a testing set originating from

another study.

In this work, we analyzed the potential benefits of merging

data sets for prognostic application in breast cancer diagnosis.

Contrary to related work, we did not discretize the clinical follow-

up information into good and poor outcome classes, a practice

which results in loss of information. Instead, we directly used

censored survival data to derive a gene signature that allows for

the computation of a risk score from a patients expression profile.

The risk score was based on the Cox proportional hazard model,

and expected to be inversely related to the time to death or

relapse.

The basic design of our study is as follows (Figure 1). We used

eight breast cancer microarray data sets from eight different

studies (Table 1). Each set had clinical follow-up information in

form of censored time to event data, the event being either

‘‘overall survival’’ (OS) or ‘‘relapse-free survival’’ (RFS) or both.

The goal was to extract a gene signature from a training set that

can be used to predict disease outcome for patients in the testing

set. The gene signature (predictor) we used consisted of a set of

genes plus corresponding Cox coefficients derived by univariate

fitting of the expression values to the survival data on the training

set. Gene signatures were built from the individual or merged data

sets. The accuracy and robustness of prediction were evaluated by

10-fold cross-validation. Reproducibility as defined above was

analyzed by training a signature from one or several complete data

sets and testing its performance on complete independent

validation sets.

Data sets were merged in their original (continuous) numerical

representation using two different data integration methods: (i)

ComBat [25] and (ii) Z-score normalization. Two signature

performance measures were computed in each experiment: (i) time

dependent Receiver-Operator Characteristic Area Under the

Curve (ROC-AUC) and (ii) the hazard ratio (HR) of the predicted

risk scores relative to the survival data in the testing set. Note that

the latter required stratification of the testing set patients in a high

and low risk groups.

In total, we analyzed 1324 breast cancer samples from public

data sets generated with three microarray technologies (cDNA,

Agilent, Affymetrix). To the best of our knowledge, this study is the

largest one evaluating the potential benefits of data merging in a

quantitative OS/RFS patients risk prediction framework.

Survival Prediction & Merging
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Results

Verification of Data Integration
To assess the removal of microarray bias effect across data sets,

Principal Component Analysis (PCA) and hierarchical clustering

were applied to the data sets after the application of data integration

methods.

The results of these tests are shown in Figure 2, Figure 3 and

Figure 4. In all figures, samples from the same source are

represented by the same color. Samples from different sources are

represented by different colors. In the heatmaps, green color of

pixels illustrates low expression level and red color depicts the high

expression level of the genes, respectively.

For the verification of data integration by PCA, the merged data

sets were projected on the planes defined by the first two principal

components (PCs). The purpose was to demonstrate intermixing of

samples from different sources. As can be seen, ComBat was

successful in removing dataset-specific biases (Figure 2, Figure 3)

since the samples of the merged data set integrated with ComBat

were better intermixed than the samples merged with Z-score

normalization.

The PCA results were confirmed by clustering. Figure 4 presents

the results for the datasets with OS and RFS events annotation,

respectively. The samples were grouped by data source when they

were normalized by Z-score normalization (Figure 4A, Figure 4C).

Here, genes are presented in rows and samples are organized in

columns. After the application of ComBat, the influence of data

source on grouping was significantly reduced (Figure 4B, Figure 4D).

Assessment of Gene Signatures
Evaluation in 10-fold Cross Validation. The major goal of

our study was to assess the benefits of data merging with regard to

disease outcome prediction. To this end, we derived gene signatures

based on Cox regression from the individual and merged datasets as

described in the Methods section. The results of these tests can

be summarized as follows. For the data sets with OS endpoint

(Figure 5A, Figure 6A), the average AUC over 10-fold cross

validation (CV) remained comparable between the merged and

single data sets within the limits of the respective standard deviations

(ranging from 0.01 to 0.05). Although neither the prediction power

(AUC) nor the hazard ratio (HR) with the merged data sets

increased significantly, the HR of the merged data sets had a more

robust (shorter) asymptotic 95% confidence interval (CI).

We compared two data integration methods: (i) ComBat and (ii)

Z-score normalization as described under Methods. Based on PCA

and clustering results, we observed that ComBat was more efficient

in inter-mingling the samples. We therefore expected that ComBat

would outperform Z-score normalization. However, we noticed that

the two methods performed about equally well. The AUC values

generated from the merged data sets based on the two methods were

identical. The HR however is slightly higher for ComBat (ComBat:

Figure 1. The flowchart of this study.
doi:10.1371/journal.pone.0007431.g001

Survival Prediction & Merging
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HR = 3.84, CI = 3.17–4.65, Z-score: HR = 3.31, CI = 2.55–4.30,

Figure 6).

One possible explanation for this apparent contradiction would

be that the first two principle components and the clustering trees

obtained after data integration reflect biologically irrelevant

technical variance not related to data source. We tested this

hypothesis by fitting the first two principal components obtained

after the application of ComBat and Z-score normalization to the

merged survival data. We obtained the hazard ratios of 1.40 and

0.79 for PC1 and PC2, respectively, after Z-score normalization

Figure 2. Distribution of the merged breast cancer data sets with OS after the application of PCA. Color legend of data source: yellow:
Vijver, blue: GSE1992, pink: GSE1456, red: GSE3143, brown: GSE4335.
doi:10.1371/journal.pone.0007431.g002

Table 1. Survival breast cancer datasets with OS and RFS endpoints.

Data set Platform Pre-normalization Gene nb Sample size Ref. Treatment
Survival
outcome

GSE3143 Affymetrix, HG-U95A MAS5.0 8660 158 Bild 06 [55] Unknown OS

GSE1456A&B Affymetrix, HG-U133A&B MAS5.0, global mean 15848 159 Pawitan 05 [56] Adj. Chemotherapy (incl.
Tamoxifen)

OS, RFS

GSE4335 cDNA Scaling 12793 122 Sorlie 03 [57] Neoadj. Chemo/chemo
(Tamoxifen)-82 patients

OS, RFS

GSE1992 Agilent LOWESS 15528 170 Hu 06 [15] Treated OS, RFS

Vijver Agilent Scaling 13628 295 Van de Vijver 02 [36] Chemo/hormonal therapy
(90 patients)

OS, RFS

GSE2990 Affymetrix, HG-U133A RMA 12010 189 Sotiriou 06 [46] Tamoxifen (64 patients) RFS

GSE2034 Affymetrix, HG-U133A MAS5.0 12010 286 Wang 05 [38] None RFS

GSE4922A&B Affymetrix, HG-U133A&B MAS5.0, global mean 15848 289 Ivshina 06 [58] Systemic/endocrine therapy
(147 vs. 66 patients)

RFS

Merged OS Affymetrix, Agilent, cDNA 7049 849 OS

Merged RFS Affymetrix, Agilent, cDNA 9181 1324 RFS

Gene nb refers to the number of genes. MAS 5.0 refers to Affymetrix Microarray Suite version 5.0 and LOWESS stands for LOcally WEighted Scatter plot Smoothing and
RMA for Robust Microarray Analysis, respectively. Adj. stands for adjuvant and chemo for chemotherapy. Merged OS refers to merged data sets with Overall Survival
endpoint and Merged RFS refers to the merged data sets with Relapse Free Survival endpoint. The expression values of dual channel data were already log2-transformed.
Among the data sets generated by Affymetrix, the absolute intensity values of GSE3143, GSE2034 and GSE2990 were log2-transformed for this study as the rest of
Affymetrix data sets were already log2- transformed by the authors.
doi:10.1371/journal.pone.0007431.t001
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(P-values 6.3e-07 and 1.3e-03), and 0.97 and 1.54 for the ComBat

merged data sets (P-values 7.3-e01 and 3.7-e14). While these

values do not precisely confirm our hypothesis, they indicate that

the first two principal components capture the variance related to

survival about equally well in both cases.

We observed similar trends when looking at the distribution of

Estrogen Receptor positive (ER+) and Estrogen Receptor negative

(ER-) samples in the clustering diagrams. There we saw both after

the application of ComBat and Z-score normalization many small

clusters of ER- samples (the minority class) spread over the entire

range of the tree (data not shown). While these findings conciliate

the results from data integration verification with those from gene

signature evaluation, they also reveal the limited usefulness of the

data intermingling test, which in this case provides a misleading

picture of the variance retained after data integration.

Noting that the gene signatures built from subsets of GSE4335

or Vijver showed higher prediction accuracies in cross-validation

than the gene signature built from the merged data set, we

investigated how the performance could possibly be improved by

selective data integration. With regard to both OS and RFS

results, we made the following general observation: (i) The

prediction accuracy obtained with a signature from a merged

data set lies between the accuracies of the signatures derived from

the component data sets. (ii) There are marked differences in

performance of signatures from individual data sets, possibly

reflecting the quality of the data or the diversity of the analyzed

patient cohorts. Overall, these observations are in agreement with

results from similar tests where performance was measured by a

binary classification assay [7,20,30].

Taking into account this observation, the data sets with the

highest prediction accuracies were merged in different combina-

tions in the hope to improve the overall prognostic power of a

signature based on a merged data set. Firstly, the data sets GSE4335

and Vijver were merged and adjusted by a data integration method

(ComBat or Z-score normalization), resulting in a predictor with an

average AUC of 0.73+/20.01, HR = 4.8 (CI = 4.19–5.50). Adding

the data set GSE1992 reduced the prognostic power by 0.01 only

(average AUC = 0.72, HR = 3.84, CI = 3.17–4.65). Combining the

data sets GSE4335 and GSE1992 resulted in a mean AUC of 0.70

(+/20.02) and an HR of 3.35 (CI = 2.55–4.30). The AUC obtained

from the combination of GSE4335 and GSE1992 is comparable to

the result obtained by combining GSE4335 and Vijver but the HR

decreased by 1 unit. Adding the Vijver data set to GSE4335 and

GSE1992 resulted in a similar prediction accuracy of mean AUC

0.72+/20.01 but a higher HR = 4.53, CI = 4.03–5.09. These

results show that the performance of the merged data set composed

of two data sets was as good as the merged data set composed of five

data sets. Interestingly, these pairs of data sets (GSE4335 and Vijver

or GSE4335 and GSE1992) were generated by different gene

expression profiling technologies, indicating that platform-specific

biases were not a major obstacle to data merging. Importantly, these

results suggest that the potential added-value gained by including a

specific data set in a merged data set is predictable from its cross-

validated performance measured in isolation.

Taken all these together, however, the improvement seen with

selectively merged data sets is relatively modest as compared to the

prognostic power generated from the merged data sets composed

of all OS single data sets. Nevertheless, this improvement is

remarkable if one takes into account that the selectively merged

data set only contains about one-third (237) or half (410) as many

samples as the complete merged data set (849).

In the case of RFS (Figure 5B), the merged data sets adjusted by

ComBat and Z-score normalization outperformed the single data

set GSE2990 by 0.07 AUC. Compared to the other single data sets,

the results generated from the merged data sets remained equal or

lower by 0.00–0.06 AUC units. Here, the combination of the data

sets GSE4335 and GSE1992 had a better prediction accuracy with

a mean AUC of 0.68+/20.02 and an HR of 3.72 (CI = 2.91–4.75)

Figure 3. Distribution of the merged breast cancer data sets with RFS after the application of PCA. Color legend of data source: yellow:
Vijver, blue: GSE1992, pink: GSE1456, grey: GSE2990, brown: GSE4335, black: GSE4922, green: GSE2034.
doi:10.1371/journal.pone.0007431.g003
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(Figure 6B), outperforming by 0.05 the prediction accuracy

generated from the 1324-sample merged data sets. Adding the

Vijver data set resulted in a similar prediction accuracy with a mean

AUC of 0.66+/20.01 and HR = 3.05 CI = 2.24–4.05.

Comparing the performance results of the merged data sets, we

observe that none of the merged data sets was more successful in

prediction performance than the best individual data sets. Again

ComBat and Z-score integration produced similar results, with a

slight advantage of the latter method in this case.

To determine the significance and stability of the selected gene

signatures, we were then interested to investigate if the top 100-

ranked genes would still be selected if a P-value cut-off of 0.05 after

Bonferroni correction [32] was applied. We noticed that all the top

100-ranked genes derived from the merged and the Vijver data set

had a significant adjusted Cox P-value. This was not the case for the

100-gene signatures built from any of the other single data sets.

The 1-gene signature derived from GSE4335 (see below) also

systematically had a significant adjusted Cox P-value. The adjusted

Figure 4. Heatmaps of the merged breast cancer data sets for all genes. (A) Z-score normalization with OS endpoint, (B) ComBat adjustment
with OS endpoint, (C) Z-score normalization with RFS endpoint, (D) ComBat adjustment with RFS endpoint. Genes are presented in rows and samples
are illustrated in columns. Color legend of data source for Figure 4A and Figure 4B: yellow: Vijver, blue: GSE1992, pink: GSE1456, red: GSE3143, brown:
GSE4335. Color legend of data source for Figure 4C and Figure 4D: yellow: GSE2034, blue: GSE4922, pink: GSE1456, red: GSE2990, brown: Vijver, black:
GSE1992, green: GSE4335.
doi:10.1371/journal.pone.0007431.g004
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P-values of the genes contained in the signature appeared to relate

to the robustness of the gene signatures rather than to the

prediction accuracy measured in cross-validation (compare for

instance to the prediction accuracies of GSE4355 to ComBat- or Z-

score-Merged in Figure 5A). Our results are in agreement with Van

Vliet and colleagues’ findings [7].

Regarding the two performance measures used, it is noteworthy

that HR was not always directly related to the prediction accuracy

expressed as AUC [33]. For example, the gene signature derived

from GSE1992 showed a prediction accuracy of 0.68 with an HR

of 3.06 in one iteration of CV, and a prediction accuracy of 0.63

with an HR of 3.05 in another iteration.

Validation on independent data sets. To assess the

reproducibility of the gene signatures’ performance derived from

the merged data sets, the prediction accuracy was evaluated in a

leave-one-data set-out manner (section Bias Estimation). In each

step, one complete source data set was set aside as testing set while

the predictor was built from the merged remaining sets. In parallel,

we carried out pair-wise tests, using one source data set as training

and another one as testing set. Table 2, Table 3 and Table S1 to

S6 summarize the results of these evaluations with respect to the

two clinical endpoints, OS and RFS.

In this test, merging data sets improved overall survival

prediction and risk association. This interpretation is based on

the fact that for a given testing set, the predictor built from the

merged training set outperformed on average 3 out of 4 predictors

built from the individual sets. With respect to OS, the survival

prediction based on Z-score normalization was higher than the

prognosis accuracy obtained with ComBat. A partial improvement

of the association of the 100-gene signatures with OS (measured by

HR) by merging data sets can also be observed in Table S1 and

Table S2. In this analysis, ComBat outperformed Z-score

normalization.

The partial improvement of survival prediction and risk

association that were observed for OS endpoint were also obtained

with respect to RFS. Between the merged data sets, Z-score

normalization provided higher results than ComBat even though

the difference is not significant (see supplementary information file,

Table S3 to S6).

Overlap between gene signatures
Previous reports pointed out limited overlap between gene

signatures (see discussion in [34,35]). We were wondering whether

this observation could be confirmed by our experiments, and

therefore went on to compare the different gene signatures

obtained in the previous tests to each other. Unsurprisingly, the

top 100-ranked genes generated from different single data sets had

no or poor overlap with each other and with the merged data sets

(data not shown). Reportedly strong prognostic markers like ESR1

and GATA3 were not systematically selected from all data sets.

For example, ESR1 and GATA3 were in the gene signature

generated from GSE4335 but not in the gene signatures derived

from GSE1456 or GSE1992.

The genes selected from the merged data sets based on RFS

were matched to the 70-gene signature published by Vijver et al.

2002 [36]. Note that the 70-gene signature mapped to only 57

genes (CleanEx release of the 3rd September 2007). Only eight of

these genes (C16orf61, CENPA, DTL, MELK, NDC80, NU-

SAP1, ORC6L, PRC1) were also found in the gene-signature

derived from the merged data sets adjusted by ComBat. Even

fewer (four) common genes (CENPA, HRASLS, PECI, PRC1)

were found in the merged data set normalized by Z-score

normalization. This small overlap is in agreement with reported

observations on breast cancer gene signatures. It is furthermore

expected from theory and simulations [35,37].

Factors limiting the success of data merging
To find out why data merging did not lead to an improvement

of performance, a test series were carried out to optimize the gene

signature size for the selected individual and merged data sets

adjusted by ComBat or Z-score by varying the number of genes

from 1, 5, 10, 20, 50, 150, 200, 500 to 1000. We selected for this

test those individual sets, which had annotations for both clinical

endpoints, OS and RFS. Overall, this analysis confirmed that in

Figure 5. The prediction accuracy of the gene signatures generated from the breast cancer merged and single data sets. The results
present the average of the Area Under the Curve (AUC) over 10-fold cross validation. The error bars represent the standard deviation of AUC over 10
iterations. Figure 5A: GSE3143: 0.66+/20.03, GSE1456: 0.55+/20.04, GSE4335: 0.77+/20.02, GSE1992: 0.70+/20.05, Vijver: 0.75+/20.01, ComBat-
merged: 0.68+/20.03, Zscore-merged: 0.68+/20.01, GSE4335Vijver: 0.73+/20.02. Figure 5B: GSE1456: 0.58+/20.02, GSE1992: 0.67+/20.03, GSE4335:
0.74+/20.03, GSE2990: 0.54+/20.04, GSE4922: 0.55+/20.02, GSE2034: 0.62+/20.02, Vijver: 0.67+/20.01, ComBat-merged: 0.63+/20.01, Zscore-
merged: 0.64+/20.00, GSE4335GSE1992: 0.68+/20.02.
doi:10.1371/journal.pone.0007431.g005
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most cases the size of 100 was a near-optimal choice for survival

prediction by a Cox regression model (supplementary information

Figure S1). Based on over-fitting considerations, it was expected

that the merged data sets containing more samples would tolerate

larger gene signatures. However, this conjecture was not (or not

clearly) supported by the results.

Case of the gene CYB5D1
New findings on CYB5D1. On comparing the results

obtained for AUC and HR from the individual data sets with

the signatures of variable size, it was surprising to observe the large

variation in the performance profiles. Most strikingly, with the

data set GSE4335, the best performance was obtained with a

signature consisting of a single gene. With an AUC value of 0.8 for

OS prediction, this was the overall best performance registered in

this study. It has to be remembered in this context that the

performance was measured in cross-validation. It was thus not

clear whether in the case of a single-gene signature the same gene

or different genes were selected in each fold of cross-validation. In

principle, the prediction accuracy could reflect the average

performance of different genes selected in successive iterations.

Looking at the results after each fold of cross-validation, we

noticed that the gene CYB5D1 (cytochrome b5 domain containing

1) was selected in 95% of the cases. The Cox coefficients obtained

for this gene were consistently negative, indicating a beneficial

effect on survival. With respect to RFS endpoint, this gene was

Figure 6. HR of the gene signatures derived from the merged and single breast cancer data sets. Figure 6A: GSE3143: HR = 2.17,
CI = 1.67–2.82, GSE1456: HR = 1.43 CI = 0.77–2.64, GSE1992: HR = 3.42 CI = 1.90–6.14, GSE4335: HR = 4.06 CI = 2.60–6.34, Vijver: HR = 5.57 CI = 4.44–6.99,
ComBat-merged OS: HR = 3.84, CI = 3.17–4.65, Zscore-merged OS: HR = 3.31, CI = 2.55–4.30, GSE4335Vijver: HR = 4.80, CI = 4.19–5.50. Figure 6B:
GSE1456: HR = 1.48, CI = 0.68–3.20, GSE1992: HR = 3.01, CI = 2.24–4.05, GSE4335: HR = 3.59, CI = 2.58–5.00, GSE2990: HR = 1.58, CI = 0.75–3.32, GSE4922:
HR = 1.38, CI = 0.93–2.05, GSE2034: HR = 1.95, CI = 1.47–2.58, Vijver: HR = 3.30, CI = 3.05–3.57, ComBat-merged RFS: HR = 2.09, CI = 1.83–2.39, Zscore-
merged RFS: HR = 2.09, CI = 1.83–2.39, GSE4335GSE1992: HR = 3.72, CI = 2.91–4.75.
doi:10.1371/journal.pone.0007431.g006
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selected in 78% of the cases and the prediction power of the one-

gene signature was found to be 0.73.

We were not the first to find that a 1-gene signature had an

equally good or stronger prognostic power than a gene signatures

with a higher number of genes. Haibe-Kains and colleagues [3]

previously found the proliferation gene AURKA to be a strong

survival predictor at least as good as any composite gene predictor

based on advanced machine-learning techniques.

The excellent performance of one gene in survival prediction

immediately raises the question whether this gene was included in

all studies. If this were not the case, then the gene would not be

present in the merged data set, which could explain the rather

disappointing prediction accuracy figures obtained after merging.

Indeed, this gene was absent in a number of data sets. In one other

data set where it was present, its performance as a single-gene

signature in risk prediction was consistently high (GSE1992,

AUC = 0.68, HR = 3.24, P-value = 0.008, CI = 1.36–7.72). The

influence of this gene could also explain the good performance

obtained after merging selectively the sets GSE4335 and

GSE1992 (see above). A possible reason that adding the Vijver

data set did not improve the prediction accuracy might be due to

the fact that this gene was absent in the original Vijver study. As

expected, the Cox coefficient of this gene was negative for all data

sets in which it was present, meaning low risk associated with high

expression levels. The case of CYB5D1 suggests that the absence

of key risk or survival genes from some microarray platforms

may in general be a major limiting factor in data merging,

demonstrated here on the specific example of survival prediction

for breast cancer patients.

Known findings on CYB5D1
The full name of CYB5D1 is ‘‘cytochrome b5 domain containing

1’’. It is noteworthy that the gene is absent from the well known

prognostic gene signatures published by van de Vijver et al. [36]

and Wang et al. [38] even though this is not surprising as the gene

was not present on the gene expression profiling platform used in

these studies. We wanted to know whether this gene was previously

found as a survival gene in similar studies. An initial search with

gene symbol CYB5D1 was unsuccessful. However, using UniGene

ID Hs.27475 [27], we found a few earlier cancer studies where this

gene was selected as a differentially regulated gene.

Jenssen and colleagues [39] found Hs.27475 associated to breast

cancer survival. In their study, they used the Sorlie data set [40], a

subset of GSE4335 analyzed in this work. Using a Log-rank test

applied to discretized survival data, they identified 95 genes

positively or negatively correlated with survival (P-valuev0.05,

with Bonferroni correction [32]). In their gene list ranked by P-

value, Hs.27475 appeared at rank 11 (rank 6 if positively

correlated genes are considered only) with P-value 9.4e-10.

The expression of Hs.27475 was also found to be positively

correlated (Pearson correlation of 0.58) with the expression of

Estrogen Receptor 1 (ESR1) [41]. In this study performed by

Mackay et al., paired biopsies from 34 ER positive breast cancer

patients, taken before and after treatment were analyzed with

cDNA microarrays. The patients were treated with aromatase

inhibitors like anastrozole and letrozole that are suppressants of

estrogen synthesis. It needs to be pointed out that the main goal of

this study was to identify estrogen target genes, not genes that

correlate with ESR1 expression. In this respect, Hs.27475 was not

Table 2. Cross-data set performance of the breast cancer predictors trained on the individual and combined data sets (by ComBat)
with respect to OS.

GSE1456 GSE1992 GSE4335 Vijver GSE3143 Merged-ComBat�

GSE1456 NA 0.67 0.70 0.77 0.71 0.75

GSE1992 0.62 NA 0.57 0.56 0.61 0.62

GSE4335 0.62 0.68 NA 0.73 0.66 0.70

Vijver 0.77 0.73 0.70 NA 0.68 0.77

GSE3143 0.67 0.47 0.54 0.56 NA 0.62

Significant AUC (w0.6) are shown in bold. The training sets are listed in the column header and the testing sets are indicated in the row header of the table.
� indicates that the predictor was trained from all data sets except the testing set. NA stands for Not Available.
doi:10.1371/journal.pone.0007431.t002

Table 3. Cross-data set performance of the breast cancer predictors trained on the individual and combined data sets (normalized
by Z-score normalization) with respect to OS.

GSE1456 GSE1992 GSE4335 Vijver GSE3143 Merged-zscore�

GSE1456 NA 0.64 0.68 0.76 0.68 0.77

GSE1992 0.56 NA 0.59 0.56 0.63 0.60

GSE4335 0.65 0.66 NA 0.69 0.76 0.70

Vijver 0.75 0.72 0.69 NA 0.71 0.75

GSE3143 0.62 0.51 0.50 0.56 NA 0.60

Significant AUC (w0.6) are shown in bold. The training sets are listed in the column header and the testing sets are indicated in the row header of the table. Merged-

zscore refers to the merged data set composed of the individual data set normalized separately by Z-score normalization.
� indicates that the predictor was trained from all data sets except the testing set. NA stands for Not Available.
doi:10.1371/journal.pone.0007431.t003
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among the 1,395 most upregulated or the 1,264 most down-

regulation genes found by the analysis of the paired samples.

Hs.27475 was noticed to be about two-fold downregulated in

two other types of cancer, primary colon and primary rectal

carcinoma [42]. In this study, the colon data set was composed of

73 tumors of locally advanced colon carcinomas that were profiled

on oligonucleotide microarrays containing 21543 features. The

rectal data set was taken from a previous study [43] in which 29

rectal carcinoma and 20 normal mucosa samples were analyzed

on a oligonucleotide microarray containing 22,231 features.

Hs.27475 was down-regulated at P-valuev0.0001 in the two

data sets. Note further that this gene was among 490 common

genes found to be deregulated (up or down) in both tumor types.

The down-regulation of CYB5D1 colon cancer is consistent with

its role of a survival gene in breast cancer.

It may also be worthwhile to mention that CYB5D1 belongs to

the same protein family as Progesterone receptor membrane

component 1 (PGRMC1), a well known player in the breast

cancer field [44]. However, this gene shows opposite behaviour in

most respects. It is over-expressed in cancer, particularly in ER

negative breast cancer, and correlates with poor prognosis as it

makes cells resistant to chemotherapeutic drugs [44]. However,

the findings related to PGRMC1 may help to elucidate the

molecular mechanisms through which CYB5D1 reduced the

malignant potency of breast cancer cells. PGRMC1 binds to and

presumably regulates the enzymes of the P450 family, whose

activity may interfere with drug resistance or intracellular

signalling pathways [44].

In summary, the findings summarized above indicate that

CYB5D1 is an important but currently not well known survival

gene in breast cancer with potential diagnostic and therapeutic

value.

Survival analysis of patients information and tumor
characteristics

Previous breast cancer studies attempted to improve survival

prediction by integrating clinical variables with microarray gene

expression data [15,36,38,45–48]. In these studies, the clinical

variables and the gene signatures were fitted simultaneously in a

multivariate Cox regression model to determine their adjusted

HR. The purpose was to find out if the expression data derived

gene signatures had true added value with regard to clinical risk

factors or whether the association of the gene signature was

mediated entirely by clinical variables.

Five patients characteristics and clinicopathological parameters

such as age, tumor grade, tumor size, estrogen receptor (ER) status

and lymph node status that were available in five data sets were

used here (Table 4). We also carried out tests in these settings

with the specific goal to find out whether the gene signatures

derived from the merged data sets had more clinical variable-

independent predictive power than the gene signatures derived

from the individual sets. Details of the protocol are described

under Methods section.

As Table 5 and Table 6 show, merging data sets improves the

association of the gene signatures with OS compared to only one

data set (out of three) and increases the HR of the gene signatures

with respect to RFS for four out of five data sets. These results

show that integration of data sets improved partially the adjusted

HR of the gene signatures. On the other hand, the adjusted HR

did not improve after merging for tumor grade or tumor size.

Methods

Statistical analysis was performed using R [49], version 2.5.1

and BioConductor [50], release 2.0.

Data sets
The data sets used in this study were pre-normalized in various

ways by the authors of the original studies (Table 1). The gene

expression data were imported via the CleanEx database [29]

which simultaneously provides a mapping of microarray features

to gene names. Note that throughout this document, clinical

endpoints, clinical outcomes, or prediction outcomes refer to OS

and/or RFS.

Time to OS is defined as the time between surgery and death

from breast cancer or the last date of follow-up. Time to RFS is

defined as the time between surgery and the first recurrence of

local, regional or distant-metastatic breast tumor or the last date of

follow-up. If OS or RFS time refers to death or recurrence of

disease, the corresponding samples have a censoring status of 1

(event happened) or 0 otherwise.

We limited the analysis to 10 years of follow-up as the majority

of breast cancer patients had a follow-up of maximum 10 years. All

patients having an overall survival or relapse free survival greater

than 10 years were censored and their respective clinical endpoint

was set to 10 years. All patients in GSE4335 deceased from any

other cause than breast cancer were also censored. Fibroadenoma

or normal breast samples were discarded from the study

(GSE4335, GSE1992). Replicate samples in GSE1992 were

eliminated from the study, too. Note that throughout this

document, GSE1456 refers to the merged data set of GSE1456A

and GSE1456B, GSE4922 to the merged data set of GSE4922A

and GSE4922B, respectively. GSE4335 and Vijver are data sets

from clinical trials.

Table 4. Clinical data of the single and merged breast cancer data sets.

Data set Grade1 Grade2 Grade3 Size1 Size2 Size3 Size4 Age(ƒ50y) Age(w50y) ER+ ER- LN+ LN-

GSE4335 11 49 53 6 13 62 32 34 81 82 31 79 34

GSE1992 12 43 63 30 59 21 11 55 67 70 50 71 50

Vijver 75 101 119 155 140 0 0 264 31 226 69 144 151

GSE2990 64 48 55 103 80 4 0 62 125 147 34 30 153

GSE4922 68 126 55 165 84 0 0 54 195 211 34 81 159

Merged OS 98 193 235 191 212 83 43 353 179 378 150 294 235

Merged RFS 193 339 325 340 382 114 43 635 247 661 212 550 327

The number of patients by clinical variables is presented in each cell of the table. ER+ = Estrogen Receptor positive, ER- = Estrogen Receptor negative, LN+ = Lymph
Node positive, LN- = Lymph Node negative.
doi:10.1371/journal.pone.0007431.t004
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The data sets were pre-normalized in the following ways.

Global mean normalization was used for GSE1456A&B and

GSE4922A&B. The probe set values were natural log-transformed

followed by an adjustment of the mean intensity to a target signal

value of log 500. The pre-normalization of Vijver data set was

performed on an array-by-array basis. Raw intensities from each

channel (red or green) were divided by the mean intensity (in

linear scale) of the corresponding channel. The other data sets

were pre-normalized as described in the legend to Table 1.

Grade, size, ER and lymph node status are discrete variables

(Table 4). Grade was originally coded as three types (according to

the Tumor-Node-Metastasis (TNM) classification [51]): type 1

(well-differentiated), type 2 (intermediate) and type 3 (poorly-

differentiated). ER had binary value, 0 for ER- and 1 for ER+.

Lymph node status had also binary value, 0 for negative node and

1 for any number of positive nodes (1 or more). Tumor size was

classified into T1, T2, T3 or T4 in the original studies (according

to the TNM classification) except for GSE2990 and GSE4922. In

these two data sets, tumor diameter was available and converted

into discrete classes according to TNM classification. Originally,

age had continuous values (in years). Its value was transformed

into a binary category: 0 if age is less or equal to 50 years and 1

otherwise.

Samples containing missing values were discarded in the analyses

using clinical variables. Note that the five variables, grade, size, ER,

lymph node status and age were only available in three data sets

(GSE4335, GSE1992 and Vijver) with overall survival endpoint

(total of 532 samples) and in five data sets (GSE4335, GSE1992,

Vijver, GSE2990 and GSE4922) with relapse free survival outcome

(total of 882 samples).

Pre-processing data
K Nearest Neighbor (KNN) imputation [52] was used to impute

missing expression values in the source data sets, using the function

impute.knn of the R package impute with default parameters

(including k = 10). The probes/probe sets were mapped to Genew

gene symbols [53] via CleanEx [29] (release of the 3rd September

2007). When multiple probes/probe sets were mapped to the same

gene, the expressions of multiple probes/probe sets were averaged

(after KNN imputation).

Data Integration methods
Z-score normalization (scale function in stats R package) and

ComBat [25] were used to adjust the systematic bias of data sets

generated by different platforms. Z-score normalization was applied

first to the samples and then, to the genes. Z-score normalization

was applied after merging if not specified otherwise.

Feature Selection
Genes were selected based on univariate Cox P-value ranking

using the coxph function in survival R package. In this feature

selection method, the genes were ranked based on their likelihood

ratio P-value and the 100 genes with the smallest P-values were

retained as the gene signature if not specified otherwise.

The genes were selected either in Cross Validation (CV) mode or

in a training set independent from the testing set. In case of CV, the

expression values of the genes were fitted individually to survival

data, and ranked by P-values in each fold. Then, the top 100-ranked

genes were selected for the gene signature. In case of independent

training/testing sets, the genes were selected from the training set.

Table 5. Adjusted HR of the breast cancer gene signatures and clinical variables with OS endpoint.

Data set 100-gene signature Grade Size ER LN Age

GSE4335 2.19 (1.20–3.99) 2.01 (1.80–2.25) 1.31 (1.21–1.42) 0.53 (0.45–0.62) 0.94 (0.92–0.97) 0.68 (0.59–0.76)

GSE4335 1-gene signature 5.28 (2.44–11.41) 2.47 (2.28–2.67) 1.08 (0.96–1.21) 0.41 (0.37–0.45) 0.90 (0.87–0.94) 0.67(0.61–0.76)

GSE1992 1.23 (0.8–1.89) 3.26 (2.96–3.59) 1.95 (1.84–2.07) 0.29 (0.27–0.31) 3.92 (3.36–4.57) 1.20 (0.91–1.58)

Vijver 3.15 (2.15–4.61) 1.48 (1.34–1.63) 1.53 (1.50–1.56) 0.67 (0.63–0.71) 0.97 (0.93–1.01) 1.17 (1.02–1.22)

ComBat merged OS 1.39(0.8–2.42) 2.24 (1.92–2.61) 1.94 (1.90–1.98) 0.51 (0.43–0.61) 1.24 (1.19–1.29) 1.07 (1.00–1.14)

Z-score merged OS 1.36 (1.10–1.68) 1.31 (1.21–1.42) 1.52 (1.49–1.55) 0.84 (0.78–0.91) 1.47 (1.39–1.56) 1.03 (1.00–1.06)

The CI (in parentheses) presents the CI of the geometric mean calculated in 10 iterations of 10 fold cross validation. LN refers to lymph node status and ER to estrogen
receptor, respectively.
doi:10.1371/journal.pone.0007431.t005

Table 6. Adjusted HR of the breast cancer gene signatures and clinical variables with RFS endpoint.

Data set 100-gene signature Grade Size ER LN Age

GSE2990 0.87(0.47–1.61) 1.12(1.08–1.17) 2.79(2.68–2.90) 0.86(0.77–0.97) 0.79(0.73–0.85) 0.59(0.54–0.65)

GSE4922 0.95(0.51–1.76) 1.45(1.34–1.57) 2.12(1.96–2.29) 1.39(1.19–1.62) 1.44(1.38–1.50) 0.91(0.88–0.94)

GSE4335 2.19(1.24–3.87) 1.79(1.51–2.13) 1.61(1.52–1.71) 0.70(0.57–0.86) 0.98(0.92–1.04) 0.63(0.57–0.68)

GSE43351-gene signature 2.49(1.54–4.02) 1.51(1.37–1.66) 2.11(1.88–2.37) 0.57(0.45–0.72) 1.00(0.92–1.08) 0.62(0.56–0.71)

GSE1992 1.78(1.04–3.05) 2.38(2.12–2.67) 1.69(1.62–1.76) 0.53(0.42–0.68) 8.10(7.21–9.10) 0.85(0.76–0.95)

Vijver 2.62(2.17–3.17) 1.20(1.13–1.27) 1.38(1.33–1.44) 1.07(0.99–1.16) 0.91(0.87–0.95) 1.02(0.95–1.13)

ComBat merged RFS 1.33(1.04–1.70) 1.33(1.25–1.41) 1.43(1.4–1.46) 0.79(0.77–0.81) 1.29(1.24–1.34) 0.73(0.69–0.77)

Z-score merged RFS 2.56(1.51–4.33) 1.27(1.09–1.48) 1.57(1.42–1.73) 0.85(0.73–0.99) 1.45(1.34–1.57) 0.99 (0.97–1.01)

The CI (in parentheses) presents the CI of the geometric mean calculated in 10 iterations of 10 fold cross validation. LN refers to lymph node status and ER to estrogen
receptor, respectively.
doi:10.1371/journal.pone.0007431.t006
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Principal Component Analysis
Principal Component Analysis (PCA) was applied using the

prcomp function in R stats package with default parameters except

that the center parameter was set to FALSE.

Clustering
The gene expression data were clustered using complete-linkage

agglomerative hierarchical clustering based on the Euclidean

distance (heatmap.2 function in R gplots package).

Prediction Method
Patients risk score was calculated as the linear combination of

the Cox coefficients estimated from the training set and the

corresponding gene expression values (Equation 1).

lp x,bð Þ~
XG

i

bixi ð1Þ

Performance Estimation
Bias Estimation. The survival predictors were assessed by

the following methods:

1. 10-fold cross validation (10fCV) nested in 10 iterations.

2. Leave one data set out: all data sets except one were merged

together to form the training set and the left-out set was used as

the testing set. This process was iterated until all data sets were

used in the training and testing sets.

In 10fCV, the data integration (ComBat or Z-score) was applied

separately to the training and testing sets in each cross-validation

fold. Note that the training and testing sets were generated by

merging and subsequent random splitting. Thus both contained

the samples from different sources. Since ComBat needs the

source- (batch)-identifiers as input, those identifiers had to be

carried through the cross-validation protocol. In case of leave-one-

data set-out, Z-score normalization was applied to each data set

separately prior to merging.

Prediction Estimation. Time-dependent ROC curves [54]

were used to evaluate the prediction accuracy at maximum time

point for each data set using the nearest neighbor estimator

(survivalROC R package). In 10fCV, the accuracy of the

prediction of patients survival time (OS or RFS) was represented

by the mean and standard deviation (SD).

The association of the gene signatures to survival (OS or RFS)

was also measured by a hazard ratio (HR). To this end, the

patients of the testing set had to be stratified into predicted high-

and low-risk groups. In both 10fCV and independent validation, a

testing sample score was considered as high risk, if it was higher

than the median score of the training sample and low risk

otherwise.

In case of 10fCV, HR was averaged by geometric mean

(Equation 2). The 95% CI of the HR over 10 iterations of 10-fold

cross validation corresponds to the CI of the geometric mean.

GM~ P
n

i~1
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~
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where GM refers to Geometric Mean and hr is a vector of n

elements.

95% CI~explog GMð Þ+1:96:SE log hrð Þð Þ ð3Þ

where SE stands for Standard Error.

The gene-signature-based risk scores were also evaluated in the

context of clinical parameters, using the same type of cross-

validation protocol. The binary risk scores computed for each

testing set sample (low/high-risk group as described above)

together with the five clinical parameters listed in Table 4 were

adjusted to survival data by multivariate Cox regression analysis

(using coxph function in survival R package). This fitting

procedure returned a hazard ratio for each input parameter.

Again, the results of 10fCV were summarized by the geometric

mean.

Discussion

The survival prediction accuracy and prognosis of clinical risk

were neither increased nor decreased significantly by merging data

sets. This is explained at least in part by the fact that important risk-

associated genes were not present in all data sets. Consequently, the

heterogeneity of the data sets generated from different laboratories

and with different microarray technologies, was not the only,

perhaps even not the major limiting factor for improving prediction

accuracy by increasing sample size. Substantial variation of time to

death or relapse among breast cancer patients and the heteroge-

neity of breast cancer disease are other constraining factors that

nevertheless need to be considered. Moreover, the heterogeneity of

patients cohorts in terms of age, lymph node status, tumor grade,

tumor size and ER status might negatively affect the accuracy of

survival prediction after merging. It is known, for example, that the

ER+ patients have good prognosis (long survival) and ER- negative

patients have poor prognosis (short survival) in the first five years

after the diagnosis or surgery.

Despite the caveats mentioned above, the results show that

selectively merging those data sets which give rise to accurate

predictors if used alone, can improve the performance. Moreover,

our results confirm that the predictors based on large merged data

sets are more robust, i.e. their worst performance observed in

multiple iterations of cross-validation tends to be substantially

better compared to the worst performance of the gene signatures

based on the single data sets. This may be viewed as an advantage

by itself. In general, the prediction accuracy of the gene signatures

derived from the merged data sets remained consistent and

reproducible across independent studies. Prediction accuracies

measured in cross-validation were extensible to independent

testing sets.

The systematic evaluation of predictors built from the single and

merged gene expression data sets also led us to the surprising

observation that a single-gene signature consisting of CYB5D1 had

the highest prediction accuracy and strongest patients risk

association in breast cancer, surpassing all gene signatures with

different gene size evaluated in this study. CYB5D1 was already

mentioned in breast and other types of cancer studies (see results

section). The protein encoded by this gene belongs to the same

family as Hpr6 (also called PGRMC1) which was found to increase

the resistance of tumor cells to DNA-damaging agents. However,

the CYB5D1 negatively correlates with a patients risk (found in

this study), suggesting that it has the opposite effect. It seems

nevertheless plausible that the expression of this gene also

interferes with drug metabolism. This hypothesis is compatible

with the fact that the strongest predictive power of this gene was

seen in a data set primarily composed of patients which received

adjuvant chemotherapy before surgery.
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Our findings about CYB5D1 call into question the current

paradigm that composite gene signatures perform better than one-

gene signatures in cancer disease outcome prognosis.

Supporting Information

Table S1 Cross-data set performance of breast cancer predictors

trained on the individual and combined data sets (adjusted by

ComBat) with respect to OS. Significant HR (p,0.05) are shown

in bold. The training sets are listed in the column header and the

testing sets are indicated in the row header of the table. * indicates

that the predictor was trained from all data sets except the testing

set. NA stands for Not Available.

Found at: doi:10.1371/journal.pone.0007431.s001 (0.04 MB

PDF)

Table S2 Cross-data set performance of breast cancer predictors

trained on the individual and combined data sets (normalized by

Z-score normalization) with respect to OS. Significant HR

(p,0.05) are shown in bold. The training sets are listed in the

column header and the testing sets are indicated in the row header

of the table. Merged-zscore refers to the merged data set combined

from the individual data sets, each normalized separately by Z-

score normalization. * indicates that the predictor was trained

from all data sets except the testing set. NA stands for Not

Available.

Found at: doi:10.1371/journal.pone.0007431.s002 (0.04 MB

PDF)

Table S3 Cross-data set performance of breast cancer predictors

trained on the individual and combined data sets (adjusted by

ComBat) with respect to RFS. Significant AUC (.0.60) are shown

in bold. The training sets are listed in the column header and the

testing sets are indicated in the row header of the table. * indicates

that the predictor was trained from all data sets except the testing

set. NA stands for Not Available.

Found at: doi:10.1371/journal.pone.0007431.s003 (0.04 MB

PDF)

Table S4 Cross-data set performance of breast cancer predictors

trained on the individual and combined data sets (normalized by

Z-score normalization) with respect to RFS. Significant AUC

(.0.60) are shown in bold. The training sets are listed in the

column header and the testing sets are indicated in the row header

of the table. Merged-zscore refers to the data set merged from the

individual data set, each normalized separately by Z-score

normalization. * indicates that the predictor was trained from all

data sets except the testing set. NA stands for Not Available.

Found at: doi:10.1371/journal.pone.0007431.s004 (0.04 MB

PDF)

Table S5 HR of breast cancer predictors trained on the

individual and combined data sets (adjusted by ComBat) with

respect to RFS. Significant HR (p,0.05) are shown in bold. The

training sets are listed in the column header and the testing sets are

indicated in the row header of the table. * indicates that the

predictor was trained from all data sets except the testing set. NA

stands for Not Available.

Found at: doi:10.1371/journal.pone.0007431.s005 (0.04 MB

PDF)

Table S6 HR of breast cancer predictors trained on the

individual and combined data sets (normalized by Z-score

normalization) with respect to RFS. Significant HR (p,0.05) are

shown in bold. The training sets are listed in the column header

and the testing sets are indicated in the row header of the table.

Merged-zscore refers to the data set merged from the individual

data set, each normalized separately by Z-score normalization. *

indicates that the predictor was trained from all data sets except

the testing set. NA stands for Not Available.

Found at: doi:10.1371/journal.pone.0007431.s006 (0.04 MB

PDF)

Figure S1 Prediction performance of the breast cancer gene

signatures as a function of the number of genes. Gene nb refers to

the number of genes.

Found at: doi:10.1371/journal.pone.0007431.s007 (1.12 MB TIF)
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