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ABSTRACT

Phosphoproteomics and proteomics experiments
capture a global snapshot of the cellular signaling
network, but these methods do not directly mea-
sure kinase state. Kinase Enrichment Analysis 3
(KEA3) is a webserver application that infers overrep-
resentation of upstream kinases whose putative sub-
strates are in a user-inputted list of proteins. KEA3
can be applied to analyze data from phosphopro-
teomics and proteomics studies to predict the up-
stream kinases responsible for observed differential
phosphorylations. The KEA3 background database
contains measured and predicted kinase-substrate
interactions (KSI), kinase-protein interactions (KPI),
and interactions supported by co-expression and co-
occurrence data. To benchmark the performance of
KEA3, we examined whether KEA3 can predict the
perturbed kinase from single-kinase perturbation fol-
lowed by gene expression experiments, and phos-
phoproteomics data collected from kinase-targeting
small molecules. We show that integrating KSIs and
KPIs across data sources to produce a compos-
ite ranking improves the recovery of the expected
kinase. The KEA3 webserver is available at https:
//maayanlab.cloud/kea3.

GRAPHICAL ABSTRACT

INTRODUCTION

Protein kinases catalyze the transfer of a phosphate group
from ATP to other proteins’ threonine, serine, or tyrosine
residues (1). The reversible addition of the phosphate group
to a protein can affect the substrate protein activity, stabil-
ity, localization, and interactions with other molecules (2).
Each protein kinase recognizes between one to a few hun-
dred substrates (3). Mass-spectrometry phosphoproteomics
experiments can yield over 50,000 unique phospho-peptides
that span >75% of all cellular proteins (4). Thus, phos-
phoproteomics experiments can capture the cellular state
of cell-signaling networks. However, kinase activity levels
are difficult to discern from the results of such experiments.
Since kinases serve a critical and central role in regulating
essentially all cellular processes (5), and their aberrant con-
stitutive activation is recognized as a cause of many human
cancers (6–10), identifying alterations in kinase state given
results from phosphoproteomics experiments is critical.

Protein kinases are one of the most targeted protein fam-
ilies amenable for inhibition by small molecules (11), while
most clinically approved protein kinase inhibitors target re-
ceptor tyrosine kinases (RTKs) to block cancer prolifera-
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tion and angiogenesis (12). However, an increasing num-
ber of kinase inhibitors for non-oncological indications
have been recently approved. New druggable protein ki-
nase targets can be identified by experiments that detect de-
regulated kinase-mediated processes contributing to disease
progression. For example, mass-spectrometry phosphopro-
teomics profile the differential phosphorylation states of
cellular proteins between two cellular states (13). Such data
provides a snapshot of the intracellular signaling networks
that are differentially activated between two conditions, for
instance, between diseased and healthy cells. The enrich-
ment of known kinase substrates in a set of differentially
phosphorylated proteins can serve as a potential marker of
the upstream kinases’ state and provide insights into physi-
ological and pathophysiological mechanisms (14).

Available tools that predict relevant kinases associated
with a set of genes, proteins or phosphorylation sites in-
clude Expression2Kinases (X2K) (15,16), PTMsigDB (17),
Inference of Kinase Activities from Phosphoproteomics
(IKAP) (18), Kinase Perturbation Analysis (KinasePA)
(19) and Kinase Substrate Enrichment Analysis (KSEA)
(20). X2K is a web tool that predicts cell-signaling path-
ways upstream from differentially expressed mRNAs. It first
performs transcription factor enrichment analysis (TFEA)
(21–23); it then connects these factors based on known
protein-protein interactions (24), and then performs kinase-
enrichment analysis (KEA) to rank the most relevant pro-
tein kinases. One of the limitations of X2K is that it per-
forms the enrichment analysis at the protein level. PTM-
sigDB is a database of post-translational modification site
(PTM-site) specific signatures curated from publications,
including kinase state signatures. PTM Signature Enrich-
ment Analysis (PTM-SEA) is an R package for modified
gene set enrichment analysis (GSEA) used to query a user-
inputted set of PTMs against the PTMsigDB database.
IKAP consists of a collection of MATLAB functions that
estimate kinase state from a phosphoproteomics dataset by
minimizing a cost function relating the kinase state to the
phosphosite measurements. KinasePA, available as an R
package called directPA and as a webserver, uses experimen-
tally determined kinase-phosphosite interactions to per-
form kinase enrichment analysis applied directly to mass-
spectrometry proteomics readouts. KSEA is a web-based
tool that uses known kinase-phosphosite relationships to
compute a normalized score for each protein kinase based
on the relative hyper- or hypo-phosphorylation of its sub-
strates.

In contrast with prior implementations, Kinase Enrich-
ment Analysis 3 (KEA3), which also computes kinase over-
representation for a query of human or mouse protein
or gene sets, integrates kinase-substrate interactions (KSI)
from a multitude of resources to compute a composite
kinase enrichment score. To develop KEA3, we adapted
the web application and benchmarking framework previ-
ously deployed for creating the transcription factor enrich-
ment analysis tool ChEA3 (23). To benchmark KEA3, we
evaluated the utility of publicly available KSI, PPI, co-
occurrence, and co-expression data to compute overrepre-
sentation of putative kinase substrates for a user inputted
protein set. KEA3 expands significantly on and is a com-
plete reimplementation of KEA (25). KEA3 contains more

kinase-substrate libraries, incorporates three independent
systematic benchmarks, and integrates results across data
sources to improve recovery of the expected upstream ki-
nases. This integration method performs consistently better
than any single library across the three benchmarks. Two
of the KEA3 benchmarks also demonstrate the utility of
KEA3 for analyzing signatures from drug perturbation ex-
periments to infer candidate kinase targets for kinase in-
hibitor drugs and small molecules. To further demonstrate
the utility of KEA3, as a case study, we applied kinase
enrichment analysis to phosphoproteomics data collected
from recent SARS-CoV-2 studies.

MATERIALS AND METHODS

Arriving at a consensus list of human kinases

We mapped protein and gene symbols to HGNC-approved
gene symbols (26) and discarded gene or protein symbols
that did not map using synonym or alias matching. To ac-
complish this, we developed an R package called genesetr
(https://github.com/MaayanLab/genesetr). The union of ki-
nome lists from Manning et al. (5), Miranda-Saavedra and
Barton (27), and the Illuminating the Druggable Genome
(IDG) project (11) produced the set of 520 unique KEA3
HGNC-mappable human protein kinases.

Protein–protein and kinase-substrate interaction libraries

The KEA3 gene-set libraries are kinase-substrate sets aggre-
gated from several resource types: PPI, KSI, co-occurrence,
and transcript co-expression. One additional library not de-
scribed below, termed STRING, was composed of all hu-
man kinase-protein links in version 11.0 of the STRING
database (28). The code used to generate the KEA3 libraries
and for benchmarking KEA3 can be found at https://github.
com/MaayanLab/KEA3webData.

The PPI and KSI datasets (Tables 1 and 2) include inter-
actions where at least one interacting partner was a mem-
ber of the KEA3 consensus kinase set. Within each dataset,
all kinases are human kinases that have at least five distinct
putative human protein substrates. Kinase-interacting pro-
teins were collected from the following PPI databases: Bi-
oGRID (29), mentha (30), hu.MAP (31), prePPI (32,33),
MINT (34,35), HIPPIE (36), PIPs (37,38), PSOPIA (39),
REACTOME (40), Cheng et al. (41) and STRING (28).
The BioGRID and MINT databases contain PPIs from
high- and low- throughput experiments that were manu-
ally curated from the literature. Mentha is a PPIN that con-
tains molecular interactions aggregated and updated weekly
from MINT, IntAct (42), BioGRID, MatrixDB (43), and
the Database of Interacting Proteins (DIP) (44). HIPPIE
aggregates experimentally determined PPIs from IntAct,
MINT, BioGRID, HPRD (45), DIP, BIND (46) and MMPI
(47). Cheng et al. used PPIs collected from IntAct, MINT,
BioGRID, DIP, HPRD and MIPS MPact (48). There are
overlaps and redundancy among these databases, especially
those that aggregate PPIs from the literature and other PPI
databases. We examined each of them individually despite
these overlaps because each incorporates different combi-
nations of resources with varying reliability, quality, and
coverage.

https://github.com/MaayanLab/genesetr
https://github.com/MaayanLab/KEA3webData
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Table 1. PPI databases used to generate the KEA3 kinase-substrate libraries

PPI database Dataset Version KEA3 library name

BioGRID (44) Multi-validated Physical Interactions 3.5.175 BioGRID
mentha (45) Binary interactions with scores 5 August 2019 mentha
hu.MAP (46) Edge table predictions (prob. > 0.5) 9 August 2019 Hu.MAP
prePPI (47) High-confidence predictions (prob. > 0.5) 10 August 2019 prePPI
MINT (48) Homo sapiens 9 August 2019 MINT
HIPPIE (49) Hippie 2.2 HIPPIE
PIPs (50,71) Predicted Interactions with Score ≥1 10 August 2019 PIPs
PSOPIA (51) Dset2 pos 4430 11 August 2019 PSOPIA
REACTOME (61) PPIs derived from REACTOME Pathways 11 August 2019 REACTOME
Cheng et al. (52) PPIN in Supplementary Table S1 static Cheng.PPI
STRING (29) Interaction types for protein links annotated with ‘Binding’ 11 STRING.bind

Table 2. KSI databases used to generate the KEA3 kinase-substrate libraries

KSI database Dataset Version KEA3 library name

PhosphoSitePlus (34) Kinase-substrate 30 July 2019 PhosphoSitePlus
PhosD (65) Predictions resulting from model trained on Phospho.ELM 5 August 2019 PhosD.ELM
PhosD (65) Predictions resulting from model trained on PhosphoSitePlus 9 August 2019 PhosD.PSP
PhosD (65) Predictions resulting from model trained on all KSINs 10 August 2019 PhosD.All
PhosphoNetworks (63) rawKSI 9 August 2019 PhosphoNetworks.rawKSI
PhosphoNetworks (63) comKSI 9 August 2019 PhosphoNetworks.comKSI
PhosphoNetworks (63) refKSI 9 August 2019 PhosphoNetworks.refKSI
PTMsigDB (16) Kinase signature subset of the Uniprot human dataset 1.9.0 PTMsigDB
Cheng et al. (52) KSIN in Supplementary Table S1 Static Cheng.KSI
Phospho.ELM (64) Vertebrate database dump 9.0 Phospho.ELM

Reactome (49) is a manually curated and peer-reviewed
pathway database with annotations that generally focus
on the most extensively studied pathways and molecules.
hu.MAP (31) integrates thousands of published mass
spectrometry (MS) experiments to find all interactions
not identified in the original publications. We also con-
structed a library from the experimentally derived datasets
used for testing the PSOPIA PPI prediction model. PIPs
and prePPI both consist of predicted PPIs. PIPs (37) is
using a naı̈ve Bayes classifier that integrates informa-
tion from expression, orthologs, domain co-occurrence,
PTMs, and subcellular localization. PrePPI (32) also uses
a Bayesian framework but relies on three-dimensional
structural information in addition to functional, evo-
lutionary, and expression information to make PPI
predictions.

Putative KSIs were collected from PhosphoNetworks
(50), Phospho.ELM (51), PTMsigDB (17), Phospho-
SitePlus (52), PhosD (53) and Cheng et al. (41). Phos-
phoNetworks relies on a combined protein microarray
and computational strategy to construct human phospho-
rylation networks (54,55). PhosphoNetworks ‘raw’ KSIs
consist of kinase-substrate relationships (KSRs) identified
by protein microarray. PhosphoNetworks ‘reference’ KSIs
consist of high-confidence KSIs that were filtered by multi-
ple criteria and validated by transfection experiments. Fi-
nally, the PhosphoNetworks ‘combination’ KSIs consist
of the union of the reference KSIs and KSIs that were
manually curated from the literature. Phospho.ELM is a
database of experimentally verified protein phosphoryla-
tion sites in eukaryotes, annotated with the phosphorylating
kinase when known. PTMsigDB is a collection of phospho-
site signatures of kinase activities, perturbations, and signal-

ing pathways curated from the literature. PhosphoSitePlus
is a database of manually curated kinase-substrate inter-
actions from thousands of publications. PhosD predicts
kinase-substrate interactions based on protein domains. We
examined three PhosD kinase libraries generated by the
PhosD model trained on Phospho.ELM data, on Phospho-
SitePlus data, and on multiple datasets. Cheng et al. (41)
constructed a KSIN from Phospho.ELM, HPRD, Phos-
phoNetworks, and PhosphoSitePlus. Finally, the STRING
resource is a collection of direct and indirect protein-protein
interactions (28). To generate the STRING.bind library, we
subset the STRING interactions to only those interactions
that were annotated as involving physical binding to gen-
erate the STRING.bind library. We also used the entire
STRING database to form the STRING library, including
physical interaction, co-expression, co-occurrence in the lit-
erature, and evolutionary co-occurrence, among other asso-
ciation types.

Gene co-expression libraries

To create the KEA3 gene co-expression libraries, all GTEx
RNA-seq samples were downloaded from the GTEx web
server. Samples were quantile-normalized, and for dupli-
cate genes, only the genes with the most significant variance
were retained. For each kinase, the 300 genes with the most
significant Pearson’s correlation coefficients were selected to
generate the kinase sets in the GTEx.coexp library. To create
the ARCHS4.coexp library, human RNA-seq samples were
downloaded from ARCHS4 (56). Fifty-thousand samples
were randomly selected for co-expression analysis and then
processed in the same way as for the GTEx data to generate
the ARCHS4.coexp library.
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Generating the benchmarking datasets

The Characteristic Direction (CD) method (57) was used to
compute gene expression signatures from 329 kinase pertur-
bation experiments containing 96 kinases. The list of studies
was obtained from the manually curated signatures in the
CREEDS resource (58). The perturbations include knock-
downs, knockouts, overexpression, constitutively active mu-
tants, chemical activation, and chemical inhibition of sin-
gle kinases followed by microarray profiling. Gene sets con-
taining the top 600 differentially expressed genes were deter-
mined by the absolute value of the Characteristic Direction
coefficients constructed for each perturbation experiment.
We term this benchmarking dataset KinCREEDSupdn.

For the DrugL1000updn benchmarking dataset, LINCS
L1000 drug perturbation CD signatures retrieved via the
L1000FWD API were subset to drugs with known kinase
targets using the L1000FWD drug target annotations (59).
For each LINCS perturbation identifier, the signature with
the greatest cosine similarity from the batch center was se-
lected. The union of the most significant upregulated and
downregulated genes was used to compose 292 signatures.

The human PTMsigDB (17) phosphoproteomics signa-
tures were derived from PhosphoSitePlus (52) quantita-
tive mass-spectrometry experiments. Entries were subset to
drug perturbations with known kinase targets. Drug tar-
gets were obtained from L1000FWD drug annotations (59).
Drug perturbations with fewer than five associated HGNC-
mappable proteins were discarded, resulting in a bench-
marking set of 15 phosphoproteomics drug perturbation
signatures which cover 15 unique drugs with 98 annotated
kinase targets, 50 of which are unique. We term this set
PTMsigDB.drug.

Assessing inter-library concordance

The Fisher’s Exact Test (FET) was used to compute sim-
ilarity between all pairs of protein sets of the 24 kinase-
substrate libraries with a default background of 20,000
genes. For a library pair A and B, an integer ranking of the
protein sets in B, termed the ‘prediction library’ was pro-
duced for each protein set in A, termed the ‘query library,’
based on the FET P-values. A rank of 1 represented the
most significant FET P-value and a rank of k represented
the least significant FET P-value where k is the number of
protein-sets in the ‘prediction library’. The rankings were
then scaled from 1/k to 1. An empirical cumulative distribu-
tion function (ECDF) was computed from the scaled ranks
of the protein set pairs in A and B that represent the same ki-
nase. The ranks were scaled to values between 0 and 1 to ob-
tain an area under the ECDF (AUECDF) for each library
pair AB and BA.

Benchmarking libraries and integration methods

Each protein set from the KinCREEDSupdn,
DrugL1000updn and PTMsigDB.drug benchmarking
datasets was submitted to KEA3 and benchmarked.
Kinases were ranked within each library according to the
FET P-values, with ties broken randomly. Ranks within
each library were then scaled between 0 and 1. The R
package PRROC was used to compute the area under

the receiver-operating characteristic (AUROC) curve and
Precision-Recall (PR) curve for each library. The positive
class consists of the scaled ranks of the ‘true’ kinase(s)
associated with the query protein set. The negative class
consists of the scaled ranks of all other kinases that were
not associated with the query set. To generate PR curves,
we downsampled the negative class to the same size as the
positive class, similarly to the method described by Garcia-
Alonso et al. (60). Each library has a different number of
kinases and therefore has a different ‘random classifier’ PR
curve. By down sampling the negative class to the same
size as the positive class, a random classifier would have
a PR area under the curve (AUC) of 0.5. PR curves were
bootstrapped in this manner 1000 times and then the mean
PR AUC was reported. The base R function approx() was
used to interpolate between all points from the 1000 PR
curves in order to generate composite PR curves for each
library and integration method for visualization. We also
employed an additional measure of performance by letting
r be the scaled ranks of the ‘true’ kinase(s) associated with
the protein set queries. We then examined the ECDF of
this set of ranks, D(r). If the ‘true’ kinases do not display
preferentially low or high ranks, then we expect a uniform
distribution D(r) = U. We examined D(r) – U for significant
deviations from zero to evaluate different libraries and
methods. Anderson-Darling tests implemented via the
goftest R package were used to evaluate the null hypothesis,
D(r) = U.

Kinase enrichment analysis

KEA3 uses Fisher’s Exact Tests with a background set of
20,000 genes to compute the significance of the overlap be-
tween the query input protein set and each protein set in
the KEA3 protein set libraries. An integer rank from 1 to k
for each protein set in a library size of k indicates sets with
the lowest and highest P-values accordingly. A scaled rank
is computed by dividing each integer rank by k. Thus, for
a single query, there is one kinase rank list for each protein
set library in KEA3. False discovery rates (FDRs) are com-
puted via the Benjamini-Hochberg correction for each li-
brary separately. Out of the 24 candidate libraries, rank lists
for the 11 final KEA3 libraries which met the benchmarking
threshold are integrated via the MeanRank and TopRank
methods (23). MeanRank is calculated from re-ranking a
composite list of kinases by each kinase’s mean integer rank
across all libraries containing that kinase. A composite list
of kinases is re-ranked with each kinase’s best-scaled rank
across all libraries to calculate TopRank.

The KEA3 web application

The backend of KEA3 is a Java servlet running on Tom-
cat 9 (61). The user interface was constructed with jQuery,
Bootstrap and the web template application Mobirise (62).
The web application runs in a Docker (63) container. The
KEA3 source code repository is available at https://github.
com/maayanlab/KEA3web.

Kinase co-expression network visualization

Weighted Gene Co-expression Network Analysis
(WGCNA) (64) was applied to GTEx (65), ARCHS4

https://github.com/maayanlab/KEA3web
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Table 3. Summary of the KEA3 libraries. Dark kinases are determined based on a list published by the Illuminating the Druggable Genome Project (28)

Library
Unique
kinases

Dark
kinases

Unique set
members

Mean set
size

Included in
KEA3 tool

Kinase-Substrate Libraries PhosphoSitePlus 165 8 2269 32 N
PhosD.ELM 161 10 3799 127 N
PhosD.PSP 212 23 5565 16 N
PhosD.All 339 66 6544 66 Y
PhosphoNetworks.rawKSI 285 77 1914 83 N
PhosphoNetworks.comKSI 181 33 1115 23 N
PhosphoNetworks.refKSI 164 32 717 21 N
PTMsigDB 163 8 2262 32 Y
Cheng.KSI 227 35 2154 31 Y
Phospho.ELM 39 0 418 16 N

Protein-protein Interaction Libraries BioGRID 240 31 2251 24 Y
mentha 474 124 8639 72 Y
Hu.MAP 33 10 294 12 N
prePPI 519 149 14 382 658 Y
MINT 156 9 1383 72 Y
HIPPIE 474 127 8798 97 Y
PIPs 266 41 2068 50 N
PSOPIA 44 2 493 14 N
REACTOME 178 10 1209 22 N
Cheng.PPI 376 73 4678 40 Y
STRING.bind 432 99 5254 72 Y

Kinase Co-expression Libraries ARCHS4.coexp 515 148 16 711 300 N
GTEx.coexp 515 148 17 769 300 N

Other STRING 514 148 18 213 1235 Y

(56) and TCGA expression data to generate interactive
views of the human kinome regulatory network. Prior
to applying WGCNA on these datasets, these large-scale
collections of gene expression datasets were quantile-
normalized and filtered to include only protein kinases.
WGCNA with default parameters was then applied to sub-
sets of each dataset separately: the GTEx gene expression
dataset; 100 random RNA-seq samples for each of 18 tissue
types pulled from the ARCHS4 database; and 100 samples
from each of 96 cancer types in the TCGA expression
dataset. The three resulting networks were clustered using
Cytoscape (66) with the Allegro Fruchterman-Reingold
Force Directed Layout plugin, and then visualized on
the KEA3 results page using D3.js (67). To annotate
the GTEx, ARCHS4 and TCGA networks, WGCNA
module eigengenes were correlated to GTEx tissue sample
labels, ARCHS4 sample labels, and TCGA tumor types,
respectively. Nodes were colored by the most significant
tissue/tumor correlation to their parent module.

Kinase co-regulatory network visualization

A kinase co-regulatory network was constructed from all
kinase-kinase interactions described by the 11 KEA3 li-
braries. Edges are directed where kinase-substrate evidence
supports the interaction and are undirected in the case of
PPI or unspecified interaction evidence only. The network
is a subset based on the top kinase results from a user query
and is visualized using D3.js.

RESULTS

Computing kinase enrichment

KEA3 computes kinase substrate overrepresentation for a
query protein set against 11 kinase-substrate set libraries
covering 520 unique protein kinases (Table 3). KEA3 uses

the FET to compare a user-submitted protein set query to
each kinase-substrate set in each KEA3 library. A kinase
ranking is returned for each library separately based on the
FET P-values. For a given library, kinase rankings range
from 1, which corresponds to the most significant FET, to
k, where k is the number of kinase-substrate sets in the li-
brary. KEA3 results also return a scaled rank from 1/k to 1.

Constructing the KEA3 libraries

We constructed 24 known and putative kinase-substrate li-
braries with publicly available data from co-expression anal-
ysis, experimentally measured PPIs, predicted PPIs, mea-
sured KSIs, predicted KSIs and a database that integrates
the interactions mentioned above with literature associa-
tions and evolutionary associations (28). Each resource was
subset to interactions and associations involving the 520
HGNC-mappable protein kinases identified in Manning
et al. (5), Miranda-Saavedra and Barton (27), and the Il-
luminating the Druggable Genome (IDG) project (11) (Ta-
ble 3, Figure 1). We evaluated the 24 candidate libraries
with three benchmarking datasets. We also assessed the per-
formance of KEA3 in recovering perturbed kinases from
microarray kinase gene perturbation experiments, kinase
drug targets from microarray drug perturbation experi-
ments, and kinase drug targets from phosphoproteomics
drug perturbation experiments. We then selected the top
11 libraries for use in the KEA3 webserver based on these
benchmarking results. We also benchmarked two methods
that integrate the results from each of the 11 selected top
KEA3 libraries to generate a composite kinase ranking.

Assessing inter-library predictability

We examined all pairs of the candidate KEA3 libraries,
where one library was designated as the ‘query’ library, and
the other library was designated as the ‘prediction’ library.
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Figure 1. Heatmap representing the kinase coverage of the KEA3 libraries.

We ranked all the protein sets of the prediction library ac-
cording to the P-values resulting from pairwise FETs cal-
culated for each kinase-associated gene set in the query li-
brary. We then constructed empirical cumulative distribu-
tion functions (ECDFs) from the scaled rank values where
the two sets being compared were associated with the same
kinase. The areas under the ECDFs (AUECDFs) were eval-
uated to visualize pairwise library predictability (Figure 2).

Benchmarking the KEA3 libraries

We used three independent benchmarking datasets to eval-
uate the initial 24 KEA3 libraries. Each benchmarking
dataset consists of gene/protein sets that are each associated
with one or more kinases. The KinCREEDSupdn bench-
mark dataset consists of gene sets extracted from 329 kinase
loss-of-function/gain-of-function (LOF/GOF) human and
mouse microarray experiments mined from GEO by con-
tributors to a crowd-sourcing project (58). Each gene set
within the KinCREEDSupdn dataset consists of the 600
most differentially regulated genes from each kinase per-
turbation experiment. The DrugL1000updn is comprised
of statistically significant up-regulated and down-regulated
genes extracted from transcriptome-wide signatures im-
puted from the LINCS L1000 drug perturbation signatures
(59). We took the subset of the drug perturbation signa-
tures that have annotated kinase drug targets, such that each
of the 292 DrugL1000updn gene sets is associated with one
or more protein kinase drug targets. The third benchmark-
ing set, PTMsigDB.drug, consists of human phosphopro-
teomic drug perturbation signatures derived from quantita-
tive MS studies that measured differential phosphorylation
states before and after drug perturbations (17,52). The 15
PTMsigDB.drug signatures represent 15 unique drugs with
98 annotated kinase targets total, 50 of which are unique
kinase targets.

Each KEA3 candidate library was evaluated to see how
well it recovers the ‘true’ kinase(s) in the query protein set
from the benchmark datasets. ROC and PR curves were
constructed from the scaled ranks of the ‘true’ kinases as-
sociated with the query set, composing the positive class,
with the scaled rankings of the kinases not associated with
the query composing the negative class (Figure 3). The
STRING library performed the best for the KinCREED-
Supdn and DrugL1000updn benchmarking datasets, but in-
terestingly, its performance falls for the PTMsigDB.drug
dataset. In general, the PPI libraries performed better than
the KSI libraries. HIPPIE, prePPI, and mentha were the
best-performing PPI libraries for KinCREEDSupdn; HIP-
PIE, mentha, and String.bind were the best performing
PPI libraries for the DrugL1000updn dataset; and HIPPIE,
mentha, and Cheng.PPI were the overall best performers
for the PTMsigDB.drug dataset. The KSI libraries’ per-
formance improved in the PTMsigDB.drug benchmarking
dataset compared to the other two benchmarking datasets.
This may be because the PTMsigDB.drug dataset is derived
from a readout type that directly measures kinase activity.
The top performing KSI libraries in this benchmark were
Cheng.KSIN, PhosphoSitePlus, and PTMsigDB.

Benchmarking the integrative methods

To construct the final KEA3 library set, we selected the 11
libraries with a ROC AUC and mean PR AUC in the top
50% of all libraries for at least two of the three benchmarks.
Using the 11 libraries that passed this threshold, we as-
sessed the predictive performance of two integration meth-
ods, MeanRank and TopRank, as previously described (23)
for the three benchmarking datasets (Figures 4 and 5).
MeanRank was the top-performing method for the Kin-
CREEDSupdn dataset and was second-best to STRING for
the DrugL1000updn dataset. MeanRank was also second to
HIPPIE for the PTMsigDB.drug dataset. The TopRank in-
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Figure 2. Heatmap showing all pairwise library comparisons. The tile color shows the AUC of the ECDF that represents how well a given ‘prediction’
library was able to recover the ‘correct’ kinase associated with gene sets from the ‘query’ library.

tegration method performed third, third and fifth for the
KinCREEDSupdn, DrugL1000updn and PTMsigDB.drug
datasets. While MeanRank was not the best performer in
all three benchmarking datasets, it was the most consistent,
as it is the only method to always be among the top two
performers.

Using the KEA3 web application

When users first navigate to the KEA3 homepage (https:
//maayanlab.cloud/kea3/), they are presented with an input
form. To begin an analysis session, users would need to
paste a list of proteins encoded as human or mouse gene
symbols. Alternatively, users may also upload an existing
text file containing the protein names, with one entry per
line. KEA3 currently supports HGNC-approved gene sym-
bols, and the webserver application will automatically tell
users if there are any invalid or duplicate symbols in their
input. Once the input has been submitted, the user may
scroll down to view the kinase enrichment results. The ‘In-
tegrated results’ tab is displayed by default, and shows the
bar charts, tables, subnetwork and clustergrammer visual-
izations for the MeanRank and TopRank methods. These
integrated results are shown on the first tab because they
account for the results across all libraries, are less redun-
dant, and performed well across the KEA3 benchmarks.
Individual library results can be accessed using the other
tabs.

The ‘Tables’ tab displays the kinase rankings for each of
the KEA3 libraries, as determined by the Fisher’s Exact Test
P-value. Top-ranked kinases in all tables are those which
have putative substrates that overlap the most with the input
set. Users may sort tables by any of the columns simply by
clicking on the column header or search for specific kinases
using the search box above each table. Full results from each
table may also be downloaded as a tab-separated (.tsv) file.

Visualizations are also provided for each of the kinase co-
expression networks generated from the GTEx, TCGA and
ARCHS4 expression data in the ‘Networks’ tab. Users can
select any of the libraries for visualization using the drop-
down menu. The top-ranked kinases are highlighted with
their symbols shown. Users may additionally select to la-
bel kinases by either WGCNA modules or dataset-specific
labels. All network visualizations can be downloaded as a
scalable vector graphics (.svg) file or an image (.png). Ki-
nase co-regulatory network visualizations can be found un-
der the ‘Subnetworks’ tab and are dynamically generated
from the top-ranked kinases in each library. An edge be-
tween two kinase nodes indicates an interaction supported
by library evidence from either a KSI library (directed edge)
or from a PPI library (undirected edge). Hovering over an
edge will display the library evidence supporting the interac-
tion. Each network can be downloaded as a scalable vector
graphic (.svg) file or an raster image (.png). The ‘Bar Charts’
tab provides bar charts which show the -log(P-value) of the
top-ranked kinases for each of the individual libraries. The

https://maayanlab.cloud/kea3/
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Figure 3. ROC AUC and mean PR AUC over 1000 bootstrapped PR curves for all candidate KEA3 libraries for recovering the perturbed kinases and
kinase drug targets from three benchmarking datasets. (A) KinCREEDSupdn; (B) DrugL1000updn; (C) PTMsigDB.drug
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Figure 4. Performance of the final selected KEA3 libraries and integration methods in recovering the perturbed and drug-targeted kinase(s) from the
three benchmarking datasets. (A–C) ROC curves for KinCREEDSupdn, DrugL1000updn, and PTMsigDB.drug, respectively; (D–F) Composite PR curves
generated from 5,000 bootstrapped curves for KinCREEDSupdn, DrugL1000updn, and PTMsigDB.drug, respectively; (G–I) The deviation of the cumulative
distribution from uniform of the scaled rankings of the ‘true’ kinases for KinCREEDSupdn, DrugL1000updn and PTMsigDB.drug, respectively.

‘Clustergrammer’ tab provides an interactive clustergram of
overlapping substrate targets between the input and the top
library results, produced using the Clustergrammer appli-
cation (68).

The KEA3 Appyter

To provide users with the option to obtain KEA3 results as
a downloadable Jupyter Notebook, we also developed the
KEA3 Appyter. Appyters are standalone web-based appli-
cations that generate a Jupyter Notebook from a user in-
put (69). The KEA3 Appyter takes as input a list of pro-
teins, for example, differentially phosphorylated proteins,
in the form of plain text or a text file. Using the KEA3
API, the Appyter queries the KEA3 server, and displays
the results as a Jupyter Notebook. The notebook displays
the results as an interactive bar chart and with tables of
the top 10 kinases for integrated scores and all individual
KEA3 libraries. This Jupyter Notebook can be saved, repur-
posed for different inputs, or used as part of other analysis
pipelines and workflows. The KEA3 Appyter is available at:
https://appyters.maayanlab.cloud/KEA3 Appyter/

The SARS-CoV-2 kinase enrichment analysis case study

Over the past year, the coronavirus disease 2019 (COVID-
19) pandemic caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) virus has become a
predominant focus of the scientific research community.
Many research teams have altered their focus toward gain-
ing a better understanding of the viral mechanisms underly-
ing SARS-CoV-2 infection. Currently, there is still much un-
known about SARS-CoV-2 infection and replication within
human cells. In this case study, we attempt to demonstrate
how kinase enrichment analysis using KEA3 can be applied
to data compiled from a recent phosphoproteomics study
to provide additional insight on some of those intracellular
molecular mechanisms. The phosphoproteomics data were
derived from a study of the phosphorylation changes in-
duced by SARS-CoV-2 infection in Vero E6 cells (70). Up-
and down-phosphorylated consensus protein sets were gen-
erated by filtering the data for phosphosites with log2(fold
change) >1 and adjusted p-value <0.05 for each SARS-
CoV-2 infection time point, extracting all proteins which
were up-phosphorylated for at least four time points (Fig-

https://appyters.maayanlab.cloud/KEA3_Appyter/
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Figure 5. ROC AUC and mean PR AUC over 1,000 bootstrapped PR curves for the final selected KEA3 libraries and integration methods from three
benchmarking datasets. (A) KinCREEDSupdn; (B) DrugL1000updn; (C) PTMsigDB.drug.

ure 6A), and removing duplicate entries. To identify po-
tential upstream regulatory mechanisms responsible for the
observed changes in protein phosphorylation upon SARS-
CoV-2 infection, or involved in viral-host protein interac-
tions, we performed kinase enrichment analysis on each of
the consensus sets created above using KEA3 (Figure 6B
and C).

The top ranked most enriched kinases for the up-
phosphorylated proteins show three members of the casein
kinase family. Casein kinases are serine/threonine kinases
that participate in many cell-signaling pathways, including
DNA repair (71). It was recently shown that CSNK2A2 di-
rectly interacts with SARS-CoV-2 N protein (72). Hence, it
is possible that viral evading strategies are mediated by al-
tering cell-signaling regulated by CSNK2A2. The top ten
enriched kinases for the up-phosphorylated proteins also
include SRPK1 and SRPK3. SRPK1 is highly expressed in
most tissues and mostly associated with DNA and RNA
processing (73), while SRPK3 is involved more specifically
in muscle related functions (74) and as such could be linked
to cardiac complications observed in some COVID-19 pa-
tients (75). Another interesting protein kinase that is found
in the top-ranked up-phosphorylated proteins is CDK9. In
previous studies, activated CDK9 has been demonstrated to
play a role in regulating innate immune responses (76).

The top kinases enriched for the phosphoproteomics con-
sensus down set are CDK1 and CDK2, suggesting down-
regulation of the cell cycle. This is a common cellular im-
mune response upon viral or bacterial infection of Vero
cells. Other top kinases include p38, GSK3B, and AKT1
which are known as the downstream kinases for several in-
terleukin signals. In addition, AURKB is a cell cycle kinase
that plays a significant role in chromosome segregation dur-
ing mitosis (77), while GSK3B is a serine-threonine kinase
and part of the glycogen synthase kinase-3 family that has
been associated with viral genome replication in COVID-19
(78). While further study is needed to elucidate the specific

impact of these kinases in SARS-CoV-2 and other viral in-
fections, this case study illustrates the usefulness and appli-
cability of KEA3 to current and future phosphoproteomics
studies. Using the KEA3 approach, kinase inhibitors could
be designed to mitigate the effect of SARS-CoV-2 on cells,
although this needs to be done carefully because some iden-
tified kinases are part of innate immune response pathways,
while others are altered by the virus to evade such immune
responses.

SUMMARY

Phosphoproteomics efforts have detected tens of thousands
of phosphorylation sites in cellular proteins. However, in
most cases, the kinases that are responsible for these post-
translational modifications are unknown. For instance, less
than 5% of the phosphorylation sites in PhosphoSitePlus
are annotated with kinases (52,53). To develop KEA3
we combined directly measured KSIs, withPPIs and co-
expression data sources to predict upstream kinases given
lists of differentially phosphorylated proteins. PPI detec-
tion methods do not uncover the directionality or effect
of the interaction between two proteins; however, we used
these datasets as a proxy for KSIs. In this same vein, we
also included kinase co-expression libraries with the no-
tion that members of pathways tend to be co-expressed (79).
While ultimately the co-expression libraries did not show a
strong enough signal in our benchmarks to pass the thresh-
old for inclusion in the final set of 11 libraries used within
the KEA3 web-server application, these are made available
for download from the KEA3 website.

The approach we used to assess interlibrary predictabil-
ity (Figure 2) simultaneously evaluates: (i) the concordance
of sets associated with the same kinases within the li-
brary pair under consideration and (ii) how well a given
library can distinguish between kinases. The libraries de-
rived from PPI sources show high inter-library predictabil-
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Figure 6. KEA3 analysis of the phosphoproteomics consensus sets from the SARS-CoV-2 study. (A) UpSet plot demonstrating the inclusion of consensus
up- and down-regulated proteins used as input to KEA3. (B) MeanRank visualization from KEA3 for the up-phosphorylated proteins. (C) MeanRank
visualization from KEA3 for the down-phosphorylated proteins.

ity, which is unsurprising given the substantial redundancy
among many sources (29,30,34,41). The AUCs for PPI-
KSI library pairs indicate that, while PPIs may be a less
direct source for kinase substrates than directly measured
KSIs, PPIs are useful in identifying the correct upstream
kinases.

We used three independent benchmarking datasets to
evaluate the predictive performance of the KEA3 candi-
date libraries. The KinCREEDSupdn and DrugL1000updn
datasets are derived from gene expression signatures. They
rely on the assumption that when a kinase is perturbed ex-
perimentally or is the target of a small molecule, the tran-
scripts encoding the kinase’s substrates will also be mea-
surably perturbed as a downstream effect. The signal in
ROC, PR, and bridge plots of the libraries derived from KSI
sources tested on these benchmarking datasets supports this
hypothesis. The PTMsigDB.drug benchmarking dataset
more directly tests the predictive performance of KEA3 by
querying the libraries with drug perturbation phosphopro-
teomics signatures, with the underlying assumption being
that the substrates of the small molecule-affected kinase(s)
will be differentially phosphorylated. However, experiments
measuring global changes in phosphorylation following
perturbation are few, and the PTMsigDB.drug benchmark-
ing set is small. Taken together, however, the three bench-
marking sets indicate the KEA3 candidate libraries’ com-
parative performance, as well as the performance of the
two integrative methods, MeanRank and TopRank. Mean-
Rank performed consistently well across the benchmark-
ing datasets. The two top-performing libraries, STRING
and HIPPIE, displayed variable performance depending

on the benchmark query type. We would therefore recom-
mend that users rely most heavily on the integrated Mean-
Rank method. Finally, by reprocessing data from a recent
SARS-CoV-2 phosphoproteomics study (70), we demon-
strate how KEA3 can complement the analysis of differ-
ential mass-spectrometry phosphoproteomics studies. Our
results are consistent with the authors of the original study,
but also add clarity and confirmation about the key kinases
involved.

It should be noted that kinase activity may not change,
even if the modification level of their substrates increased or
decreased. This is because the kinases and their substrates
function in a complex environment that involves other in-
teracting proteins. For example, the increase or decrease in
the phosphorylation level of substrate proteins for a specific
kinase might be attributed to changes in their localization,
interactions with other partners, or due to competition with
phosphatases that may also increase or decrease in quantity
and/or activity.

Overall, KEA3 can be a useful tool for biologists to gen-
erate hypotheses from gene expression and phosphopro-
teomic profiling experiments. We note that KEA3 relies
heavily on libraries with knowledge curated from the litera-
ture or high-throughput experiments on well-characterized
kinases. Literature-based PPI and KSI interactions suffer
from research focus biases where well-studied proteins are
overrepresented (80). Expanding KEA3 libraries to incor-
porate global studies of kinase state and lesser-studied ki-
nases (11) is the subject of future work. Future work will
also include connecting top predicted kinases to the known
small molecules that target them.
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