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ABSTRACT

Motivation: The identification of putative ligand-binding sites
on proteins is important for the prediction of protein function.
Knowledge-based approaches using structure databases have
become interesting, because of the recent increase in structural
information. Approaches using binding motif information are
particularly effective. However, they can only be applied to well-
known ligands that frequently appear in the structure databases.
Results: We have developed a new method for predicting the
binding sites of chemically diverse ligands, by using information
about the interactions between fragments. The selection of the
fragment size is important. If the fragments are too small, then the
patterns derived from the binding motifs cannot be used, since
they are many-body interactions, while using larger fragments limits
the application to well-known ligands. In our method, we used the
main and side chains for proteins, and three successive atoms for
ligands, as fragments. After superposition of the fragments, our
method builds the conformations of ligands and predicts the binding
sites. As a result, our method could accurately predict the binding
sites of chemically diverse ligands, even though the Protein Data
Bank currently contains a large number of nucleotides. Moreover, a
further evaluation for the unbound forms of proteins revealed that
our building up procedure was robust to conformational changes
induced by ligand binding.

Availability: Our method, named ‘BUMBLE’, is available at
http://bumble.hgc.jp/

Contact: kasahara@cb.k.u-tokyo.ac.jp

Supplementary information: Supplementary Material is available at
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1 INTRODUCTION

Structural information of proteins has been explosively increasing,
mainly due to structural genomics projects. On the other hand, the
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molecular functions of many proteins still remain uncharacterized.
Therefore, computational methods that can predict the molecular
functions are required (Kinoshita and Nakamura, 2003; Thornton
et al., 2000). Since many proteins conduct their molecular functions
through the specific recognition of small molecules (ligands),
information about the ligand-binding sites can provide insights into
their molecular functions (Campbell et al., 2003; Sotriffer and Klebe,
2002).

Currently, the most successful prediction methods adopt the
similarity-based approach. This approach searches databases for
proteins that are similar to a query protein in one or more properties,
such as sequence, fold and physicochemical properties, and predicts
the functions of the query protein by transferring the annotations
from similar proteins (Juncker et al., 2009; Kinoshita and Nakamura,
2005; Lee et al., 2007; Loewenstein et al., 2009). However, this
approach fails if there is no protein with any detectable similarities.

To overcome these intrinsic limitations, several methods for
binding-site prediction that are based only on the 3D structure of the
query protein have been proposed. Most of these methods fall into
two groups: the geometry-based and force field-based approaches.
The former does not consider the physicochemical properties of
the protein surface, because it focuses only on the shapes of the
surface (i.e. sizes and depths of clefts; Brady and Stouten, 2000;
Huang and Schroeder, 2006). On the other hand, the latter method,
which considers the stability of probes positioned around the protein
surface, does not adequately consider complicated effects, such as
solvent effects (Laurie and Jackson, 2005; Morita et al., 2008).

The knowledge-based approach is an appealing alternative. This
approach can include a wide range of complicated effects by taking
advantage of the statistics of molecular interactions obtained from
structure databases, such as the Protein Data Bank (Berman et al.,
2003). The potential of this approach is growing fast, because of the
recent rapid accumulation of structure data. Existing knowledge-
based methods are based on interactions on one of two levels:
interatomic and fragment-level interactions.

The approach based on the interatomic interactions uses pair-wise
potential functions constructed from the statistics of interatomic
contacts observed in the databases. This approach has been mainly
used for scoring functions in molecular docking studies (Gohlke
et al., 2000; Muegge and Martin, 1999; Zhou and Zhou, 2002).
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However, the approach does not consider the patterns of interactions
derived from binding motifs that are known to appear among
unrelated proteins (Denessiouk and Johnson, 2000; Denessiouk
et al., 2001; Kinoshita et al., 1999; Kobayashi and Go, 1997),
because many-body interactions, such as those in binding motifs,
cannot be described by pair-wise interatomic interactions.

On the other hand, the approach based on fragment-level
interactions can incorporate the binding-motif information by using
the spatial distributions of atoms around a fragment, but very large
fragments can only be used for some specific ligands. In this
approach, a structural definition of the fragments is very important.
A method proposed by Shionyu-Mitsuyama et al. (2003) and its
extension by Saito et al. (2006) manually defined the fragments
for carbohydrates and nucleotide bases, respectively, but these
fragments, such as glucose, galactose, guanine, adenine and others,
only correspond to a few specific ligands. Since a knowledge-
based approach requires repeated appearances of the fragments to
obtain statistics, large fragments can only be used for ligands that
are frequently observed in the database. Therefore, these methods
cannot be utilized with chemically diverse ligands.

As described above, there is a trade-off in defining the unit of
interactions. If the unit is too small (atomic level), then structural
motifs cannot be considered. On the other hand, when the fragment
is too large (residue level), the fragment will specify a ligand and
result in the limitation of the applicable ligands to those frequently
appearing in the database.

We now propose a new knowledge-based method to address this
problem. In our method, the unit of interactions is defined as a
pair of fragments; that is, a main or side chain of an amino acid
and three covalently linked atoms in a ligand. Since one ligand
atom can belong to more than one fragment in this definition, the
patterns of the interactions in larger parts of molecules, i.e. those
derived from binding motifs, can be considered by focusing on
the consensus of the fragment interactions through atoms that are
shared by more than one fragment. Furthermore, our method can
be applied to chemically diverse ligands, because the fragments
are not manually defined as large units that may specify ligands.
In our method, the favorable positions, or ‘interaction hotspots’,
are first predicted for all atoms of the ligand. The binding sites
are then predicted by building the energetically favorable ligand
conformations from the predicted interaction hotspots. Evaluations
of the bound structures revealed that our method could predict 90%
of binding sites as partially correct binding sites, correct binding
sites or correct conformations, among which 53% were for correct
conformations. Moreover, an evaluation of the unbound structures
revealed that the prediction performance was unaffected by the
degree of conformational change occurring upon ligand binding,
which is a very important feature in the function prediction of
uncharacterized proteins.

2 METHODS

2.1 Dataset construction

Five datasets were constructed in this study: (i) the background knowledge
dataset, which was used for the pre-processing step described below; (ii) the
parameter tuning dataset, which was used to determine some adjustable
parameters; (iii) the nucleotide dataset; (iv) the chemically diverse dataset;
and (v) the unbound dataset. The latter three datasets were used for evaluation
studies.
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Fig. 1. Overview of our method named ‘BUMBLE’. This method is
composed of three steps: pre-processing (Section 2.3), prediction of
interaction hotspots (Section 2.4), and building ligand conformations
(Section 2.5). In this method, the proteins and ligands are divided into
fragments by the ‘fragmentation’ process. The predictions are based on
information about the fragment—fragment interactions.

These datasets were obtained by the following procedure. The
background knowledge dataset was composed of all complexes in
the sc-PDB database (5524 complexes in 2007; Kellenberger et al.,
2006). Next, in order to construct datasets (ii) and (iii), we focused
on 11 kinds of nucleotides that frequently appear in the database:
AMP (adenosine monophosphate), ADP (adenosine diphosphate), ATP
(adenosine triphosphate), ANP (phosphoaminophosphonic acid-adenylate
ester), GDP (guanosine diphosphate), GTP (guanosine triphosphate),
GNP (phosphoaminophosphonic acid-guanylate ester), FMN (flavin
mononucleotide), FAD (flavine-adenine dinucleotide), NAD (nicotine-
adenine dinucleotide) and NAP (nicotinamide-adenine dinucleotide
phosphate), because of their biological importance and the abundance
of known complexes of the nucleotides. The database contained
1006 complexes with these nucleotides, which represented ~18% of the
total. After eliminating the redundancy with a threshold of 30% sequence
identity, 754 complexes were obtained. The parameter tuning dataset (ii) was
constructed by choosing 10 complexes for each nucleotide (110 complexes),
and the remaining complexes were used as the nucleotide dataset
(644 complexes). For the chemically diverse dataset (iv), 147 complexes
with ligands that were >500 daltons, other than nucleotides, peptides and
sugar were selected from the sc-PDB. The unbound dataset (v) consisting of
35 pairs of protein structures in the bound and unbound forms, was developed
by Laurie and Jackson (2005).

In the calculations for the parameter tuning and evaluations, entries of
proteins similar to the query (>30% sequence identity) were removed from
the background knowledge dataset.

2.2 Method overview

An overview of our method is shown in Figure 1. Our method is composed
of three steps: pre-processing (Section 2.3), prediction of interaction
hotspots (Section 2.4), and building ligand conformations (Section 2.5).
First, information about the fragment—fragment interactions is extracted
from the background knowledge dataset. Second, interaction hotspots that
are favorable positions for each ligand atom are predicted based on the
interaction information. Third, binding sites are predicted by building the
conformations of the ligands, based on the interaction hotspots.
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2.3 Pre-processing

In the first step, the information about interactions between protein and ligand
fragments is extracted from the 3D structures of protein-ligand complexes
in the background knowledge dataset.

In each entry, at first, a protein and a ligand are divided into fragments.
The fragments of the protein are defined as the main and side chain moieties
of the 20 regular amino acids, while the fragments of the ligand consist of
three successive or covalently linked atoms. Next, protein—ligand interatomic
contacts are detected by using a threshold of the sum of the van der Waals
radii and an offset value (1 A) as the maximum interatomic distance. When
protein and ligand fragment pair contains at least one contacting atom pair,
it is recognized as interacting. For each interacting pair of fragments, the
types of fragments and the coordinates of the atoms of the ligand fragment,
in a coordination system defined by three predefined representative atoms
of the protein fragment (Supplementary Table 1), are recorded. The types of
protein fragments are defined by the amino acid type and either the main or
side chain moiety. For ligand fragments, the types are defined by the force
field atom types in the Tripos 5.2 force field (Clark et al., 1989) of the three
atoms.

The application of the procedure to all entries in the background
knowledge dataset generates the spatial distributions of the ligand fragments
around the protein fragments for each combination of fragment types. Then,
for each distribution, the coordinates of the ligand fragments are clustered
by the complete linkage method, using the RMSD value among them as the
clustering radius. The average coordinates in each cluster are used in the
following steps.

2.4 Prediction of interaction hotspots

In this step, the interaction hotspots are predicted by using the spatial
distributions obtained in the previous step. First, the query protein and
the ligand are divided into fragments, as in the pre-processing step. For
all pairs of protein fragments that are accessible to solvent and ligand
fragments, the spatial distributions are mapped on the query protein surface,
by superimposing the protein fragments for the three representative atoms
(Supplementary Table S1). Next, the space around the query protein is
divided into a 3D grid, and the propensities for interactions at each grid point
J are estimated by the following calculation, which is similar to SuperStar
(Boer et al., 2001; Verdonk et al., 1999). Each atom k; in the mapped
distributions is assigned to eight surrounding grid points j, and the weight
w(iy, k;) is calculated by

y r(ki.j)~!
s s

where i denotes the unique number assigned to each atom of the query ligand,
ki =1{1,2,...,N;} is the unique number for each mapped atom that is labeled
with the atom ID i, N; is the total number of mapped atoms that are labeled
with i, r(k;, j) is the distance between the mapped atom k; and the grid point
J, and the summation over j° means the sum of the eight surrounding grid
points. In each grid point j- and i-th atom, the frequency f(i,j) is calculated
by obtaining the sum over the contributions of all mapped ligand atoms, as

follows:
Ni
Fi) =D wlisiki).
k=1

The f (i, j) value is normalized by the Z-score by using the mean and standard
deviation of (i, j), and thus j denotes all of the grid points, and we refer to this
as the ‘interaction propensity score’ hereafter. Subsequently, a certain number
of grid points are chosen according to the interaction propensity scores for
each ligand atom i. The chosen grid points are clustered with their neighbors
by a single-linkage method. The grid points with the highest interaction
propensity score in each cluster, for each ligand atom i, are regarded as
‘interaction hotspots’.

2.5 Building ligand conformations

In the next step, the ligand conformations are built from the predicted
interaction hotspots. For all pairs of interaction hotspots, the shortest paths
on a molecular graph of the ligand, between two interaction hotspots, are
identified. The paths that do not meet the following three conditions are
removed. (i) The path length should be equal to or less than a predefined
threshold, and not zero. (ii) The Euclid distance between the two interaction
hotspots should be in a predefined range (0.5 A—1.5 A per edge). (iii) The
path should not be contained in any other paths.

For each generated path, the coordinates of the intervening atoms are
simply interpolated and optimized based on the downhill simplex method,
one by one. When the total energy of the path is less stable than the predefined
threshold, the path is removed. Then, the paths are clustered by the complete
linkage method, using a distance that is the RMSD value of the common
atoms in each path. In each cluster, the average coordinates of each atom ID
i are calculated. If there are deficit atoms in the clusters, then the favorable
positions of each deficit atom are screened from the grid points, in the order
of their interaction propensity score. When a path between the grid point
and the nearest atom in the cluster satisfies the conditions mentioned above,
the deficit atom is placed on this grid point. Finally, the conformations are
optimized in the Tripos 5.2 force field (Clark et al., 1989) by the simulated
annealing method.

The generated ligand conformations are ranked in the order of the sum of
the interaction propensity scores of the atoms.

2.6 Parameter tuning

We optimized some adjustable parameters by using the tuning dataset to
maximize the prediction accuracy. The prediction accuracy was evaluated by
the following three measures: (i) the minimum interatomic distance; (ii) the
center distance; and (iii) the RMSD value, between the native and predicted
ligands. Threshold maximum values of SA, 5A and 5A in measures @),
(ii) and (iii), respectively, were used for the success criteria. When only
the first criterion was satisfied, it means that the binding site was partially
well predicted. In the same way, the third criterion indicates the correct
conformations, while the second one means that the binding site was correctly
found.

We performed a series of calculations to optimize the parameters by
maximizing the prediction accuracy. The determined parameters were the
RMSD as the clustering criterion of the fragment interactions in the
background knowledge dataset (the following values were tested: 0.0 A,
1.0A, 2.0A and 3.0A; the optimal value was 2.0 A), the number of the
interaction hotspots for each atom (6, 8, 10, 12, 14; 12), the clustering
criterion of the interaction hotspots (1.0 A, 1.5 A, 2.0 A, 2.5 A, 3.0 A; 2.0 A),
the maximum number of covalent bonds for the valid path (8, 10, 12;
10), the maximum potential energy (100, 1000, 10000, 100000 kJ/mol;
1000kJ/mol), and the RMSD value as a clustering criterion of the paths
(1.0 A, 2.0A, 3.04; 2.0 A). In this process, all of the parameters, except
for the number and the clustering criterion of the interaction hotspots, are
considered as independent. Among the various parameter combinations,
the most successful calculation resulted in success rates of 89%, 69% and
50% for the first ranked predictions, and 99%, 92% and 75% for the best
10 predictions, in each threshold.

3 RESULTS

3.1 Overview of the test for bound structures

As the first evaluation of our method, we applied it to the nucleotides
and the chemically diverse dataset. On the basis of the criteria
mentioned in Section 2.6, the prediction results are summarized
in Figure 2. The averages success rates were 90%, 71% and 53%
for the first-ranked-predicted conformations, and 97%, 90% and
70% in the top 10 conformations. In spite of the fact that we
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Fig. 2. Summary of the prediction accuracies for the nucleotide and the
chemically diverse datasets. (A and B) Success rates of the first-ranked
conformation, and the best in the top 10 conformations, respectively. The first
11 bars indicate the results of each ligand in the nucleotide dataset. ‘Others’
is the result of the chemically diverse dataset. ‘Average’ is the mean value
among the other 12 bar plots. (C) Schematic representation of the success
rates for ‘Average’ in panel A). All of the predicted conformations can be
classified in four categories. Among the predictions, 11% were categorized
as predicted conformations located far from the native binding site, 16%
were predicted to partially use the same binding sites, 19% were predicted
as using the same binding sites but with different binding conformations, and
the remaining 54% were correctly predicted, with the same binding sites and
conformations as those in the top-ranked prediction. For the top 10 ranked
predictions, these ratios were 3%, 7%, 19% and 71%, respectively.

did not use complexes of proteins similar to the query (sequence
identity >30%) in the background knowledge dataset, our method
predicted the binding sites and the conformations reasonably well.
In addition, the prediction performances were almost independent
of the threshold value used to eliminate the similar proteins in the
background knowledge dataset (Supplementary Figure S2). This
result may indicate that our method is not strongly influenced by
the similarity of the global folds of proteins, since it focuses on
the local structural elements represented by the fragment—fragment
interactions.

3.2 Evaluation for nucleotide prediction

As summarized in Figure 2A and B, the performances of the
predictions were clearly different among the ligand types. In
particular, the binding sites and conformations for ligands that
contain a guanine moiety were quite accurately predicted. The
success rates of the binding conformations for GNP, GDP and GTP
were 94%, 83% and 70%, respectively, as a first-ranked candidate.
Among the 89 entries involving a guanine moiety, there were only
three entries that failed to predict one of the top 10 conformations.
These complexes were uracil phosphoribosyl transferase (PDB:
1jlr), ornithine decarboxylase (PDB: 1c4k) and RNA polymerase
(PDB: 1549). In the case of 1jlr, the predicted conformations were
located at the binding sites for another ligand (uracil), as shown

in Supplementary Figure S1A, B and C. Although the entry 1c4k
contains only one subunit, the GTP-binding site was identified at
the interface of two subunits, in the original report describing this
structure (Vitali et al., 1999). In the entry 1549, the query protein
was RNA-polymerase with a large binding cavity, and the native
conformation of GTP in 1549 was highly exposed to the solvent. The
predicted conformations were located at the binding pockets for a
template chain of RNA and a nucleotide triphosphate. As described
later in detail, our method tends to be weak with exposed ligands.

On the other hand, Figure 3A shows the results of the prediction
for the Gar13-GDP complex (PDB: 1zcb) as an example of successful
prediction with the strictest criterion, where the RMSD value
between the native and predicted ligands was 2.05 A (Fig. 3A). In
order to investigate the diversity of the known fragment interactions
that contributed to the prediction, we counted the number of
interactions assigned to the nearest grid points from the positions
of the predicted atoms. The predicted conformation of 1zcb was
supported by 54 237 known fragment interactions in 2479 complexes
from the background knowledge dataset. In particular, 19 966 known
fragment interactions supported the prediction of the interactions of
Gly-60, which is the first residue of the P-loop motifs (Kinoshita
etal., 1999). In addition, the interactions of Asn-291 and of Asp-294
were supported by 3233 and 2971 known interactions, respectively.
These interactions mainly corresponded to hydrogen bonds between
the side chains and the guanine base, and were described as the
Gl and G3 motifs by Saito et al. (2006). As shown here, this
prediction was primarily supported by the interactions derived from
well-known binding motifs.

In the case of FAD, the success rate of binding conformations
(black part of the bar in Fig. 2A and B) was relatively low. Due to the
size and the complexity of its chemical structure, it can be difficult
to build an appropriate ligand structure. However, the success rates
for the binding site (hatched and gray parts of the bars in Fig. 2A
and B) were comparable with the average value among all ligands.
Therefore, these results may indicate that the interaction hotspots
and the binding sites were correctly characterized, in spite of the
size and the complexity of the ligand.

3.3 Evaluation for the chemically diverse ligands

It is more difficult to predict the binding sites of chemically diverse
ligands than those of nucleotides, due to the bias of the background
knowledge dataset [dataset (i) in Section 2.1]. In the dataset, 18% of
the entries were complexes with one of the 11 kinds of nucleotides
in the nucleotide dataset. In spite of this drawback, the predictions
for the non-nucleotide ligands (shown in Fig. 2 as ‘others’) were
still accurate. The success rates for the partially correct binding site
predictions were 83% and 90% in the first-ranked predictions for the
non-nucleotides and for the average of the nucleotides, respectively.

Here, we discuss the prediction for stromelysin-1 with an inhibitor
(PDB: Iciz), where the RMSD value between the native and
predicted ligands was 1.86 A (Fig. 3B). The predicted conformation
of 1ciz was supported by 5238 known fragment interactions in 1790
complexes from the background knowledge dataset. Among them,
129 interactions were derived from 14 complexes with the same
fold as the query protein, according to the CATH classification
(3.40.390.10). This means that the successful prediction of 1ciz was
mainly supported by many unrelated proteins, rather than a few
similar proteins. For instance, in spite of the dissimilarity between

1496



Ligand-binding site prediction of proteins

Fig. 3. (A and B) Screen shots of the prediction results of 1zcb and 1ciz. The molecules shown in cyan and orange depict the native and predicted conformations,
respectively. The cyan dashed lines indicate hydrogen bonds described in the manuscript. (C) 2byi, as an example of the fact that background knowledge

from different protein folds can contribute to the correct prediction of 1ciz.

the complex 2byi (HSP90« with an inhibitor) and 1ciz, in terms of its
sequence, fold and ligand chemistry, the information of the complex
2byi contributed to the prediction. The hydrogen bond between a Cor
atom of Val-163 and an oxygen atom of a sulfoxide in the predicted
conformation was similar to the interaction involving Val-136 in
2byi (Fig. 3B and C).

On the other hand, the predictions of 14 entries (10%) in the
chemically diverse dataset were not successful by any criteria. An
analysis of these complexes revealed that most of the native binding
conformations were highly exposed to the solvent. For example, in
two cases, interleukin-2 (PDB: 1m49) and acetyl-CoA carboxylase
(PDB: 1w96), the ligands bound to the interfaces of protein—protein
interactions. In another case, glycogen phosphorylase (PDB: 1z6q),
the structure data were for the monomeric protein, but the binding
site is formed at the interface of two subunits (Kristiansen et al.,
2004). In some other cases, the predictions failed even though the
ligand was not highly solvent-exposed. For example, NAD(P)H
nitroreductase (PDB: loon) bound two molecules in one binding
site simultaneously (Supplementary Fig. S1D, E and F). Such
complicated binding situations are difficult to predict, because this
method does not model the interactions between ligands. In the case
of calcium ATPase 1 (PDB: 1wpg), the ligand and the binding site are
highly hydrophobic (Toyoshima et al., 2004). In this case, the shape
complementarity of the molecular surfaces may be more important
than the chemical complementarity.

3.4 Relation between the solvent accessibility of the
ligand and the prediction accuracy

As described above, our method does not adequately predict
the binding modes that are highly exposed to the solvent. We
investigated this problem quantitatively, by dividing the nucleotide
and the chemically diverse datasets into five subsets. These subsets
were discriminated by the ratio of the accessible surface areas
(ASA) of the ligands in the complex to those in the isolated form,
by intervals of 0.1. Their success rates are shown in Figure 4.
As a result, the accuracy was found to be strongly affected by
the relative ASA value. The success rate of the most exposed
ligands was ~65%, under the partially correct binding site criterion
(hatched + gray + black part of the bar, Fig. 4), while that for the
most buried ligands was 95% for the top prediction. In short, our
method was relatively weak for exposed ligand binding modes.

100

BWRMSD=<5
[ Deenter<5
Q Dmin <3

- |[JOthers

success rates / %

relative accessible surface area

Fig. 4. Dependence of the prediction performance on the relative ASA. The
relative ASA is defined as the ratio of the ligand ASA in the isolated form to
that in the complex state. The numbers in parentheses indicate the number
of entries in each subset.

However, it is noteworthy that 97.5% of the entries in the dataset
have relative ASA values of <0.4, and thus this characteristic was
a minor concern.

3.5 Application to unbound structures

We have applied our method to the dataset consisting of 35 pairs
of protein structures in bound and unbound forms. Figure 5A
shows a comparison of the success rates between the predictions
for bound and unbound forms as query proteins. Surprisingly, the
prediction accuracy for the unbound forms was almost the same as
that for the bound forms, regardless of differences in the protein
conformations. In order to clarify the sensitivity of our prediction to
the conformational changes of proteins, we divided the dataset into
three subsets, according to the all-atom RMSD values of the binding
site residues between the bound and unbound structures; that is,
(i) RMSD < 1.0 A (17 pairs), (ii) 1.0 A < RMSD<2.0 A (13 pairs)
and (iil) 2.0 A < RMSD (five pairs). However, we could not find any
significant differences between the success rates for the bound and
unbound forms. This was unexpected, but further analysis revealed
that the difficulty caused by the conformational changes depended
on the manner of change, rather than the amount. For example,
in the case of chymotrypsin (PDB: 3gch/Ichg, RMSD =297 A),
the binding conformations were correctly predicted in the bound
and unbound cases (Fig. 5B). Similarly, in the case of amylase
(PDB: 1byb/1bya, RMSD =3.10 A), the binding sites of two of the
four sugar residues were correctly predicted with the criterion of
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Fig. 5. The prediction results for the unbound dataset. (A) Success rates of the prediction as a first-ranked prediction, in same manner as Figure 2. ‘All’ means
the results for all of the entries in the dataset. The others show the results for each subset, which were divided according to the RMSD value of all atoms
in their binding site residues between the bound and unbound forms. Panels B, C and D are screen shots of the prediction results of 3gch/1chg, 1byb/1bya
and 1mtw/2tga, respectively. The protein structures in the bound and unbound states are shown by gray and pink ribbons, respectively. The predicted ligand
conformations for the proteins in the bound and unbound states are shown by orange and purple sticks, respectively. The native conformations of the ligands
are shown by cyan sticks. Remarkable conformational changes induced by ligand binding are highlighted by dashed circles.

‘partially correct binding site’ (Fig. 5C). In contrast to the above
two examples, the prediction for trypsinogen (PDB: Imtw/2tga,
RMSD = 1.16/08) failed due to conformational changes, in which
the binding pocket was filled by a loop located near the pocket in
the unbound form, although the RSMD value was rather small, as
compared with the former two cases (Fig. 5D). In the two successful
cases, the binding pockets were open in the unbound forms, but in the
last failed case, the binding pocket was closed by the conformational
change.

3.6 Comparison with existing methods

A comparison of the performance of our method with those of
other methods is not straightforward, because of the different
presumptions. For example, the existing methods for binding site
prediction usually do not require a ligand structure as a query,
and many methods search for binding site-like cavities without
considering the binding conformations and complementarities. In
contrast, our method predicts the binding sites by considering the
binding conformations of the query ligand. In addition, the aim
of the existing fragment-based methods, which try to predict the
binding conformations of ligands by placing a numerous fragments
and linking them, is different from ours, since they assume that
the binding site is known (Caflisch et al., 1993; Schubert and Stultz,
2009) and they try to predict the precise conformations in the similar
way than the docking methods used in AutoDock. Here, we will
only discuss the differences between the cases that can and cannot
be predicted by our method and others.

Morita et al. (2008) developed a binding-site-prediction method,
and evaluated it by comparison with Q-site Finder and Pocket

Finder (Laurie and Jackson, 2005). As a result, there were five
proteins for which all three methods could not find the binding
sites correctly; that is, 6ins, 2tga 1bya, 3app and Ichg. The former
two cases also failed in our method possibly because their ligands
were highly exposed (relative ASA=0.34 and 0.35 for 3mth/6ins
and 1mtw/2tga, respectively). Moreover, there were significant
conformational changes in 2tga from the bound state (Fig. 5D), as
described above. In the cases of 1chg (Fig. 5B), 1bya (Fig. 5C)
and 3app (RMSD=1.17A to the bound state), the binding sites
were successfully predicted by our method, although there were
large conformational changes. Our method was more robust to the
conformational changes, but more sensitive to the exposure of the
binding ligands.

We also compared our method with the AutoDock program
(Morris et al., 2009). As a result, when the binding sites were
successfully predicted by both methods, the binding conformations
predicted by our method tended to be less precise than those
predicted by AutoDock. On the other hand, our method predicted the
binding sites more accurately than AutoDock did (Supplementary
Fig. S3).

3.7 Computation time and limitations

The computation times required for the pre-processing step,
the prediction of interaction hotspots, and the building ligand
conformations are shown in Table 1. The computation time for the
pre-processing linearly increases with the size of the dataset. In
the prediction of the hotspots step, the computation time linearly
increases with the product of the size of the background knowledge
dataset, the number of fragments of the query protein, and that of the
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Table 1. Computation times for pre-processing and predictions for the
nucleotide dataset

Prediction of interaction
hotspots

Pre-processing Building ligand

conformations

1304 s/5524
complexes

78 s/complex 1843 s/complex

The values for the prediction of interaction hotspots and building ligand conformations
are the mean values among 644 entries in the nucleotide dataset. The calculations were
performed with an Intel Quad Core Xeon E5450 (3.0 GHz).

ligand. In the building conformation step, the time depends on the
number of pairs of interaction hotspots within the defined distance
range.

In principle, this method does not have upper limits for the sizes
of the query protein and ligand. However, the sizes of proteins
and ligands are technically restricted by the computation time. In
addition, as a lower limitation, the query protein and ligand must
contain at least one fragment: an amino acid and three successive
atoms, respectively.

4 CONCLUSION

We have proposed a new knowledge-based method for predicting
binding sites, by building the ligand conformations from the
predicted interaction hotspots. Evaluations revealed that our method
could reasonably predict the binding sites not only for nucleotides
but also for chemically diverse ligands, although the background
knowledge dataset contained a large number of nucleotides. In
addition, the robustness to the conformational changes of proteins
was shown by a further evaluation with protein structures in
the unbound form. An important point is that the predictions
were accomplished by using the information about the patterns of
fragment interactions that are common among various proteins, as
well as the binding motifs.

Our method is available on the web server named ‘BUMBLE’,
which means ‘building up molecules for binding location
estimation’, at the following address: http://bumble.hgc.jp/.
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