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A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem
(NIP) is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve
uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized
by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse
solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution
(ANA) attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction
of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single
dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a
trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously
active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori
information about neural generators that supplements the information contained in the data.
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1. Introduction

Determining the neural origin and strength of sources
producing scalp maps of electric or magnetic fields requires
the solution of an inverse problem. This so-called neuroelec-
tromagnetic inverse problem (NIP) lacks a unique solution.
In spite of this serious difficulty, there is an active past and
ongoing research on this field (see [1] for a recent review)
because of the extreme clinical and research importance of
the problem. A reliable optimal solution to the NIP is thus
far the only possible alternative to study a direct reflection of
neuronal activity in normal human subjects with the high
temporal resolution required to trace the highly dynamic
behavior of the human brain.

Several linear and nonlinear solutions based on a
diversity of approaches have been proposed. However,

independently of the approach used, we need to evaluate the
reliability of the estimates provided by the inverse procedure
selected. While there is interesting ongoing research on this
topic [2–5], no definitive or general answer to this problem
hitherto exists. One alternative to evaluate the localization
features of linear inverse solutions is the so-called model
resolution matrix (MRM) [6, 7], although the way to use
it in the evaluations remains as a highly controversial point
because of the following reasons.

Some authors center their attention on the columns of
the MRM, also called point spread functions (PSFs), that
allow inferring how the solutions behave for single punctual
sources. These authors consider the PSF as an adequate
measure of the “goodness” of a linear inverse [8, 9]. An aspect
to consider here is the existence in literature of two parallel
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definitions of the single (punctual) source localization error
[10].

(1) The bias in Dipole localization (BDL) defined in
terms of the accuracy in estimating the location of
each Cartesian component of the dipole. As such, it
is a linear measure fully compliant with the linearity
involved in the definition of the Model Resolution
Matrix and can be directly estimated from the PSF.

(2) The Dipole Localization Error (DLE) defined as
the error attained in localizing the modulus of the
current density vector. This definition conceptually
disagrees with the use of MRM and PSF since
the modulus is a nonlinear transformation of the
individual dipole components not directly reflected
by the PSF. Besides, linking the dipole localization
error with the superposition principle is a blatant
error since the basis of superposition is linearity.
Although it certainly holds that the PSF of two
simultaneously active dipoles is the sum of their
individual PSFs, this is not the case for the DLEs.
The widespread use of the dipole localization error
concept obeys to historical and practical reasons since
the modulus is the magnitude currently displayed in
brain imaging.

All along this paper we will use the term single source to
denote each of the three orthonormal (i.e., orthogonal with
unitary norm) dipoles associated with a solution point. This
is in agreement with the structure of the model resolution
matrix where each solution point is represented by three
columns. Consequently, each column corresponds to one
and only one of three Cartesian components of a dipole. As
typically used in this field, the term perfect localization will
be used whenever the DLE or the BDL of a single source
is zero independently of the off-diagonal elements of that
column.

Two linear inverse solutions have been reported in the
NIP literature to explicitly optimize the localization of single
sources. The EPIFOCUS solution [11] aims to minimize DLE
and BDL for both noisy and noiseless data for all sources in
the solution space. In contrast, the sLORETA inverse solution
[9] minimizes DLE and BDL only for noiseless data.

Authors advocating the use of PSF employ the appealing
argument of the superposition principle [12] as the basis to
infer the capabilities of the solution for multiple source local-
ization from results obtained on single source localization.
They consequently concentrate their efforts in optimizing
the columns of the MRM and will likely consider the zero
dipole localization error as the ultimate goal to reach in
the construction of inverse estimators. Another group of
authors diverge from this point of view and insist that the
performance of a linear inverse solution in the presence of
multiple sources can only be inferred from the resolution
kernels (the rows of the MRM). They consider the analysis
of the PSF only valid for single source localization but not
sufficient to describe the performance of distributed source
models satisfactorily [3, 13]. They will therefore consider
essential the incorporation of as much a priori information

as possible into the solution to deal with the nonuniqueness,
that is, they will aim to characterize the space where actual
sources are contained [14, 15].

In this paper we introduce a “trivial” and easy-to-
compute linear inverse solution coined Adjoint Normalized
Approximation (ANA) that transforms the original inverse
problem into a space in which the model resolution matrix
shows optimal properties for single source localization. We
demonstrate that in the transformed space, ANA inverse
solution is able to correctly localize single sources in full
extent, that is, with zero dipole localization bias and perfectly
accurate strength. These properties are shown to be satisfied
for arbitrary lead field models independently of the amount
of scalp sensors. ANA solution is used to build a simple
didactical example illustrating that perfect localization of
single sources in position and strength has no implications
for simultaneous source localization. The presented example
serves to understand the emergence of spurious sources and
how they totally distort the reconstruction when multiple
sources are active. We further demonstrate that ANA can
be applied to retrieve sources in the space of the original
current density vector. Even if in this space the bias in
dipole localization error is not zero everywhere, ANA
solution is highly robust to noise outperforming the best
methods presented so far for single source localization.
Its robustness to noise and computational simplicity make
of ANA a reasonable alternative for data generated by a
single dominant source plus noise as can be the case in
epilepsy. Still, ANA is more likely to contribute to further
developments in this field, by providing the simplest possible
evidence that optimizing single source localization is both
trivial and useless. Therefore the only reasonable way to deal
with the nonuniqueness of NIP is to add plausible physical
and physiological constraints into the source space.

2. Methods

2.1. The Theoretical Basis of the Problem. The neuroelectro-
magnetic inverse problem (NIP), that is, the reconstruction
of the current density vector inside the brain responsible
for the electric and magnetic fields measured near/over the
scalp, can be represented by a (first kind) Fredholm linear
integral equation, denoting the relationship between the data
measured at the external point, d(s), and the superposition
of the contribution of the unknown current source density
distribution at locations r inside the brain [16]:

d(s) =
∫

Brain
L(s, r)∗ j(r)dr. (1)

The (vector) lead field function L(s, r) contains all the
information about the boundary conditions as well as the
media conductivities or permittivities for the electric and
magnetic cases, respectively. The 3D vector j(r) denotes the
unknown current density vector, and r is the 3D position
variable running over the volume of the brain.

Under experimental conditions, neither the measure-
ments nor the lead field function is known for arbitrary
surface/brain locations. However, assuming that the integral
equation can be approximated by a discrete sum, (1) can
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be represented by an underdetermined system of linear
equations:

d = Lj. (2)

Vectors d and j and matrix L represent the discretization
of the continuous functions, that is, dk = d(sk), jm = j(rm),
and Lkm = wkmL(sk, rm), andwkm are the quadrature weights.

All linear solutions of (2) can be obtained solving a
variational problem [7]. This yields the inverse matrix G that,
when applied to the measured data, produces the estimated
current density vector, that is,

ĵ = Gd. (3)

Substitution of the measured data, as described in (2),
into (3) yields the following fundamental equation for
underdetermined linear systems:

ĵ = Gd = GLj = Rj. (4)

Here, R = GL denotes the model resolution matrix
(MRM) describing the relationship between the estimate and
the original magnitudes of the current density. In simpler
terms, (4) tells us that our estimates separate from the
original values by the transformation R. The nearer this
matrix is to the identity matrix, the better the estimated
solution resembles the original sources.

For the noisy case where d = Lj + Noise, we can always
rewrite it as d = Lj + Ljn where jn is the minimum norm
solution of the equation Noise = Ljn, and thus

ĵ = Gd = GL
(

j + jn
) = R

(
j + jn

)
. (5)

For the particular example discussed here, the unknown
current density vector contains the three Cartesian compo-
nents at each solution point. Correspondingly, each solution
point will be represented by 3 columns and 3 rows of the
MRM. The rows of R are known as the resolution kernels
[17]. Each resolution kernel provides information on how
simultaneously active sources affect the estimates of j at the
component associated to the row. The columns of R are the
point spread functions (PSFs) and reflect the quality of single
source reconstruction. That is, each column corresponds to
the current source density estimated by the inverse solution
when the associated unitary single source is active alone.
Based on the linearity of matrix products, to compute the
current source estimated for simultaneously active sources it
is enough to add the associated columns. For further details
about how to compute the bias in dipole localization and the
dipole localization errors from the PSF, see [7, 10].

2.2. The Adjoint Normalized Approximation (ANA) of the
Inverse. It is evident that for every invertible matrix W, the
following change of variable can be applied to (2):

d = LW−1Wj = LZ, (6)

where L = LW−1 and Z = Wj. Let us define W as the
diagonal matrix containing the norm of each column of L. It

follows from the definition of W that it is a diagonal square
matrix and thus invertible. Therefore (6) is identical to the
original problem formulation in (2); what has been done
is a simple change of variable where the model matrix is
the column normalized lead field, and the unknown is the
variable Z.

To obtain a unique solution to (6) in the space of the
transformed variable Z, we need to invert the model matrix
L. Since we are dealing with an underdetermined inverse
problem, matrix L is noninvertible. A typical choice for
inverse problems is to use the Moore-Penrose pseudoinverse.
We rather propose to use a particularly simple approxima-
tion of the inverse of a matrix, the adjoint or transpose (not
to be confused with the adjugate matrix composed by the
cofactors). This simple choice satisfies the third and fourth
Moore-Penrose conditions, while violating the first two [18],
that is, if A is a matrix (or vector) and G is its generalized
inverse, then it must hold that (1) AGA = A. (2) GAG =
G. (3) (AG)t = AG, and (4) (GA)t = GA. It also follows
that the pseudoinverse of G is A. Therefore the proposed
Adjoint Normalized Approximation (ANA) inverse is given
by

G = Lt = (LW−1)
t = W−1Lt . (7)

There is a close relationship between ANA and EPIFOCUS.
While EPIFOCUS computes the pseudoinverse of three lead
field columns (i.e., three single sources) associated with one
solution point, ANA corresponds to the computation of the
pseudoinverse of each column (i.e., single source) separately.
This is straightforward since the Moore-Penrose inverse of a
normalized (unitary norm) vector is the transposed vector
which fulfills all the four conditions of the pseudoinverse
mentioned before. We would also note that the adjoint
corresponds to the simpler initial approximation of the
inverse for iterative processes. The normalized adjoint is a
step forward fulfilling one property of the inverse, that is, the
product with the original matrix yields one at the diagonal.
As it was the case for EPIFOCUS [11], the simulations of
the next section confirm that ANA properties are not a
consequence of the weighting or the transposition alone but
a combined effect.

3. Results

3.1. Theoretical Properties of ANA’s Resolution Matrix.
According to (4), the resolution matrix associated with the
transformed variable z is given by

R = LtL = W−1LtLW−1. (8)

From this, it follows that the resolution matrix of ANA
inverse solution is the product of the transposed normalized
lead field times the normalized lead field. Therefore the
resolution matrix is symmetric.

Further properties of the resolution matrix R (8) can be
derived by noting that the elements of the ith column of R
are given by the scalar product of the potential map produced
by the ith source with the potential map of all other sources.
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This derives from the fact that each column of L represents
the electric potential or magnetic field pattern measured
at/near the head surface when only the ith dipolar source is
active with unitary strength (“forward solutions”). Since each
dipole produces a different activation map, it is then clear
that each pair of columns of L is noncollinear. The resolution
matrix of ANA in the transformed space L necessarily
inherits the property of noncollinearity from L since the
only change is a normalization factor. Consequently, the ith
column of R contains the correlation coefficients between the
ith potential pattern and the potential patterns of all other
sources. Since the correlation coefficient between a given
potential map with itself is necessarily one, then the elements
at the main diagonal of R (the map autocorrelations)
are inevitably equal to one. The nondiagonal elements,
representing the correlations between one given map and all
other maps, are necessarily lower than one since different
unitary dipoles are unable to produce identical scalp maps.
Since these properties hold for all sources, that is, all columns
of R, then, the maximum of each column, defining the bias
in dipole localization, is reached at the main diagonal and
is exactly one. Thus, the following properties hold for the
resolution matrix of this inverse independently of the lead
field model considered.

(1) The point-spread functions (columns of R) reach
their maxima at the diagonal elements trivially
leading to perfect reconstruction of the positions of
all single sources (all Cartesian components of the
dipole at each solution point).

(2) Because the diagonal of the resolution matrix is one
(due to normalization), the intensity of the estimated
source is exactly the intensity activity of the original
source.

(3) Since R is symmetric, then the resolution kernels
shapes are close to the ideals attaining the maximum
value at the correct places.

3.2. Does Perfect Localization of Single Sources Imply Correct
Localization of Multiple Active Sources? The ideal properties
of ANA’s resolution matrix described in the previous section
are independent from the lead field model. This implies that
they will hold even for arbitrarily small sensor configurations
and very large solution spaces provided that there are no
collinear columns in the lead field. We have exploited this
fact to construct a simple numerical example that might help
to shed light on several aspects influencing the behavior of
linear inverse solutions in the presence of multiple active
sources. The computational simplicity of ANA will facilitate
the task to readers interested in further simulating its
behavior with simultaneous sources.

The example given here considers the case of two EEG
sensors and four solution points as depicted in Figure 1.
The four solution points lie in a coronal plane below the
arc at which the two sensors are placed. Sensors are placed
at the approximate positions of electrodes C3 and C4 of
the international 10/20 placement system. The lead field
was computed using a semirealistic head model derived
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Figure 1: Electrodes and solution points used for the analysis of
ANA resolution matrix. The two electrodes are located at the
approximated positions of C3 and C4.

from the Montreal Neurological Institute (MNI) average
brain using the SYSMAC procedure described in [19]. It
is noteworthy that the selection of the lead field matrix
parameters (conductivities, electrode positions, and solution
points) will have little effect on the main results described
below. This argument justifies our selection of a very small
problem to allow portraying the full model resolution matrix
and its subsequent understanding.

In the case of this simple example, the current density
vector is a 12 component vector of the form

j =
[

j1
x j1

y j1
z j2

x j2
y j2

z j3
x j3

y j3
z j4

x j4
y j4

z

]
. (9)

This vector is formed by the three Cartesian components
of the dipoles (subscripts x, y, z) linked to each solution
point (superscripts 1, 2, 3, 4). The spatial distribution of the
modulus of the current density vector can be computed using

ji =
√

(ji
x)2 + (ji

y)2 + (ji
z)2 for i = 1, 2, 3, 4, (10)

resulting in the vector of the modulus given by

jm =
[

j1 j2 j3 j4
]
. (11)

Table 1 shows the model resolution matrix R associated
with ANA inverse solution for this problem. This is a 12 ×
12 matrix where each group of three rows (or columns)
represents the resolution kernels (or impulse responses)
linked to the three Cartesian components of a dipole at the
corresponding solution point.

The theoretical properties derived in the previous section
obviously hold for the problem presented. The main diagonal
is filled by ones that are the dominant elements within
their respective rows (and columns since the matrix is
symmetric). A first aspect to note is that while the recovery
of each Cartesian component of the dipole (if alone) is
perfect, the recovery of the modulus is not. Perfect recovery
of the modulus can be obtained with ANA inverse by
stating the original problem for the modulus rather than
for the individual dipolar components. This can be done by
determining a priori the orientation as in SAM beamformer
[20] or by reformulating the problem as proposed in [21].
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Table 1: The resolution matrix for ANA and the configuration presented in Figure 1. The 12-by 12-model resolution matrix for the
configuration of Figure 1 is composed by two electrodes and 4 solutions points. The 12-dimensional unknown current density vector (9) is
composed by the 3 Cartesian components of the dipolar moment for each solution point.

1 0.48 0.94 0.48 −0.84 −0.75 −0.67 −0.86 −0.93 −0.10 −0.93 0.16

0.48 1 0.74 0.99 −0.87 −0.94 −0.97 −0.85 −0.13 0.81 −0.14 0.94

0.94 0.74 1 0.75 −0.97 −0.92 −0.88 −0.98 −0.75 0.23 −0.76 0.48

0.48 0.99 0.75 1 −0.87 −0.94 −0.97 −0.85 −0.14 0.81 −0.15 0.94

−0.84 −0.87 −0.97 −0.87 1 0.98 0.96 0.99 0.60 −0.43 0.61 −0.66

−0.75 −0.94 −0.92 −0.94 0.98 1 0.99 0.98 0.46 −0.57 0.47 −0.77

−0.67 −0.97 −0.88 −0.97 0.96 0.99 1 0.95 0.36 −0.66 0.37 −0.83

−0.86 −0.85 −0.98 −0.85 0.99 0.98 0.95 1 0.62 −0.40 0.63 −0.63

−0.93 −0.13 −0.75 −0.14 0.60 0.46 0.36 0.62 1 0.45 0.99 0.20

−0.10 0.81 0.23 0.81 −0.43 −0.57 −0.66 −0.40 0.45 1 0.44 0.96

−0.93 −0.14 −0.76 −0.15 0.61 0.47 0.37 0.63 0.99 0.44 1 0.19

0.16 0.94 0.48 0.94 −0.66 −0.77 −0.83 −0.63 0.20 0.96 0.19 1

Here we stick, for the sake of simplicity and compliance
with the MRM linearity, to the case of the component-by-
component estimation.

The following two simple examples illustrate how the
model resolution matrix is used to derive the inverse
solution estimates for a single active source and for two
simultaneously active sources.

According to (4), if the “true” current density vector has
the form (9), then the ANA inverse solution estimate is given
by the product of the MRM and the “true” vector. Let us
imagine that the true source distribution is formed by a
single active source, which is the z-component of the first
solution point with strength k. In this case, the true vector
is according to (9) given by [0, 0, k, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The
current density vector estimated by ANA is the product
of R by this column vector that yields precisely the third
column of R multiplied by k. Therefore, ANA solution leads
to a maximum at the third component of the first point
(third element of the third column), and the estimated
strength is exactly k. Note that all the other elements in
the reconstruction, although smaller than the third one, are
different from zero. All the nonzero elements are spurious
sources.

In the same way, the reconstruction of each single active
source of unitary strength is given by the PSF (column
of MRM) linked to this source component. While the
maximum always occurs at the right position and the source
strength is correctly estimated, the reconstruction is rather
noisy and contains spurious activity (ghost sources). This
spurious activity appears at sites where the true source
strength is zero and is a consequence of nonzero off-diagonal
elements of the resolution matrix. To better understand
the origin of nonzero off-diagonal elements in the MRM,
we should remember that its ith column contains the
correlation coefficients between the ith potential pattern and
the potential patterns of all other sources. Nonzero off-
diagonal elements of the resolution matrix appear there-
fore at the position of sources leading to correlated scalp
patterns. For the particular case of ANA inverse solution,

the value at the off-diagonal elements will be identical to
the correlation coefficient between the respective potential
patterns. Different sources might produce highly similar
scalp potential patterns (highly correlated patterns) inducing
large off-diagonal elements and therefore spurious sources.

Not only will off-diagonal elements lead to noisy single
source reconstruction but also, even worse, they will totally
mislead multiple source reconstruction. To see how, let us
return to our example of Table 1 and assume that sources 1
and 12 are active (both with unitary strength). In practical
terms, this means that the x-component of a dipole is active
at the first solution point and the z-component of a dipole
is active at the fourth solution point. The reconstruction
provided in this case will be equal to the sum of columns 1
and 12 of the resolution matrix, and its numerical values are
given in Table 2.

The largest positive value of the reconstruction appears
at source component number four and therefore at the
second solution point. The largest absolute value appears
at the source component number six which also belongs
to the second solution point. The modulus of the vector,
given in Table 3, shows similar results. This means that
neither the component-by-component reconstruction nor
the modulus shows maxima at the actual source locations
at solution points one and four. In fact the fourth solution
point has the smallest modulus, and its active component
the third smallest estimated strength. The failure of the
solution to retrieve the two simultaneously active sources
is once again due to the existence of large off-diagonal
elements in the MRM. Hopefully, this numerical example
helps to understand that the naı̈ve intuitive application of the
superposition principle to this problem is erroneous since
exclusively based on the diagonal elements of the MRM.

As for a comparison, we depict on Table 4 the resolution
matrix for the Minimum Norm (i.e., Moore Penrose pseudo
inverse) solution. Note that while it is symmetric, the
maxima for each row (or column) are not necessarily at the
main diagonal. Note also that several elements are zero for
the numerical precision (3 decimal digits) used.
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Table 2: The reconstruction provided by ANA when multiple sources are active is erroneous despite the perfect reconstruction of both sources
alone. Current density vector reconstruction for EEG data generated when the first and the last single sources are simultaneously active with
unitary amplitude.

1.16 1.42 1.42 1.43 −1.50 −1.52 −1.51 −1.50 −0.72 0.86 −0.74 1.16

Table 3: Modulus of the current density vector of Table 2. Each value
corresponds to the strength of the source at each solution point as
computed using (10).

2.32 2.57 2.25 1.62

3.3. Single Source Localization with ANA in the Original
Source Space of j and Synthetic Noisy Data. We have shown
so far that ANA solution is capable to provide perfect
localization of single sources within the space of the trans-
formed variable Z. However, it is clear that on the original
source space the symmetry of the resolution matrix will
not hold and that we cannot insure that MRM elements
are bounded. However, based on the rationale behind ANA
and EPIFOCUS, there is no reason to believe that this
will prevent ANA to correctly localize single sources in the
original source space. To shed some light on this issue, we
can resort to simulations with single sources. This issue is
of concern because the problem of single dipole localization
under the assumption of a dominant generator remains of
interest in several practical neurophysiological applications
such as epilepsy [22–25]. Linear inverse solutions constitute
an appealing alternative to nonlinear dipole localizations
because of their higher computational simplicity and their
possibilities to be applied to irregular solution spaces
required for modeling patient’s brains [11]. We might
therefore wonder if the good features of ANA for single
source localization hold within the original source space j.
For practical applications in clinical and research routine,
we expect a solution which guarantees accurate localization
but which is also robust, that is, capable to deal with
experimental noise and modeling errors (sensor location,
approximate head conductivities, etc.) and particularly with
changes in the pattern/map of the dominant source induced
by other weaker sources that are simultaneously active.

In this section we present some simulation results to
study how much the theoretical performance degrades with
noise in the original source space j. We compare the
localization results for four linear solutions including three
that are highly efficient for single source localization: (1)
ANA, (2) EPIFOCUS [11, 26], and (3) sLORETA [9]. The
fourth solution, that is, (4) the Moore-Penrose inverse of the
normalized lead field was also included to confirm that the
results of ANA are not simply due to the weighting strategy
introduced in its design.

For reproducibility and compatibility with previous
publications, we use in this section a lead field model
corresponding to the sensor configuration and solution space
described in ISBET NEWSLETTER number 6, December
1995, Grave and Gonzalez, 2000, Grave et al. 2001. Namely, a
unit radius 3-shell spherical head model (Ary et al., 1981),
with solution points confined to a maximum radius of

0.8. The sensor configuration comprises 148 electrodes. The
solution space consists of 817 points on a regular grid with an
intergrid distance of 0.133 cm, corresponding to 2451 focal
sources. To simulate noisy data, we added to each electrode
uncorrelated random noise in the range ±15% of the
amplitude of the noiseless data. DLE and BDL are divided by
the size of the grid unit (0.133) and are evaluated for x values
in the set [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7]. For
each value xi, we compute

(1) the empirical Probability Distribution Function,
defined as follows: Probability(xi) = {Number of
sources with errors � xi}/2451;

(2) the empirical density function defined for xi < 7
as follows: Density(xi) = {Number of sources with
errors in [xi, xi+1]}/2451.

Note that while the empirical density function describes
the performance for each eccentricity range, the probability
function provides a global assessment about how fast the
maximum asymptotic value is attained.

Figure 2 presents the dipole localization error for ANA,
EPIFOCUS, sLORETA, and MPNL inverse in the localization
of the 2451 single sources when the data is contaminated with
15% of noise. While the results for sLORETA and MPNL are
equally erratic for noisy data (Figure 2), they clearly differ
for noiseless data (not shown here) where sLORETA attains
zero DLE whereas MPNL remains unreliable. In contrast
ANA and EPIFOCUS have very similar behavior for noiseless
(not shown) and noisy data (Figure 2). All regularization
parameters tested for sLORETA (namely, λ = 0, 1e-6, 0.1,
1, 10) yield similar erratic results for noisy data. Figure 2
depicts the results for sLORETA for just one of the values
tested (λ = 0).

Figure 3 presents the bias in dipole localization for ANA,
EPIFOCUS, sLORETA, and MPNL inverse in the localization
of the 2451 single sources when the data is contaminated with
15% of noise. For the noiseless (not shown) data sLORETA
and ANA attain zero BDL for all the sources, while for the
noisy data (Figure 3) only ANA remains at zero BDL followed
by EPIFOCUS. MPNL and sLORETA produce errors as large
as 6.5 grid units. All regularization parameters tested for
sLORETA (namely, λ = 0, 1e-6, 0.1, 1, 10) yield similar
erratic results. The results shown in Figure 3 for sLORETA
correspond to a regularization parameter of λ = 1.

4. Discussion

The ANA inverse solution described in this paper is, to
the best of our knowledge, the first linear solution to the
NIP simultaneously fulfilling (in the transformed space)
the three following properties: (1) symmetric resolution
matrix; (2) perfect single source localization, and (3) perfect
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Table 4: Resolution matrix for the minimum norm solution and the configuration presented in Figure 1. Even though it is symmetric, the
maxima are not always located at the main diagonal.

0.00 −0.02 −0.02 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00

−0.02 0.5 0.45 0.00 0.15 0.02 0.00 0.09 0.01 0.00 0.09 0.11

−0.02 0.45 0.45 −0.01 −0.01 0.16 0.00 0.06 0.05 0.00 0.06 0.11
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Figure 2: Dipole Localization Error (DLE) results with synthetic data with 15% noise. The model is composed of 148 electrodes and 2451 single
dipoles at 817 solution points. Probability and Density functions (vertical axis) are plotted versus error sizes (horizontal axis) measured in
grid units. Despite the noise in the data, DLE for EPIFOCUS and ANA are never bigger than two grid units while sLORETA and MPNL
errors can be higher than 6 grid units.
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Figure 3: Bias in dipole localization results for noisy data with 15% noise. Model includes 148 electrodes and 2451 single dipoles placed at
817 solution points. Probability and Density functions (vertical axis) are plotted versus error sizes (horizontal axis). Despite the noise in the
data, BDL for EPIFOCUS and ANA are never bigger than two grid units while sLORETA and MPNL errors can be higher than 6 grid units.

estimation of single source strength. Probably this is also the
simplest (in the sense of numerical complexity) solution with
these properties. Importantly, such properties stem from the
theoretical resolution matrix and therefore hold for arbitrary
(with noncollinear columns) lead field models.

In case we accept that perfect single source localization,
that is, correct estimation of the location and the source
strength as in ANA or correct estimation of the location
as in sLORETA, suffices to insure perfect multiple source
reconstruction, we must conclude that ANA or sLORETA
is the solution to the NIP. This statement is in flagrant
contradiction to any rationale. The mistake resides in the
assumption that perfect single source localization, defined
as zero DLE or zero BDL, implies accurate multiple source
localization. This implication is true only for the ideal
resolution matrix with zero off-diagonal elements, which

is impossible for an underdetermined problem. As demon-
strated here, ANA solution is theoretically perfect for single
source reconstruction but failed in the simplest case of two
simultaneously active sources. As shown in the example,
the reason for such failure is the existence of nonzero off-
diagonal elements within the model resolution matrix that
are ignored by the DLE or BDL. As we saw, nonzero off-
diagonal elements appear as a consequence of the correlation
between scalp potential (magnetic fields) patterns associated
with different punctual sources. Such off-diagonal elements
are inherent to the problem statement (the lead field
model) and will appear for all linear inverse solutions (e.g.,
sLORETA, MPNL, EPIFOCUS, etc.), although to different
extent. Note that while noiseless data imply the selection
of a single MRM column, noisy data can be interpreted as
an additional source (generating the noise) implying that
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multiple columns of the MRM should be added to get the
final current density estimator. As shown before, off-diagonal
elements might dominate such reconstruction even in the
noiseless case. However, as long as the components of the
additional source are lower than the correlation between
patterns of neighboring dipoles, ANA (and the closely related
EPIFOCUS) should yield low BDLs. Simulations suggest that
this is not the case for sLORETA or MPNL with errors up to
6.5 grid units.

Importantly, it is widely accepted that localization accu-
racy will indefinitely improve by increasing the number of
scalp recording sensors. While increasing the number of
sensors augments the amount of information about the
underlying sources, it does also enhance the correlation
(redundancy) between the rows of the lead field matrix, that
is, the way that one sensor sees all the sources. The increase
in correlation between rows results in unstable (sensitive to
noise) problems that need special regularization strategies to
avoid noise amplification. This trade-off between the inde-
pendent information conveyed by the new measurements
and their redundancy will define a practical superior bound
to the amount of electrodes to be used for source localization
purposes.

We have seen that neither the perfect single source
localization nor the unlimited increase in the amount of
recording sensors will definitively solve the NIP. Obviously,
the only remaining choice is to incorporate as much a
priori information as possible about the generators into
the problem. Such information should be independent of
the information already contained in the measurements. A
priori information can be incorporated within the discrete
formalism by a right-side transformation of the lead field
matrix, which in turn can be interpreted as a change of
variable. Only this procedure, illustrated here for ANA
solution (see (6)), will allow to effectively modify the shapes
of resolution kernels. Nevertheless the question remains
open which of these right-side modifications of the lead
field will result in correctly centered resolution kernels.
Examples of right-side transformations of the lead field
already employed in the NIP literature are the irrotational
source model of ELECTRA [15, 27] or the transformed lead
field based on predefined directions of the sources used in
SAM [8, 20].

The value of ANA solution is not only didactical. As
shown by our simulation results, ANA can be applied to
retrieve sources in the space of the original variable j.
Although in this space the dipole localization error is not
zero everywhere, the bias in dipole localization remains zero
and the results are very robust to noise. In this sense ANA
solution compares to the more robust methods presented
so far. Its computational simplicity, easiness of application
to irregularly distributed solution spaces, and localization
capabilities make of ANA a reasonable alternative for the
analysis of data generated by a single dominant source
plus noise. Such assumptions are not rare in one of the
most important clinical applications of source localization,
namely, the determination of the site of onset of epileptic
activity [22, 25].

It is worth mentioning that the limitations described here
are not specific to linear inverse solutions, and they will
certainly appear under a different mask for nonlinear inverse
procedures. While these difficulties are easily analyzed within
the linear framework because of the possibilities offered
by the model resolution matrix formalism, they actually
reflect the ill-posed nature of the original inverse problem.
Therefore, unless useful a priori information is found that
cannot be incorporated within linear inverses, we see no
good reasons to replace the comfortable linear framework
with its inherent computational and interpretational sim-
plicity.

The evaluation and design of linear inverse solutions
over last decade have been misguided by the idea that only
solutions able to accurately localize a large proportion of
single sources will succeed in the quest for constructing
a tomography of neural generators [9, 12]. Hopefully,
the examples and arguments in this paper will help to
reorient research within this field to the characterization
of properties of neural generators as the sole way to
overcome the nonuniqueness of the NIP inverse problem.
Research in this direction is not doomed to failure, and
existing inverse solutions can lead to relevant and novel
findings within neuroscience when correctly exploited and
interpreted. While often overlooked, some of the limitations
of linear inverse solutions to the NIP are shared by the
fMRI. For instance, the absolute size of the fMRI contrast
signal cannot be relied upon to measure the amplitude of the
neural responses at two different cortical locations [28]. In
a similar manner we should be cautious comparing current
source density estimates at two different solution points since
amplitude estimates vary as a function of the actual current
distribution as well as the diagonal and off-diagonal elements
of the MRM. However, we can rely either on experimental
contrasts as done with fMRI or on measures invariant to
scale transformations such as spectral measures derived from
temporal information of the estimated sources [29–31] to
improve the reliability of the information retrieved from the
inverses.

5. Conclusions

Here we introduced a linear inverse solution coined ANA
which fulfills several optimal properties for the localization
of single sources. We demonstrated by means of the model
resolution matrix formalism that ANA localizes correctly
the location and the amplitudes of all single sources. These
properties hold for arbitrary lead fields and for arbitrarily
small sensor configurations. This fact was exploited to
introduce simple examples that clarify how spurious sources
are formed and their large relevance for simultaneous source
reconstruction. We further showed that ANA solution is
highly robust to noise, outperforming established methods
for single source localization (sLORETA and EPIFOCUS).
Its robustness to noise and computational simplicity make
ANA a reasonable alternative for data generated by a
single dominant source plus noise, as can be the case in
epilepsy.
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The most important contribution of this manuscript is
to provide definitive evidence that the apparently reasonable
(although naı̈ve) idea of inferring the behavior of linear
solutions from their single source localization properties
proves false. It is thus concluded that zero localization
error alone is a trivial and useless property unable to
predict the performance of an inverse solution in presence
of simultaneously active sources. We expect that these
results will help researchers to guide their choices of inverse
methods, in methods development as well as for clinical
and neuroscientific applications. We also hope that it will
stimulate further interest in finding neurophysiologically
plausible constraints that can be used as a priori information
in the NIP, which should be the ultimate goal in this
endeavour.
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