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Clinical value of texture a
nalysis in differentiation
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Abstract
Identification of histologic grading of urothelial carcinoma still depends on histopathologic examination. As an emerging and
promising imaging technology, radiomic texture analysis is a noninvasive technique and has been studied to differentiate various
tumors. This study explored the value of computed tomography (CT) texture analysis for the differentiation of low-grade urothelial
carcinoma (LGUC), high-grade urothelial carcinoma (HGUC), and their invasive properties.
Radiologic data were analyzed retrospectively for 94 patients with pathologically proven urothelial carcinomas from November

2016 to April 2019. Pathologic examination demonstrated that tumors were: high grade in 43 cases, and low grade in 51 cases; and
nonmuscle invasive (NMI) in 37 cases, and muscle invasive (MI) in 37 cases. Maximum tumor diameters on CT scan were manually
outlined as regions of interest and 78 texture features were extracted automatically. Three-phasic CT images were used to measure
texture parameters, which were compared with postoperative pathologic grading and invasive results. The independent sample t test
or Mann–Whitney U test was used to compare differences in parameters. Receiver-operating characteristic curves for statistically
significant parameters were used to confirm efficacy.
Of the 78 features extracted from each phase of CT images, 26 (33%), 20 (26%), and 22 (28%) texture parameters were significant

(P< .05) for differentiating LGUC fromHGUC, while 19 (24%), 16 (21%), and 30 (38%) were significant (P< .05) for differentiating NMI
from MI urothelial carcinoma. Highest areas the under curve for differentiating grading and invasive properties were obtained by
variance (0.761, P< .001) and correlation (0.798, P< .001) on venous-phase CT images.
Texture analysis has the potential to distinguish LGUC and HGUC, or NMI from MI urothelial carcinoma, before surgery.

Abbreviations: AUC = area under curve, CT = computed tomography, DP = delayed phase, GLCM = gray-level co-occurrence
matrix, HGUC = high-grade urothelial carcinoma, LGUC = low-grade urothelial carcinoma, MI =muscle invasive, NMI = nonmuscle
invasive, MIUC = muscle-invasive urothelial carcinoma, NMIUC = nonmuscle-invasive urothelial carcinoma, ROC = receiver-
operating characteristic, ROI = region of interest, VP = venous phase.
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1. Introduction
Urothelial carcinoma (UC), the most common histologic type of
bladder cancer, is the tenth most common malignancy world-
wide, with an increasing incidence, especially in men.[1]

According to the differentiated extent of tumor cells, UC can
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be graded as low grade (LG) or high grade (HG), and this grading
is significant for assessing UC because well-differentiated (LG)
carcinomas are less aggressive thanHGUC.[2,3] In addition, UC is
divided into nonmuscle invasive (NMI) and muscle invasive (MI)
based on the 2016 WHO classification of tumors of the urinary
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system.[4] Researchers[2,5] showed that depth of tumor invasion
into the wall of the urinary bladder is an independent prognostic
factor, and the implications of histopathology (LG orHG) for UC
diagnosis, prognosis, and treatment are explicit. Therefore,
identification of histologic grading of UC is needed to identify
patients likely to benefit from preoperative diagnosis. However,
the final diagnosis still depends on histopathologic examination.
As an invasive examination method, biopsy still has the problems
of misdiagnosis or misclassification during preoperative diagno-
sis because of inadequate specimens or variability in pathologic
features.[6]

Computed tomography (CT) is the imaging modality widely
used for tumor staging, and for monitoring recurrence during
clinical diagnosis. However, it is challenging for radiologists to
identify the pathologic grading and invasive properties of UC
with CT images.
As an emerging and promising imaging technology, radiomic

texture analysis is a noninvasive technique of high-throughput
extraction of quantitative imaging data and has been studied to
differentiate various tumors and predict responses to chemother-
apy in patients with carcinoma.[7–13] Texture analysis could be
implemented to describe correlations between the grey level
intensity of pixels or voxels, their positions within an image for
evaluating intratumoral heterogeneity and extracting data about
pixel spatial intensity variations across lesions of interest.[14]

Previous studies[15–18] used CT texture analysis to distinguish the
different grades and aggressiveness of bladder cancer.
The purpose of this study was to determine whether

more significant texture feature parameters on multiphase
CT scan images acquired before surgery are independently
related to pathologic grading and invasive properties in patients
with UC.
Figure 1. Inclusion and exclusion criteria and sample size. CT = computed tomo
carcinoma, MIUC=muscle-invasive urothelial carcinoma, NMIU=nonmuscle-inva
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2. Materials and methods

2.1. Patient selection

Patients confirmed with UC, from our hospital databases
between November 2016 and February 2019, were identified.
Patients had undergone a CT scan of the abdomen and pelvis with
intravenous contrast, and pathology results were also available.
A total of 112 patients were included, with UC proven by
pathologic diagnosis after surgical resection. Patients with
tumors smaller than 5mm (n=6) and bladder wall thickening
without mass (n=3) were excluded to ensure enough lesion area
for drawing regions of interest (ROI). Three patients were
excluded because of images with metallic or motion artifacts. To
reduce the effects of image-density disparities and to minimize
confounding factors, 6 patients with huge masses were also
excluded, because the tumors showed markedly different
enhancement from other lesions. Overall, 90 patients had single
tumors, and in the remaining 4 patients with multiple lesions, the
largest lesion was selected.
The grade of UC was divided into LGUC and HGUC, stage of

UC was divided into NMIUC and MIUC. The study population
consisted of 94 patients according to grade (group 1: 43 LG vs 51
HG) and 74 patients according to stage (group 2: 37 NMI vs 37
MI), because 20 lesions did not have pathologic results for stage.
Inclusion and exclusion criteria and sample size are shown in
Figure 1. Clinical information was reviewed retrospectively from
electronic health records. No patient received chemotherapy or
radiotherapy before surgery. A total of 91 tumors were 1st
lesions, while subjects with recurrent lesions were divided into
groups according to their latest pathology results.
This study was approved by the ethics committee of our

hospital. This study was conducted in accordance with the
graphy, HGUC=high-grade urothelial carcinoma, LGUC= low-grade urothelial
sive urothelial carcinoma.



Figure 2. Arterial-phase computed tomography images in 52-year-old man with 13-cm high-grade noninvasive urothelial carcinoma in left bladder wall. Region of
interest (in red) was segmented within the border of lesion and 78 texture parameters were achieved.
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Declaration of Helsinki. Informed consent was not necessary,
because the data are anonymized.
2.2. CT protocols

All patients in this study underwent contrast-enhanced abdomi-
nal and pelvic CT with a 320-slice spiral CT scanner (Aquilion
ONE; Canon Medical Systems, Otawara, Japan). Scanning
parameters were: tube voltage 120 kVp, 157 mAs, beam
collimation 64�0.6mm; pitch 0.9; rotation time 0.5 seconds;
and reconstruction slice thickness 1 and 7mm. After unenhanced
images (plain CT scan without intravenous contrast) were
acquired, a nonionic iodinated contrast agent (Iopamiro, 370mg/
mL; Shanghai Bracco Sine Pharmaceutical Corp Ltd, Shanghai,
China) was injected through a dual-head injector at a rate of
3.5mL/s, followed by a 20mL normal saline flush with a dose of
2.0mL/kg bodyweight. Arterial phase, venous phase (VP),
and delayed phase (DP) indicate different scanning interval
after administration of intravenous contrast. Arterial phase (20–
25seconds), VP (50–60seconds), and DP (5–8minutes) images
were obtained after injection of contrast in this protocol.
2.3. Image selection and export

The CT images for all patients were exported from the picture
archiving and communications system workstation in the same
format (.bmp) and adjusted to a window width of 360 HU and
window level of 60 HU to ensure consistency. DP images were
not included because contrast-agent retention in the bladder
could cover up lesions, especially small ones, and cause tumor
artifacts that would yield false texture parameters.
2.4. CT segmentation procedure and texture analysis

The ROI delineation and analysis of texture parameters were
performed using MaZda software (version 4.6; Lodz University
of Technical, Lodz, Poland). The lesions were objectively
3

measured by tumor ROIs by 2 abdominal radiologists with 10
or 20 years’ experience. Two readers were blinded to
histopathologic reports about the tumors. ROIs were segmented
to give the largest cross-sectional area in all phase images (Fig. 2).
Texture parameters for each image were calculated using

MaZda software. These parameters in our study comprised the
following features: histogram and gray-level co-occurrence
matrix (GLCM). Histogram features were computed from pixel
intensity, without considering any spatial relationship between
pixels in the original images. This revealed the statistical
parameters of histogram distribution, including mean, variance,
skewness, kurtosis, and percentiles (1%, 10%, 50%, 90%, and
99%). The use of GLCM with the intensity of pixel pairs
described the spatial relationship of 2 pixels in a pair. GLCM
features in the MaZda software were angular second
moment (AngScMom), contrast, correlation (Correlat), inverse
difference moment (InvDfMom), sum of squares (SumOfAqs),
sum average (SumAverg), sum variance (SumVarnc), sum
entropy (SumEntrp), entropy, difference variance (DifVarnc),
and difference entropy (DifEntrp).[19–21] The distances (n=1) of
COM features was used in this study. S(1,0), S(0,1), S(1,1) and S
(1,�1) indicated the number of pixel (or pixel neighborhoods)
used for parameters computation.
2.5. Statistical analysis

IBM SPSS software (version 24.0; IBM Corp, Armonk, NY) was
used for statistical analysis. Data normality and homogeneity of
variance were examined by Kolmogorov–Smirnov test and
Levene test, respectively. If data showed a normal distribution,
differences were evaluated using 2-tailed, independent-sample t
tests. If results were not normally distributed, theMann–Whitney
U test was used. Receiver-operating characteristic (ROC) curves
were calculated and used to screen CT texture parameters to
achieve the optimal cutoff value (threshold). Confidence intervals
were kept at 95%, and P< .05 was considered statistically
significant.

http://www.md-journal.com


Table 1

The characteristics of patients.

Group 1 Group 2

LGUC HGUC P value NMIUC MIUC P value

Number of patients 43 51 37 37
Gender .802 .693
Male 39 47 33 34
Female 4 4 4 3

Age, years
∗

67±12 67±10 .793 68±12 67±10 .688
Tumor diameter, mm

∗
27.9±15.1 33.5±17.1 .111 25.3±14.2 35.8±18.1 .007

HGUC=high-grade urothelial carcinoma, LGUC= low-grade urothelial carcinoma, NMIU=nonmuscle-invasive urothelial carcinoma, MIUC=muscle-invasive urothelial carcinoma.
∗
Data are mean± standard deviation.

Statistically significant value shows in bold.
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3. Results

3.1. Patient characteristics

According to the methodologic criteria and pathologic results, 43
LGUC and 51 HGUC were included in group 1, and then
subdivided into 37 NMIUC and 37 MIUC (group 2). Statistical
results for general patient characteristics in the 2 groups are listed
in Table 1. Tumor diameter for NMIUCwas significantly smaller
than that for MIUC (P< .05).
3.2. Texture analysis

A total of 78 featureswere extracted fromeach phaseCT scan, and
26 (33%), 20 (26%), and 22 (28%) texture parameters were
significant for differentiating LGUC fromHGUC on unenhanced,
arterial-phase, and venous-phase CT, respectively. Correspond-
ingly,with3-phaseCT,19 (24%), 16 (21%), and30 (38%) texture
parameterswere statistically significant for differentiatingNMIUC
fromMIUCon unenhanced, arterial-phase, and venous-phase CT.
Detailed parameters above were reported in Supplementary
Tables S1 and S2, http://links.lww.com/MD/E149.
Based on all the significant features extracted from multiphase

CT images, we selected the top 3 radiomic features in
unenhanced, arterial, and venous images using ROC curves, as
shown in Figure 3 and Tables 2 and 3. The highest area under the
curve (AUC) of 0.761 (95% confidence interval [CI] 0.662–
0.860) was achieved by S(0,1)SumVarnc at VP for identifying
grading, the corresponding diagnostic performance were as
follows: sensitivity (Se)=76.47%, specificity (Sp)=72.09%,
Figure 3. Receiver-operating characteristic curves of the top three radiomic featur
and (B, C) for nonmuscle-invasive urothelial carcinoma and muscle-invasive uroth
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positive predictive value (PPV)=73.26%, negative predictive
value (NPV)=75.39%. In addition, the highest AUC of 0.798
was obtained by S(0,1)Correlat (95% CI 0.697–0.900) and S
(1,1)Correlat (95% CI 0.694–0.902) at VP for determining
invasive properties in UC. The corresponding diagnostic
performance of S(0,1)Correlat was as follows: Se=72.97%,
Sp=75.68%, PPV=75.00%, NPV=73.68%. The correspond-
ing diagnostic performance of S(1,1)Correlat was as follows: Se=
86.49%, Sp=67.59%, PPV=72.73%, NPV=83.34%.
4. Discussion

Several studies reported some biomarkers such as inflammatory
markers, circulating tumor cells, and certain RNA have the
potential role in predicting prognosis of UC.[22–26] However,
using texture analysis to quantitatively analyze multiphase CT
images in our study provided us with an alternative way to assess
UC grading and invasive properties before pathologic examina-
tion. Such objective evaluation, without considering the visual
characterization of images, could give physicians some significant
information to facilitate clinical management. Our study showed
that texture parameters could reflect image heterogeneity,[27] and
could be used to improve diagnosis, predict clinical prognosis,
and even predict toxicity from relevant treatment.[28–30] Thus,
CT texture analysis is a viable method for describing the
heterogeneity of UC.
A recent study[17] indicated that UC differentiation could be

improved with multiple magnetic resonance sequences. Based
on this approach, and opinion, our study tried to enhance
es: (A) for low-grade urothelial carcinoma and high-grade urothelial carcinoma;
elial carcinoma.

http://links.lww.com/MD/E149


Table 2

Receiver-operating characteristic curves of top 3 texture parameters for differentiating low-grade urothelial carcinoma from high-grade
urothelial carcinoma on 3-phase computed tomography images.

Phase Parameters AUC 95% CI P value

Unenhanced phase S(0,1)SumVarnc 0.734 0.634–0.834 <.001
S(0,1)SumEntrp 0.727 0.626–0.828 <.001
S(1,�1)SumVarnc 0.729 0.628–0.830 <.001

Arterial phase S(0,1)Correlat 0.715 0.611–0.820 <.001
S(1,1)Correlat 0.686 0.579–0.794 <.01
S(1,�1)Correlat 0.680 0.572–0.789 <.01

Venous phase Variance 0.745 0.643–0.846 <.001
S(0,1)SumVarnc 0.761 0.662–0.860 <.001
S(1,1)SumVarnc 0.741 0.640–0.843 <.001

AUC= area under curve, CI= confidence interval, Correlat= correlation, SumVarnc= sum variance, SumEntrp= sum entropy.

Wang et al. Medicine (2020) 99:18 www.md-journal.com
differentiation by using multiphase CT images to find more
significant parameters when diagnosing UC.
In group 1, the top 3 texture parameters, with AUC values of

0.745, 0.761, and 0.741, were all obtained by venous-phase CT.
This result demonstrated that variance in venous-phase CT
seemed to be the most valuable measure for distinguishing LGUC
from HGUC; however, this was a different opinion from a
previous study,[18] which did not discuss the impact of multiphase
CT images. Nonetheless, other studies[7,31,32] reported the
application of contrast-enhanced CT texture analysis in other
pathologies. So, whether these differences are due to scan
protocol or workflow should be verified in further research. The
best diagnostic parameter, S(0,1)SumVarnc, was quantified on
venous-phase image. As for diagnostics performance, the
parameters of S(0,1)SumVarnc, Se (76.47%), Sp(72.09%),
PPV(73.26%), and NPV (75.39%) were not high enough and
posted a moderate performance. However, our results demon-
strate that texture analysis is feasible solution for differentiating
UC.
In group 2, tumor diameter indicating that larger lesions were

associated more with MIUC, which is consistent with previous
research.[17] Additionally, the optimal parameters, S(0,1)Correlat
and S(1,1)Correlat, were acquired in venous-phase CT. Howev-
er, the unenhanced and arterial-phase CT images were relatively
poor predictors of tumor invasiveness. As for diagnostics
performance, the parameters of S(1,1)Correlat, Se (86.49%),
and NPV (83.34%) showed a relatively good performance,
whereas other parameters, Sp (67.59%), PPV (72.73%) and the
parameters of S(0,1)Correlat, were not quite satisfactory. The
high sensitivity could be explained that if a lesion was predicted
Table 3

Receiver-operating characteristic curves of top three texture param
from muscle-invasive urothelial carcinoma on 3-phase computed tom

Phase Parameters

Unenhanced phase S(0,1)Correlat
S(0,1)InvDfMom
S(1,1)Correlat

Arterial phase S(1,0)Contrast
S(1,0)DifVarnc
S(1,0)DifEntrp

Venous phase S(0,1)Correlat
S(1,1)Correlat
S(1,�1)Correlat

AUC= area under curve, CI= confidence interval, DifEntrp=difference entropy, DifVarnc=difference va
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withMIUC by texture analysis, the possibility of the lesion with a
true MIUC was high.
Variance is a measure of heterogeneity and places high

importance on matrix elements that differ from the mean, and on
the gray-level variability of pixel pairs, which rises when gray-
scale values vary from their means.[33] Correlation, which
measures the gray-level linear dependency of adjacent pixels or
specified points, could reflect local gray-level dependency of
texture images.[33] Our results, which endorse the diagnostic
efficiency of variance and correlation, can be explained by the
different tumor classifications and tumor heterogeneity, and
indicate that quantitative texture analysis could be a feasible
device for differentiating UC.
Our study has some limitations. First, the sample size could

have been expanded by searching previous records and
cooperating with other medical institutions. High-quality,
multicenter studies are now required to confirm our results.
Second, most LGUC lesions were associated with NMI, while
HGUC lesions were generally associated with MI, which may
have reduced or confounded the efficacy of UC differentiation;
however, we maintain that this problem can be addressed by
enlarging sample size. Third, the incidence rate of UC in men is
significantly higher than women in our study. It may be
contributed to the small sample size and men are also susceptible
population of UC due to cigarette smoking in our country.
Fourth, relatively few statistically significant vs nonsignificant
parameters were identified, and much redundant data were
produced, which created a challenge that may have reduced
diagnostic efficiency. Lastly, all radiomic analyses involve a few
fixed steps, which introduce the drawback of potentially
eters for differentiating nonmuscle-invasive urothelial carcinoma
ography images.

AUC 95% CI P value

0.679 0.557–0.801 <.01
0.652 0.527–0.777 <.05
0.679 0.557–0.801 <.01
0.636 0.507–0.764 <.05
0.642 0.514–0.770 <.05
0.638 0.511–0.766 <.05
0.798 0.697–0.900 <.001
0.798 0.694–0.902 <.001
0.781 0.674–0.888 <.001

riance, InvDfMom= inverse difference moment.
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dissimilar outcomes due to redundant and nonreproducible
parameters.[34,35] Even in multicenter studies, tight scan proto-
cols may be required to minimize this problem.[36]

In conclusion, CT texture analysis in UC is a promising tool for
identifying differences in tumor grading and invasiveness. Such
analysis has the advantage of being a nontraumatic examination
method, independent of the opinion or experience of radiologists,
that still permits the accurate diagnosis of patients with cancer.
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