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Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia

have been largely reported. In the last decades, research has shifted to the identification

of electrophysiological alterations in the prodromal and early phases of the disorder,

focusing on the prediction of clinical and functional outcome. The identification of

neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those

at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to

implement adequate interventions, reduce the rate of transition to psychosis, as well as

the risk of irreversible functioning impairment. The aim of the review is to provide an

up-to-date synthesis of the electrophysiological findings in the at-risk mental state and

early stages of schizophrenia.

Methods: A systematic review of English articles using Pubmed, Scopus, and

PsychINFO was undertaken in July 2020. Additional studies were identified by

hand-search. Electrophysiological studies that included at least one group of FEP

or subjects at risk to develop psychosis, compared to healthy controls (HCs), were

considered. The heterogeneity of the studies prevented a quantitative synthesis.

Results: Out of 319 records screened, 133 studies were included in a final qualitative

synthesis. Included studies were mainly carried out using frequency analysis, microstates

and event-related potentials. The most common findings included an increase in

delta and gamma power, an impairment in sensory gating assessed through P50

and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk

mental state and early stages of schizophrenia. Progressive changes in some of these

electrophysiological measures were associated with transition to psychosis and disease

course. Heterogeneous data have been reported for indices evaluating synchrony,

connectivity, and evoked-responses in different frequency bands.

Conclusions: Multiple EEG-indices were altered during at-risk mental state and

early stages of schizophrenia, supporting the hypothesis that cerebral network

dysfunctions appear already before the onset of the disorder. Some of these

alterations demonstrated association with transition to psychosis or poor functional

outcome. However, heterogeneity in subjects’ inclusion criteria, clinical measures and
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electrophysiological methods prevents drawing solid conclusions. Large prospective

studies are needed to consolidate findings concerning electrophysiological markers of

clinical and functional outcome.

Keywords: electroencephalogram, first-episode psychosis, first-episode schizophrenia, clinical high-risk, ultra

high-risk, frequency bands, microstates, ERPs

INTRODUCTION

Schizophrenia (SCZ) is a severe and complex mental disorder,
demonstrating heterogeneity in terms of risk factors,
comorbidities, clinical presentations, course, response to
treatment, and functional outcome. It approximately affects 26
million people and is currently regarded as one of the leading
causes of disability worldwide (1–3). Despite significant advances
in the available pharmacological and psychosocial interventions,
the impairment in real-life functioning, represents, to date, an
unmet need in the care of people suffering from this disorder,
with a huge burden on patients, their families, and health-care
systems (4–10). Different factors, some related to the illness,
others to personal resources, and others to the context, have been
demonstrated to contribute to the impairment in functioning
(6–8, 10, 11). Among these factors, prolonged periods of
untreated psychosis have a role in determining a chronic course
of symptoms and a poor functional outcome (12, 13). Therefore,
in the last decades much more effort has been invested in the
early detection and intervention in schizophrenia, aiming to
decrease the risk of deterioration associated to a chronic and
relapsing course of the illness.

The first episode of psychosis (FEP) is a crucial stage in
the course of schizophrenia, representing the transition from
a premorbid to a morbid state. This stage is usually preceded
by a “prodromal” period, during which subjects might present
gradual and subtle changes in thoughts, perceptions, behaviors,
cognition, and functioning (14–16). This period is associated
with affective symptoms, social withdrawal, cognitive deficits,
attenuated positive psychotic symptoms, and impairment in
functioning, which is strongly related to cognitive deficits (17–
19). This clinical syndrome has been termed as “at risk mental
state” (ARMS) and operationalized criteria were developed to
categorize subjects within the clinical high-risk (CHR) or ultra
high-risk (UHR) status (14, 20, 21).

It has been demonstrated that within 3 years following the
onset of prodromal symptoms, about 18–36% of ARMS subjects
make a transition from a premorbid to a morbid state (17).
Those ARMS subjects that do not develop a psychosis will present
another psychiatric disorder or persistent attenuated symptoms,
while only about 14% will have symptomatic remission (22–24).

It seems, therefore, crucial to promptly detect early stages
of psychosis, including the state of vulnerability and the onset
of psychosis, in order to implement adequate interventions,
reduce the rate of transition to psychosis, as well as the risk of
further progression to deteriorating stages and impairment in
real-life functioning.

In order to characterize subjects that are at risk to develop
a psychosis and those with a FEP, research efforts have

been directed toward the establishment of the neurobiological
underpinnings of these early illness stages, excluding the bias
of chronicity, medications, and institutionalization, present
in subjects with chronic schizophrenia (18, 25–28). These
neurobiological correlates can be investigated effectively with
electroencephalography (EEG). Indeed, EEG represents a good
and appropriate technique to analyze the neurophysiology of
both normal and psychotic experience and behavior, based
on an integrative, complex and in-vivo model of the brain
(29–33). In addition, this technique is non-invasive, and, in
comparison to other imaging techniques, such as functional
magnetic resonance imaging (fMRI), EEG has the advantages
that it is more flexible in study design, has lower costs
and it exhibits a superior temporal resolution. Furthermore,
through source analysis methodology, such as Low Resolution
Electromagnetic Tomography (LORETA), it is possible to obtain
information about brain areas from which the neuronal activity
is generated (34, 35).

EEG-based measures can be categorized schematically into
three categories. The first one considers the oscillatory nature of
neuronal activity. This usually involves dividing the continuous
recorded EEG signal into its different frequency bands (delta,
theta, alpha, beta, and gamma) (36). These oscillatory rhythms
can be recorded while subjects are in state of relaxation and
without any external stimulation or, alternatively, during sensory
stimulation or while performing a task.

The second category is represented by microstates (MS),
defined as brief periods during which global electrical brain
activity remains semi-stable. These transient periods of stability
last between 80 and 120ms (37, 38). Each microstate is
classified on the basis of its corresponding EEG scalp potential
map (39, 40). Microstates are hypothesized to be the most
basic instantiations of human neuronal functions and are thus
nicknamed as “the atoms of thought.”

Finally, the third category is constituted by event-related
potentials (ERPs), which reflect the neuronal response following
a specific sensory, cognitive, or motor event (32, 41). These EEG
indices can manifest as positive and negative voltage deflections,
waves, or components with a precise temporal correlation to the
onset of a specific event (42).

A vast EEG literature has documented different abnormalities
of neuronal activity in subjects with chronic SCZ, as compared
to healthy controls (HCs) (29, 33, 43–49). In particular, several
studies have consistently reported alterations in the activity
of the whole spectrum of frequency bands (49–53), changes
in MSs topography and/or other parameters (46, 47, 54) and
a reduction of amplitude in ERPs, such as N100 (55–58),
mismatch negativity (MMN) (59, 60), and P300 (33, 57, 61).
Furthermore, these alterations have been related to the severity
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of symptoms, as well as cognitive and functional impairment in
schizophrenia. For instance, aberrant frequency bands activity
has been associated to cognitive deficits and positive and negative
symptoms (50–53); alterations in MS parameters to negative
symptoms, hallucinations, and duration of illness (46, 47, 54);
reductions in N100 amplitude to auditory hallucinations and
attention deficits (55, 57, 58); deficits in MMN to positive
symptoms and functioning impairment (57, 59, 60); P300 to
neurocognitive impairments and negative symptoms (57, 61).

In the last decades, a large number of studies has highlighted
how some of the abnormalities of EEG indices, reported in
subjects with chronic SCZ, can also be observed in the ARMS
and prodromal or early phases of schizophrenia. Previous
reviews on this topic (25, 44, 62–68) have considered either at-
risk/prodromal states or early stages of schizophrenia or only one
specific electrophysiological index.

In the light of these observations, the aim of the present
study is to review the current evidence concerning abnormalities
of electrophysiological indices, including all three categories of
indices mentioned above, in both CHR/UHR and FEP subjects.

METHODS

Study Design
The Preferred Reporting Items for Systematic Reviews (PRISMA)
statement has been followed to design and conduct the systematic
review (69).

In brief, we performed a comprehensive literature search on
abnormalities of EEG indices in the early stages of schizophrenia
(FEP and CHR/UHR subjects).

In order to facilitate the comprehension of the reader, we
clarify the terms that we used in the manuscript. The term FEP
encompasses both affective-spectrum disorders (bipolar disorder
and major depressive disorder with psychotic features) and
schizophrenia spectrum disorders (schizophrenia, schizoaffective
disorder, and schizophreniform disorder). The term first episode
of schizophrenia (FES) is used to indicate exclusively those
subjects who, although falling also within the FEP categorization,
are specifically at the onset of a schizophrenia spectrum disorder.
Therefore, in the present manuscript, whenever studies did not
specify the characteristics of the FEP sample or if the sample
was heterogeneous and included subjects with either a first-
episode of a schizophrenia-spectrum disorder or of an affective
disorder (i.e., bipolar disorder or major depressive disorder
with psychotic features), we indicated the sample as “FEP.”
Conversely, we indicated as “FES” the samples for which the
authors clearly specified a diagnosis of a schizophrenia-spectrum
disorder. Through the whole manuscript with the term “high
risk” (HR) we will refer to subjects in the ARMS or prodromal
stages of the illness. The original nomenclature of the study
samples will be kept within tables reporting the description of the
studies included in the present review.

Articles Research Strategy
A systematic literature search was conducted in three electronic
databases: PubMed, Scopus, and PsychINFO on 13th July 2020
with no time limit and with English language as the only

selected filter, in order to ensure that it was as comprehensive as
possible (Table 1).

The following combination of search terms was used:
(EEG OR electroencephalography OR “EEG microstate”

OR “dipole source localization” OR sLORETA OR LORETA
OR eLORETA OR ERP OR “event-related potential” OR
“spectral analysis” OR “frequency domain analysis” OR
“spectral band” OR “neural oscillations” OR “spectral
power” OR N100 OR N1 OR MMN OR “mismatch
negativity” OR P300 OR P3a OR P3b OR “event-
related” OR “evoked potential” OR “evoked-response”)
AND (“ultra-high risk psychosis” OR “clinical high risk
psychosis” OR “prodromal psychosis” OR “first episode
schizophrenia” OR “first episode psychosis” OR “early
onset schizophrenia”).

The search terms were selected to include both
general terms related to EEG research and more
specific indices (such as specific ERPs) that have been
consistently investigated in research papers attaining to
schizophrenia. In addition, reference lists were hand-
searched to identify additional publications missed by the
search strategy.

Selection Process and Criteria
Firstly, any duplicate from the combination of the three databases
was excluded. The remaining articles were included in the
systematic review only if they met the following criteria:

Inclusion criteria

1. meta-analysis, reviews, case-control studies concerning the
abnormalities of EEG indices in the at-risk, prodromal and
early stages of schizophrenia;

2. studies carried out in humans;
3. studies published in English;
4. studies that included at least one group of subjects during their

at-risk, prodromal or early stages of illness, compared with a
healthy control group;

Exclusion criteria

1. books chapters, comments, editorials, case reports/case series,
theses, proceedings, letters, short surveys, notes;

2. studies irrelevant to the topic;
3. unavailable full-text.

If the studies included in the present review reported data
concerning differences between HR subjects who made the
transition to psychosis (HR-T) from those who did not (HR-
NT), as well as data concerning differences between subjects
at at-risk/prodromal/early stages of psychosis and subjects with
chronic schizophrenia, these data have been also incorporated in
the present paper.

Two researchers (AP, FB) independently screened for
eligibility all the articles by titles and abstracts and then
proceeded to read the full text. Discrepancies in the selection
of the eligible articles have been discussed in advance
with the whole group and were resolved by discussion
and consensus.
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TABLE 1 | Systematic search strategies.

Database Search syntax Number of

retrieved

documents

Date of search

PubMed (EEG OR electroencephalography OR “EEG microstate” OR “dipole source localization” OR sLORETA OR LORETA OR

eLORETA OR ERP OR “event-related potential” OR “spectral analysis” OR “frequency domain analysis” OR “spectral band”

OR “neural oscillations” OR “spectral power” OR N100 OR N1 OR MMN OR “mismatch negativity” OR P300 OR P3a OR

P3b OR “event-related” OR “evoked potential” OR “evoked-response”) AND (“ultra-high risk psychosis” OR “clinical high

risk psychosis” OR “prodromal psychosis” OR “first episode schizophrenia” OR “first episode psychosis” OR “early onset

schizophrenia”)

Filters: Languages, English

Search in [All fields]

No time limit

220 13.07.2020

Scopus (EEG OR electroencephalography OR “EEG microstate” OR “dipole source localization” OR sLORETA OR LORETA OR

eLORETA OR ERP OR “event-related potential” OR “spectral analysis” OR “frequency domain analysis” OR “spectral band”

OR “neural oscillations” OR “spectral power” OR N100 OR N1 OR MMN OR “mismatch negativity” OR P300 OR P3a OR

P3b OR “event-related” OR “evoked potential” OR “evoked-response”) AND (“ultra-high risk psychosis” OR “clinical high

risk psychosis” OR “prodromal psychosis” OR “first episode schizophrenia” OR “first episode psychosis” OR “early onset

schizophrenia”)

Filters: Languages, English

Search in [Title/Abstract/Keywords]

No time limit

221 13.07.2020

PsychINFO (EEG OR electroencephalography OR “EEG microstate” OR “dipole source localization” OR sLORETA OR LORETA OR

eLORETA OR ERP OR “event-related potential” OR “spectral analysis” OR “frequency domain analysis” OR “spectral band”

OR “neural oscillations” OR “spectral power” OR N100 OR N1 OR MMN OR “mismatch negativity” OR P300 OR P3a OR

P3b OR “event-related” OR “evoked potential” OR “evoked-response”) AND (“ultra-high risk psychosis” OR “clinical high

risk psychosis” OR “prodromal psychosis” OR “first episode schizophrenia” OR “first episode psychosis” OR “early onset

schizophrenia”)

Filters: Languages, English; Species, Human

Search in [All Fields]

No time limit

173 13.07.2020

Data Extraction
We recorded the following variables from each included
article: author/s, year of publication, EEG index evaluated,
study population, assessment instruments for diagnosis and
EEG data results (Supplementary Tables 1–3). Given the
heterogeneity of experimental paradigms and considered
variables in the eligible studies, we did not plan to carry out
a meta-analysis.

RESULTS

Characteristics of the Included Studies
The combined outcome of the three databases results yielded
a total of 614 records (Figure 1). In addition, 40 studies were
included by hand search. Of the total studies, 335 were duplicates,
leaving 319 articles. After reading the titles and abstracts, 154
of these were excluded because they were not relevant to the
topic of the review or because they were articles other than
meta-analysis, reviews and case-control studies. The full text
of the remaining 165 studies was examined in more detail. It
appeared that 32 studies did not meet the inclusion criteria due
to methodological discrepancies (i.e., no control group included,
no clear EEG data reported, no clear explanation of diagnostic
criteria of sample). Therefore, a total number of 133 studies
were finally identified as eligible for inclusion in the current
review (Figure 1).

EEG Frequency Bands
The EEG raw signal can be decomposed into five main oscillatory
rhythms or broad frequency bands, namely delta (0.5–4.0Hz),
theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and gamma
(30–100Hz) bands (43, 62, 70). These bands can be investigated
during both resting-state condition and during sensory
stimulation or task performance. In the context of frequency
bands analysis, different measures have been considered, such
as the power and the source localization of each frequency band
activity and indices of coherence, synchronization, and neuronal
connectivity. The studies included for this section are reported
in Supplementary Table 1.

Delta Band

Delta activity, characterized by a spectral bandwidth 0.5–4.0Hz,
is the predominant slow wave in states of unconsciousness,
such as sleep and anesthesia. Furthermore, following external
stimulation, synchronization of evoked responses in delta band
across neuronal regions, plays also a role in motivational,
emotional, and cognitive functions (71, 72).

Resting-state EEG data showed consistent increases in delta
band power in subjects with chronic SCZ, as compared to healthy
controls (33, 43, 72). Therefore, different studies have been
conducted aiming to verify whether this abnormality is present
since the early phases of the illness.

Findings concerning delta band during resting-state in the
early phases of schizophrenia are controversial, with some studies
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FIGURE 1 | PRISMA flow chart of included studies.

reporting no abnormality in delta power (73) or synchrony (74),
while others finding differences between these subjects and HCs
in power (75–79) or functional connectivity (80) within this
band activity.

Specifically, studies during a resting-state condition that
found abnormalities in delta band in FES compared to HCs,
have reported a higher power (75–77). Furthermore, additional
studies and analyses also showed a lower delta amplitude peak
(77), an excess of delta activity in prefrontal areas (78), and
a distributed hypo-synchronization of delta activity between
cerebral regions, mostly observed in parietal areas as suggested
through LORETA analysis (78, 80). One longitudinal study in
FEP subjects, with a 1-year follow-up, which also considered
electrode location for its analysis, found that higher baseline delta
activity at posterior regions predicted improvement in positive
symptoms after 1 year, while lower values in the same band at

frontal regions were associated with the amelioration of negative
symptoms (76).

An increase in delta power in frontal areas, considering scalp
electrode location, has been observed also in HR-T compared to
HR-NT and to HCs, while no difference between HR-NT and
HCs was recorded (79).

Three studies investigated delta activity while subjects
performed a task (81–83). In one study, FES subjects, as
compared to HCs, had a decrease in the occurrence of anterior–
to-posterior propagation of delta waves during auditory and
visual tasks (82). A second study, carried out in FEP subjects,
demonstrated a workload-dependent increase of the duration
of delta oscillations during a working memory task (81) not
observed in HCs. This was revealed by longer delta oscillation
cycles in FEP during the performance of tasks of increasing
difficulty. Another study reported no difference between FES
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and HCs in terms of delta functional connectivity and its
topological properties assessed while subjects performed an
executive functioning task (83).

Theta Band

Theta oscillatory activity (4–8Hz) seems to be involved in the
orchestration of several cognitive processes, such as working
memory, detection of new sensory stimuli and attentional control
(84). It has been reported that subjects with chronic SCZ
present different abnormalities in this frequency range, often
characterized by excessive frontal theta activity (33, 43, 85, 86).

Inconsistent findings have been reported in studies
investigating abnormalities of the theta band during a resting
state condition in FES, FEP, and HR subjects, as compared
to HCs. In particular, some studies reported no significant
difference in the theta band activity between HCs and FEP (87),
FES (73, 76, 77), or HR (87) subjects. Other studies reported an
increase in theta band activity in FES subjects compared to HCs
(75, 88) during resting conditions. The increase in theta activity
in FES was associated with the severity of negative symptoms
(88) and this alteration was observed also in HR-T if compared
to HR-NT and HCs (79). Abnormalities in theta oscillations were
also found in studies that performed a source localization analysis
through LORETA (78, 89). These studies found a decrease of
theta activity specifically in the anterior regions in FEP (89) and
FES subjects (78) as compared to HCs. Furthermore, a complex
LORETA study investigating theta-gamma amplitude phase
coupling (regulation of the gamma band activity depending on
the phase of theta band activity) showed an alteration in this
index in a FES sample in the posterior cingulate cortex (90).
Some studies investigated the neural connectivity during resting-
state and found a decrease in the global field synchronization
(74), or an increase in the synchronization between posterior
cingulate cortex, cuneus, and precuneus (80) or an increased
connectivity between brain networks (91–93) in the theta band
in FES subjects, as compared to HCs. Connectivity values were
also related to clinical symptoms (91), worse verbal memory
(92), and processing speed (93). On the other side, a study
that included also HR subjects, did not detect any significant
difference between these subjects and HCs in theta functional
connectivity (92).

Abnormalities in theta activity were reported also during task
performance (83, 88, 94–96). In particular, task-related abnormal
theta activity was detected during a processing speed (94), an
arithmetic (88) or an auditory task (95) in FES (88, 95) and FEP
subjects (94). In addition, two studies highlighted brain network
dysfunctions in theta band in FES as compared to HCs, as
suggested by abnormalities in neuronal information transmission
during an executive functioning task (83) and a reduction of the
“small-world network” index (96), a parameter assessing cerebral
networks topology and the efficiency of neuronal signaling
processing. Conversely, the latter index has not been found to be
different between HR subjects and HCs in another study (96).

Alpha Band

Alpha oscillation is one of the most prominent neuronal rhythm
in the adult human brain, both during resting-state condition

and task performance, and it is characterized by a frequency
spectrum ranging from 8 to 12Hz (97). Neuronal oscillations
within this frequency band play a pivotal role in cognition,
consciousness, sensorimotor and emotional processes (98). In
subjects with SCZ, a decrease in absolute power during resting-
state conditions (43) and disruptions in temporal coherence in
evoked oscillations during sensory stimulation and cognitive
tasks have been reported (99).

During at-risk and early phases of the disorder, alpha activity
shows already alterations in its features. Several studies revealed
a reduction in alpha frequency activity (75, 88) in diverse
and widespread cerebral areas including frontal (73, 89, 100),
parietal (73, 78, 100), temporal (78, 100), and occipital (100)
regions in FES and FEP subjects compared to HCs, as assessed
through LORETA. Conversely, other studies found no significant
difference in the alpha power between HCs and FEP (87, 100),
FES (73, 76, 77), and HR (87) subjects. Furthermore, no robust
differences were detected in alpha power when HR-T, HR-NT,
and HCs were compared (79).

Inconsistent results have been reported also for EEG
connectivity indices recorded during rest. One study (74) did not
find any difference between FES subjects and HCs in terms of
global field synchronization. Conversely, other studies reported
abnormalities in connectivity-related indices in alpha band, such
as a lower coherence (101), a generalized hypo-synchronization
across cerebral regions (80) and lower phase-lag index (PLI) (93)
in FES subjects, compared to HCs. Yet, another study reported
significantly higher PLI values of alpha in FES and HR subjects
compared to HCs (102), contradicting previous results (93).

In studies focusing on stimuli or task-related activity, it
was shown that alpha activity, evoked by error commitment,
was significantly increased in FES subjects (94) compared
to HCs. Task-related connectivity studies focusing on alpha
band found either no difference in signal complexity and
brain network communication (83), or a decrease in coherence
(101) in FES compared to HCs. Finally, a reduction in alpha
desynchronization (103) and a higher clustering coefficient of the
alpha band (96) were detected in HR as compared to HCs.

Beta Band

Beta oscillation (12–30Hz) has been studied mostly in relation
to sensorimotor behavior and cognitive processes, such as
working memory and top-down regulation of attention (104,
105). In schizophrenia, beta-band abnormalities manifest as
increased activity in resting-state (106, 107) and in relationship
to perceptual integration (108).

Five studies found no differences between FEP or FES subjects,
as compared to HCs in the power of the beta frequency band
during a resting-state condition (73, 75–77, 109). Conversely,
three studies found differences in the beta power between FEP
(89) or FES (78, 88) subjects and HCs. In particular, these
studies found an increase in beta power in FEP and FES,
which was associated with the severity of negative symptoms
(88) and localized mainly in the right parietal area (78) and
frontal gyrus (89), as revealed by LORETA analysis (78, 89).
Focusing on connectivity measures during rest, FES subjects,
compared to HCs, showed a lower EEG coherence (109), as well

Frontiers in Psychiatry | www.frontiersin.org 6 May 2021 | Volume 12 | Article 653642

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Perrottelli et al. EEG-Indices in Early Schizophrenia Stages

as a generalized hypo-synchronization in the beta band (80).
However, a study reported no significant difference between FES
subjects and HCs in the global field synchronization of the beta
band (74).

In task-related recordings, an increase in the power (88) and
a reduction in coherence (101) were reported for the beta band
in FES subjects, compared to HCs. The decrease in coherence
was also associated to the severity of positive symptoms in one of
the studies (101). Finally, no abnormal mean value was recorded
through the evaluation of path length of networks activity within
the beta band, while subjects performed an executive functioning
task (83).

Gamma Band

Gamma activity represents the fastest oscillations (30–100Hz)
of the spectrum, and these fast waves are generated through
the synchronized activation of pyramidal neurons located in the
cerebral cortex (62, 110). Gamma band oscillations have been
linked to a vast variety of cognitive and perceptual integration
processes (110) and showed several abnormalities in subjects
with SCZ, often associated to impairments in neurocognitive
functions (111).

A systematic review has already summarized how
abnormalities in gamma band have been vastly reported in
FEP and HR subjects (62).

During resting state conditions, an increase in gamma power
was reported in FES (112), FEP (89), and HR-T subjects (113)
vs. HCs, mainly located in the frontal regions (89, 113) when
LORETA analysis was implemented. However, no difference
in resting-state gamma activity was observed in three other
studies (88, 91, 109), between FES subjects and HCs. As
regard to connectivity indices during rest, a generalized hypo-
synchronization (80), an increase in connectivity (91), a decrease
in coherence (101, 109) and a reduced phase lag index (PLI) (93)
in the gamma band were found in FES subjects, as compared
to HCs.

During sensory stimulation or the performance of a task,
different results have been reported. In particular, several
studies reported abnormalities in the evoked responses (mainly
decrease in evoked gamma), synchronization (reduction or a
delay in the synchronization) and connectivity (generally a
reduction in functional connectivity) of gamma activity during
the performance of memory (81, 114), cognitive control (115),
emotion processing (116, 117), or auditory tasks (118–122) both
in FES (114, 115, 117–122) and FEP (81, 116) subjects, as
compared to HCs. Furthermore, alterations in gamma synchrony
were also related to social cognition in one study (117), while
another one, employing a longitudinal design, highlighted that
the improvement in positive symptoms in FES subjects was
related to the increase in gamma synchrony (121). Findings
concerning the impairment in synchronization of gamma during
the performance of a task in HR subjects are discrepant. Perez
et al. (123) reported a decrease in gamma evoked response. A
similar result was also reported in a study using an auditory
task and multimodal recordings (simultaneous fMRI and EEG),
which showed that HR subjects presented a reduction in
gamma evoked response, characterized mainly by deficits in

activity of the auditory, thalamus, and frontal brain areas (124).
Furthermore, although Oribe et al. (118) found a decrease in the
coherence of auditory-evoked gamma activity, assessed through
phase-locking factor (PLF) in FES, as in the study by Leicht et al.
(122), no abnormality was found in HR subjects, as compared
to HCs, indicating that this alteration might be linked to more
advanced illness phases (118).

Another way to investigate gamma activity is through the
analysis of the auditory steady-state response (ASSR), which
involves the presentation of auditory stimuli at high frequencies
with subsequent entrainment of oscillatory activity at the same
frequencies. In a study involving auditory stimulation at 20,
30, and 40Hz, the FEP group had significantly reduced phase
locking and evoked power compared to HCs (125) for gamma
ASSR elicited with 30 and 40Hz stimuli. In this study, higher
phase locking was related to more severe positive symptoms
(125). Furthermore, studies found a decrease in the evoked
gamma power (125), inter-trial phase coherence and spectral
perturbation of ASSR (126, 127) in FES subjects compared
to HCs. It was also noticed that these alterations in ASSR
activity were related to general psychopathology and attentional
deficits (126).

In a study with subjects at-risk, no difference was detected
in ASSR-evoked gamma power or PLF between the HR subjects
and control groups (128), while in another study a decrease
of inter-trial phase coherence (ITC) and event-related spectral
perturbations in late phases of ASSR was found in HR compared
to HCs (126).

EEG Microstates
The microstates (MS) are EEG-based measures that define the
global functional state of the brain by its momentary scalp
electric field configuration (39, 129, 130). There is a small set
of prototypical MS configurations, which constitutes a basic
repertoire of brain functional states: MS-A, MS-B, MS-C, MS-D.
In particular,MS-A andMS-B have been found to be associated to
BOLD signal within fronto-temporal and occipital regions, areas
belonging to the phonological and visual networks, while MS-C
and MS-D have been linked to cingulate cortex, right superior
and middle frontal gyri, the right superior and inferior parietal
lobules, regions involved in the default mode, salience and
attention networks (131, 132). Evidence of EEG MS alterations
in subjects with SCZ has been widely reported (25, 46, 47, 133).
However, few studies investigated these alterations in the early
phases of the illness. The studies included in the current review
are summarized Supplementary Table 2.

FES subjects, as compared to HCs, showed a reduced duration
of MS-B (134) and D (54, 134), an increased occurrence
of MS-A (54, 134) and C (134), as well as an increased
contribution of MS-A (134) and D (54). The reduced duration
of MS-D has been found to correlate with the severity of
paranoid symptomatology (54). In addition, the MS syntax
A→C→D→A, which predominated inHCs, was reversed in FES
(A→D→C→A) (134). Finally, the topography differed between
FES and HCs, with FES showing a stronger left and anterior
activity of MS-B (134) and central activity of MS-D (54).
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Some of the above-mentioned abnormalities have been
reported already in HR subjects (135, 136). In particular, HR,
as compared to HCs and SCZ subjects, showed an increase in
the contribution and occurrence of MS-A; they also showed a
reduction in the contribution of MS-B, as compared to SCZ.
The aberrant spatial configuration of MS-B, which exhibited a
stronger activity in the left posterior cingulate in SCZ subjects,
was displayed to a lesser extent also in HR, as compared to HCs
(136). In individuals with 22q11.2 deletion syndrome (22q11DS),
known to have a 30-fold increased risk to develop schizophrenia,
an increased presence of MS-C vs. HCs, was found and was
associated with hallucinations (135).

ERPs Studies
A variety of ERPs, related to sensory-perceptual and cognitive
events, have been utilized in schizophrenia research due to their
high sensitivity to transient changes in neuronal activity. The
following paragraphs report if alterations in P50, N100, mismatch
negativity (MMN), P300, and N400 components are detectable
already in FEP and HR subjects. These studies are summarized in
Supplementary Table 3.

P50

P50 is an early event-related positive potential, which is recorded
∼50ms after the presentation of an auditory click stimulus. In a
paired-click paradigm, characterized by two subsequent stimuli,
a reduction in P50 response after the second stimulus (S2),
compared to P50 recorded after the first one (S1), is expected.
This is the outcome of a regulatory mechanism known as sensory
gating, which is assessed using the P50 ratio (S2-P50 divided
by S1-P50). When subjects do not show a diminished response
to the second stimulus, a defect in sensory gating is likely to
have occurred. Several articles reported an increase in the P50
ratio and difference in SCZ, suggesting a deficit in sensory
gating (137–142).

A recent meta-analysis reported a consistent impairment
in P50 sensory gating in FEP subjects, as compared to HCs,
and highlighted that this deficit had a similar magnitude
to the one reported in subjects with chronic SCZ (44).
Different studies found a deficit in sensory gating, as measured
with the P50 ratio, in FEP (143–146), FES (147, 148),
and HR subjects (143, 148, 149), as compared to HCs.
The grade of the impairment seemed to be influenced by
the clinical presentation of the illness (no sensory gating
deficit has been detected in FES subjects during the post-
acute phase, after improvement of positive symptoms) (147).
Some other studies did not find an impairment in sensory
gating in FEP (150–153), FES (154, 155), and HR (150,
151, 154, 156, 157) subjects. Furthermore, a study involving
the innovative implementation of machine learning (ML)
to distinguish FES from HCs with P50-related measures
(amplitude and ratio), in addition to other neuroimaging and
clinical evaluations, highlighted that this EEG-index did not
contribute significantly to the discrimination performed by the
mathematical model (158).

In a study involving FES and HR subjects, which analyzed
P50 through LORETA, it was shown that both groups presented

differences in the brain functional networks sustaining this
ERP, and that these two groups actually showed similarities,
suggesting compromised gating already at at-risk stages (154).
In particular, FES subjects showed a greater connectivity
in the right superior frontal gyrus and right insula, while
HR subjects had a greater connectivity in the paracentral
lobule and the middle temporal gyrus, as compared to
HCs (154).

N100

N100 is one of the largest auditory and visually evoked ERP and
can be visualized as a negative deflection peaking between 80
and 120ms after the stimulus onset, with its maximal amplitude
recorded over fronto-central leads (159). Subjects with chronic
schizophrenia, compared to HCs, show a robust reduction
in the amplitude of N100 and in N100-related measures of
sensory gating (56, 159, 160). Findings concerning the presence
of abnormalities of N100 in the early stages of psychosis are
controversial. In particular, some studies demonstrated that
FEP subjects, compared to HCs, showed a reduced N100
amplitude both during visual (161) and auditory paradigms
(162–164), while other studies did not detect any N100 amplitude
impairment in FEP subjects (152, 165–167). In HR subjects one
study reported a reduction in N100 amplitude (163), while most
of the studies reported similar values of N100 amplitude in HR
subjects and HCs (161, 165, 168–171).

When sensory gating was assessed through the presentation
of two subsequent stimuli, the N100 amplitude difference (S2-
S1) (143, 150) and the N100 gating ratio (S2/S1) (143, 150, 152)
showed a significant increase in FEP (143, 150, 152) and HR
subjects (143, 150), suggesting an impairment in the processing
of redundant stimuli (143, 150). Conversely, some studies did not
find any statically significant difference in N100 amplitude (152)
or N100 gating ratio (151) in FEP (150–152) and HR subjects
(151), as compared to HCs.

N100 latency did not differ in FEP or in HR subjects compared
toHCs in any of the studies cited above that analyzed this variable
(143, 161–163, 167, 168, 170, 172).

MMN

MMN is a negative ERP elicited by the presentation of a “deviant”
rare sound in a repetitive sequence of “standard” tones that
generally occurs after 150–250ms upon the presentation of the
deviant stimulus (173–176). The deviant stimulus in the auditory
modality can differ from the standard one in terms of duration
(dMMN) or pitch (pMMN) (177). Currently, a deficit in MMN
elicitation is one of the most robust and replicable findings in
schizophrenia and it has been related to cognitive dysfunctions,
as well as functional impairment in people suffering from this
disorder (178–185). Interestingly, the impairment in MMN has
been reported already in the early stages of psychotic disorders
(63, 65, 186, 187). The reproducibility of dMMNdeficit for at-risk
and early stages of schizophrenia is greater than that of pMMN,
with the latter emerging more robustly only during the chronic
stage of schizophrenia. Thus, dMMN can be a more sensitive
marker than pMMN, in the context of early psychosis (30, 65).
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dMMN
Discrepant findings have been reported with the regard to
the dMMN amplitude. In particular, some studies found a
reduction of dMMN amplitude in FEP (66, 151, 188–191) and
FES subjects (65, 95, 181, 182, 190, 192–196) as compared
to HCs, while other studies did not find any abnormality in
dMMN amplitude in FEP and FES subjects (183, 197–200).
Furthermore, a study, involving ML to distinguish FES from
HCs with dMMN measures in addition to other neuroimaging
and clinical evaluations, highlighted that this EEG-index did not
contribute significantly to the discriminant ML-model (158).

A reduction in dMMN amplitude has been reported also in
HR subjects (66, 151, 191, 192, 194, 196, 201–204). In particular,
it seems that abnormalities in dMMN amplitude might predict
the onset of psychosis since they were present in HR-T and not
in HR-NT subjects (181, 196, 201–203, 205, 206). However, some
studies failed to find differences between HR subjects and HCs in
the dMMN amplitude (180, 181, 205, 207).

Most of the studies did not find significant differences between
HCs, FEP (188, 189), FES (193, 194, 198, 201, 206), and HR
subjects (180, 194, 201, 204, 206, 207) in dMMN latency, with
the exception of one study that found delayed latency in dMMN
peak in FEP subjects (196), as compared to HCs.

pMMN
Findings concerning pMMN amplitude are also inconsistent.
Specifically, several studies reported that FES subjects, as
compared to HCs, showed a significant reduction of pMMN
amplitude (164, 190, 198, 208); a multimodal-longitudinal study
showed that the deficit became evident approximately after 1.5
years from illness onset and was correlated with a reduction in
Heschl’s gyrus volume (198). Other studies, however, did not
confirm the above-mentioned results (65, 164, 183, 192, 194, 197,
199, 200, 209–211). As for the dMMN, also the pMMN amplitude
did not contribute to the ML model created to differentiate FES
subjects from HCs (158).

Most studies reported no abnormalities in pMMN amplitude
in HR subjects (both HR-T and HR-NT) (180, 192, 194, 205,
207, 209), while only two studies reported a pMMN amplitude
reduction in HR subjects (203, 204). All of the studies that
considered pMMN latency did not find significant differences
between HCs and FEP (209) or FES (194) or HR subjects (194,
204, 207, 209).

P300

The P300 is an ERP positive deflection that appears after the
onset of rare deviant “target” stimuli embedded in a sequence of
frequent “standard” stimuli (212). Previous reviews have showed
impairments of this EEG index in at-risk, prodromal, early, and
chronic phases of schizophrenia (33, 63, 67).

P300 is not a unitary phenomenon, but it is composed of
2 functionally different subcomponents: an early component,
the P3a, which usually peaks within a time window of 130–
275ms after the stimulus onset, that reflects an involuntary
shift in attention toward a deviant stimulus; a later component,
the P3b, observed within a time window of 275–600ms after
the stimulus, that reflects a conscious and controlled attentive

process toward a stimulus and its task-relevance (60). Some
studies explicitly differentiated P3a and P3b, analyzing one or
both subcomponents in the same sample, while others referred
more generally to P300 recordings. In most of studies which
referred to a general P300, P300 was considered as the most
positive deflection within a time window of 250–600ms after the
stimulus, thus referring mainly to the P3b component.

In order to record and characterize the P300, most of the
studies addressing impairments in at-risk and early stages of
schizophrenia have employed visual and auditory tasks. In
particular, only three studies used a visual paradigm (161,
165, 170) and found a reduced amplitude (161, 165, 170) and
prolonged latency (161, 170) of P300 in FES (161, 165) and
HR (161, 165, 170), as compared to HCs. The two following
subsections will include results of those studies that recorded P3a
and P3b components all during auditory paradigms.

P3a
In FEP and FES subjects different studies have highlighted a
decrease of the P3a amplitude compared to HCs (163, 188, 189,
194, 196, 200, 209, 210, 213). On the other side, some studies
failed to detect differences in P3a amplitude between HCs and
FEP (190, 195). Interestingly, in one study, deficits in P3a were
not present at the baseline, but emerged when FEP subjects were
evaluated at 12 and 24 months follow-up visits (166).

The decrease in P3a amplitude has been reported also in
several studies including HR subjects, as compared to HCs (68,
128, 163, 194, 196, 209, 214), while two studies did not find
any difference in P3a amplitude between HR and control groups
(206, 207). One study found P3a amplitude reduction in HR-T
compared to HR-NT (196), while two studies did not find any
difference between these two groups (68, 214).

Regarding the P3a latency just one study of those mentioned
above highlighted a delayed P3a latency in FES subjects (213),
while all other studies did not identify any alteration in P3a
latency, in FEP, FES and HR subjects (68, 163, 188, 189, 196, 206,
207, 209, 213–215).

P3b
In FEP and FES subjects, as compared to HCs, different studies
have highlighted a decrease of the P3b amplitude (67, 163,
164, 172, 199, 210, 213, 215–223). One study demonstrated that
deficits in P3b, as observed for P3a, were not present at baseline,
but emerged when FEP subjects were evaluated at 12- and 24-
month follow-up visits (166). Furthermore, using LORETA, it
was shown that the reduction of P3b amplitude was mainly
driven by dysfunctions in the left temporal regions (222), while
a multimodal study, using MRI and EEG, has shown that P3b
reduction was specifically associated with left superior temporal
gyrus gray matter volume reduction (224). Only one study did
not detect any alteration of the P3b amplitude in FEP subjects,
compared to HCs (167).

Different studies have reported how the decrease in P3b
amplitude is present since the at-risk phases of the illness (68, 163,
168, 169, 171, 214, 225–227). Interestingly, one study highlighted
a step-wise decline in P3b amplitude throughout illness course,
characterized by a progressive decrease of P3b in subjects at
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at-risk, early and chronic stages of SCZ (P3b amplitude in
HCs>HR>FEP> chronic SCZ) (226). However, other studies
found that P3b amplitude was as impaired in HR as in subjects
at more advanced stages of illness (163, 214, 227). Several studies
showed P3b amplitude decrease in HR-T compared to HR-NT
and HCs (68, 171, 214), while just one study did not detect
any difference in P3b amplitude between converters and not
converters (225). A study divided the HR sample in HR-T and
HR-NT and the authors performed a further subdivision for the
latter group into remitted and non-remitted. It was observed that
HR-T subjects and HR-NT who continued to present attenuated
symptoms showed reduced P300 compared to HR-NT who
remitted and HCs (228).

With regard to the P3b latency, two studies reported an
increase of this EEG measure in FEP (215, 229), while other
studies did not detect any abnormalities of this feature in FEP,
FES (162, 163, 165, 167, 172, 213, 216–219, 221, 222, 224, 227,
230–232), and HR subjects (68, 163, 165, 168, 169, 227, 228), as
compared to HCs.

N400

N400 is a negative-going deflection that peaks around 400ms
post-stimulus onset and it is typically maximal over centro-
parietal electrode sites. The N400 is part of the normal brain
response to words and other meaningful stimuli, including
visual and auditory words, sign-language, pictures, faces,
environmental sounds, and smells (233). Several studies have
revealed that subjects with chronic schizophrenia presents
abnormalities in this ERPs values, with some results suggesting
that N400 semantic priming deficits may reflect an underlying
neurophysiological mechanism of delusions (234).

However, to date, very few articles have addressed this
EEG-index in early stages of schizophrenia. In one study,
N400 presented a reduced amplitude and a prolonged
latency in FES, as compared to HCs (235). The reduced
N400 amplitude has also been found in HR subjects, as
compared to HCs (128), and was associated with neurocognitive
impairment (236).

DISCUSSION

EEG recordings provide in-vivo access to neuronal activity
and each EEG index can reflect distinct sensory and cognitive
processes. This review illustrates how multiple EEG-based
indices result already altered during at-risk and early stages of
schizophrenia, supporting the hypothesis that cerebral networks
dysfunctions appear early in the course of the disorder (25,
237, 238). However, although a large number of studies have
highlighted differences between FEP or HR subjects and HCs
on EEG variables, only few of these showed homogeneous and
consistent results.

EEG Frequency Bands
Studies on frequency bands have reported several abnormalities
across all five bands in at-risk and early stages of schizophrenia.

Within delta band, an increase in resting-state activity in both
at-risk and first-episode subjects compared to HCs has often

been reported (75–79). Studies have suggested that dysfunctions
in this band might arise from changes in dopamine synthesis
levels in the fronto-striatal-thalamic loops, which are detectable
already at the onset of psychotic disorders and result associated
to the severity of prodromal psychotic symptoms (29, 239).
Furthermore, this EEG index has also been successfully used to
predict the trajectory of negative symptoms and functioning in
FES subjects (76).

Studies on theta and alpha bands reported mixed results
(73, 75–77, 87, 88, 100). However, the activity of these two
bands during a task performance revealed alterations in both
FEP and HR samples in almost all of the studies considered. The
association of these bands to clinical symptoms (88, 91, 94) and
cognitive domains (91, 92, 94, 95) suggests that abnormalities in
neuronal oscillations in these frequency bands could contribute
to the clinical presentation in early disease stages.

For the beta band, only few studies (78, 88, 89) reported
alterations, while the majority did not find significant
abnormalities in early and at-risk subjects (73–77, 109).
The same is true for studies investigating stimuli-related activity,
coherence, and connectivity measures in this band.

Finally, for the gamma band, abnormalities of the resting-state
power, evoked power, synchrony, coherence, and connectivity
were observed in the early stages of schizophrenia (62).
Therefore, considering the role of gamma oscillations in the
cognitive processes (110, 111), the widespread cognitive deficits
observed already at early stages of schizophrenia (17, 240, 241)
might be connected to abnormalities in the gamma activity across
cerebral networks.

Considering these results on the whole, it is important
to underline that the diversity of the EEG paradigms and
analysis methods employed in the studies, do not allow drawing
solid conclusions.

Microstates
Abnormalities in the characteristics of MS, such as their mean
duration and the presence of abnormal patterns in theMS syntax,
suggest that sustainment of neuronal activity in interconnected
cerebral regions is impaired already at early stages of the disorder
(25, 54, 134–136).

Furthermore, in a recent study, which included FEP, HR-
T, HR-NT, and HCs, the authors discussed how abnormalities
of different microstate parameters might be linked to different
aspects of the illness (242). In particular, abnormalities of MS-
A in FEP and HR subjects could represent an unspecific state
biomarker of general psychopathology; abnormalities of MS-B in
FEP may represent a state biomarker specific to psychotic illness
progression; and finally, abnormalities of MS-D in HR-T (and
not HR-NT) might represent a biomarker of future transition
of HR subjects (242). However, to date, very few articles have
investigated the microstates in HR and FEP subjects, revealing
a research gap opportunity for future EEG studies.

ERPs
The studies included in the current review showed that in
FEP and HR subjects compared to HCs, all considered ERPs
presented abnormalities, generally manifested as a reduction in
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their amplitude. These deficits were detected both for ERPs
linked to the basic levels of sensory processing, such as P50
and N100, and for indices related to higher levels of cognitive
functions, such as MMN and P3b (63). For instance, the results
reported for P50, support previous evidence that sensory gating
is already impaired in at-risk and early stages of schizophrenia
and may reflect a diminished capacity to filter repetitive sensory
signals (44). Conversely, impairments in N100 seem to be
more consistent in FEP rather than HR subjects, suggesting
that this type of deficit might emerge only at a morbid stage
of the disorder. The relationship of this ERP abnormalities
with primary negative symptoms (160, 243), which might be
present only in a subgroup of subjects with schizophrenia, might
partially explain the heterogeneity of the results. One general
limitation of the studies addressing at-risk and prodromal stages
is the poor characterization of negative symptoms and cognitive
deficits, which are not included in diagnostic criteria though they
might be predictive of poor clinical and functional outcome and
conversion to schizophrenia (18). Recent data have demonstrated
that early auditory processing deficits, as assessed either by
neuropsychological tasks or MMN (244, 245), are present only in
a subgroup of subjects with schizophrenia. In at-risk subjects the
same deficits are not always found (244), indicating that either
cognitive and neurophysiological deficits develop only from the
onset of the morbid phase or that individuals with premorbid
deficits are not being captured by current criteria which do not
consider core aspects of schizophrenia-spectrum disorders, such
as negative symptoms.

Amongst the ERPs indices, MMN and P300 showed the
highest rate of abnormal values in the studies included in the
present review. Articles focusing on MMN have shown that
reductions in the amplitude of dMMN and pMMN seem to be
different depending on the phase of the disorder. Reductions in
dMMN, in fact, precedes the one in pMMN, which is almost
never observed in HR subjects and only few times in FEP subjects
(64). Thus, dMMN can be a more sensitive marker than pMMN
in the context of prodromal and early psychosis (30, 65, 95,
185, 186). Alternatively, pMMN reductions could reflect illness
chronicity and could be used to monitor treatment efficacy and
disease progression (64, 198). In addition to MMN results, also
P300 might be an index used as a robust and effective biomarker
for transition to psychosis inHR and for prognosis of the disorder
in FEP subjects (67, 68, 171, 214, 226).

Finally, the low number of studies measuring N400 in FEP and
HR prevents the formulation of any inference on this component.

Limits of EEG Indices in the Early Stages of
Schizophrenia
The integration of the results reported in the current systematic
review is compromised by three major limitations: the use
of different diagnostic criteria and assessment scales, the
heterogeneity of EEG paradigms and analysis methods used in
the included studies and, finally, the intra and inter-subjects’
variability of EEG recordings.

Firstly, both for at-risk and early phases of schizophrenia,
inclusion criteria were based on different operational definitions.

For instance, for at-risk or prodromal phases, ARMS, UHR, and
CHR operational criteria have been used in different studies. In
addition, the occurrence of a first episode was defined as the
first contact at a clinical setting, or the duration of antipsychotic
medication use or the duration of psychotic symptoms (26).

Secondly, there was a huge heterogeneity in experimental
paradigms, types of EEG indices considered and the definition
of their characteristics such as band ranges cut-off points and
the employed analysis methods. This was mostly evident in
frequency band rather than in ERP studies.

Finally, EEG studies are generally characterized by a
high variability within and between subjects, which might
not always be indicative of any pathological status, making
difficult a generalization of the reports. In fact, EEG data
recordings might be influenced by normal temporal fluctuations
in subject physiology, as well as caffeine and nicotine
intake, skull conductivity, several medical conditions, and
medication (246, 247).

Current and Future Perspective on the
Employment of EEG-Indices in Clinical
Settings
The application of EEG indices into clinical settings to predict
the likelihood of conversion to psychosis from a high-risk state
or the onset and the progression of the illness is still under
scrutiny. Due to the high variance of the results considered in
the present review, none of these EEG indices can be regarded
as a flawless marker of at-risk or early stages of schizophrenia,
and no clinical translation has yet been envisaged for any
of them (62, 64, 68). For instance, alterations in EEG-based
measures such as N100, MMN or P300 are indicators of deficits
in early sensory processing. However, the literature reported
that these impairments are dichotomously distributed among
schizophrenia subjects during their early and chronic stages of
illness, so they are not found in all affected patients. For this
reason, also in subjects at-risk of schizophrenia, deficits in early
sensory processes are not always reported, leading to discrepant
results. Furthermore, it should be considered that the presence
of sensory processing deficits is not included among ARMS
criteria, which might imply that some subjects can be missed
using current diagnostic systems (244, 245).

Another consideration that should be made, is that most of
the studies included in the review rely on comparisons of HR
and FEP subjects to HCs on only one EEG index, while only few
analyzed multiple EEG indices simultaneously (76, 79, 163, 248,
249). The latter approach could be more effective in predicting
clinical and functional outcome both in early and prodromal
phases of schizophrenia or to characterize the neurobiological
alterations in initial phases. For instance, Renaldi et al. (76)
used a multiple regression analysis with delta, theta, alpha, and
beta spectral power with the aim to predict symptomatic and
functional improvement in FES subjects. Furthermore, a study
investigated the utilization of N100, P3a, and P3b amplitudes
to discriminate HR and FES subjects from HCs, showing that
only the first two EEG-indices were significant predictors of
the diagnosis (163). Some authors analyzed changes in multiple
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frequency band indices, using a longitudinal design, to identify
which could predict conversion to psychosis in HR subjects
(79, 248, 249). In one of these studies, delta, theta and alpha
activity contributed to a predictive model of conversion (79).
Furthermore, another study (249) showed that a regression
model using delta, theta, and beta activity, combined with clinical
data, was able to predict with an accuracy of over 80% the
transition to psychosis in HR subjects. Conversely, one study
reported that absolute power values of frontal alpha, beta, and
delta activity were not associated to transition to psychosis (248).

In the last decades, machine learning technique became
popular to overcome the limits of univariate analyses, which
require a preselection of variables to be used in prediction. This
promising approach is based on the use of multiple variables (e.g.,
electrophysiological, genetic, or clinical data) and the algorithm
enables general hypotheses and previsions (e.g., discrimination
between patients and controls, prediction of the response to
treatment or clinical course). This approach has been used
in different imaging studies, with the aim to predict clinical
information at individual level (250–252). However, in studies
with subjects at early and prodromal stages of schizophrenia,
only few research groups have employed this promising method
with EEG data. Among these, one study utilized the machine
learning algorithm, which incorporated measures of current-
source density (CSD) and LORETA synchronization indices
of beta and gamma oscillations, in order to predict HR
subjects who would develop psychosis in a 3-years follow-up
(253). Furthermore, another study found that EEG-measures,
such as P50 and MMN, could identify the presence of two
distinct subgroups within a FES sample, which could potentially
assist clinicians in treatment design based on the individual
neurobiological differences (254). In a recent longitudinal study
(255), machine learning was used to discriminate two subgroups
of FEP subjects, according to changes in dMMN amplitude,
revealing that subjects with improvement of dMMN had better
clinical, cognitive, and functional follow-up outcomes than those
with worsening of dMMN (255). However, another study did
not find a significant contribution of electrophysiological indices,
such as P50 and MMN, for the discrimination between FES and
HCs (158).

Besides the multivariate approach, it could be very useful to
use multimodal analyses in which, for instance, simultaneous
EEG-MRI is recorded in order to achieve a good spatial-
temporal resolution. However, few of the included studies have

been conducted using a multimodal approach, analyzing and
correlating MRI and EEG abnormalities in these groups of
subjects (124, 198, 224, 256).

Finally, given that progressive changes in EEG measures
are associated with transition to psychosis and disease course,
more studies with a longitudinal design (76, 79, 121, 255, 256)
are needed.

CONCLUSIONS

The current systematic review advocates the conduction of
further studies on EEG indices that could support clinicians in
their decision-making process in the early stage of the disorder.
In order to draw reliable conclusions from the combination
of the various studies, standardized subjects’ inclusion criteria,
electrophysiological protocols, and analysis methods should
be adopted.

Studies should include multiple EEG indices, integrate them
with other clinical variables and apply multivariate approaches,
such as machine learning algorithms, in order to provide
a reliable tool in the diagnosis and prognosis of early and
prodromal stages of schizophrenia.
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