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ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable resource 
for clinical researches. However, FFPE samples are usually considered an unreliable 
source for gene expression analysis due to the partial RNA degradation. In this 
study, through comparing gene expression profiles between FFPE samples and paired 
fresh-frozen (FF) samples for three cancer types, we firstly showed that expression 
measurements of thousands of genes had at least two-fold change in FFPE samples 
compared with paired FF samples. Therefore, for a transcriptional signature based 
on risk scores summarized from the expression levels of the signature genes, the 
risk score thresholds trained from FFPE (or FF) samples could not be applied to FF 
(or FFPE) samples. On the other hand, we found that more than 90% of the relative 
expression orderings (REOs) of gene pairs in the FF samples were maintained in their 
paired FFPE samples and largely unaffected by the storage time. The result suggested 
that the REOs of gene pairs were highly robust against partial RNA degradation in 
FFPE samples. Finally, as a case study, we developed a REOs-based signature to 
distinguish liver cirrhosis from hepatocellular carcinoma (HCC) using FFPE samples. 
The signature was validated in four datasets of FFPE samples and eight datasets of FF 
samples. In conclusion, the valuable FFPE samples can be fully exploited to identify 
REOs-based diagnostic and prognostic signatures which could be robustly applicable 
to both FF samples and FFPE samples with degraded RNA.

INTRODUCTION

The vast majority of clinical tissue samples are 
routinely fixed in formalin and embedded in paraffin 
(FFPE) blocks [1–3], and billions of FFPE samples are 
preserved in hospitals and tissue banks worldwide [4]. 
Given this wealth of archival clinical specimens from 
patients with precious clinical and follow-up data [5, 
6], the medical research community has strong desire 
to exploit the FFPE samples to identify transcriptional 
diagnostic and prognostic biomarkers of tumors. However, 
FFPE preparation process and storage inevitably degrade 
RNA [2, 7–9], leading to RNA fragmentation ( up to 50% 
of which may not contain an intact poly-A tail) [7] and 

degradation with RIN (RNA Integrity Number) scores 
usually below three [10, 11]. This problem renders FFPE-
isolated nucleic acids unsuitable for gene expression 
profiling experiments [6, 12] which usually require high-
quality fresh-frozen (FF) tissues with RIN score of 6.0 
or higher [13–15]. Therefore, FFPE samples are largely 
limited to immuno-histochemical (IHC) staining and 
RT-PCR experiments [5, 8, 16–20]. This makes a major 
limitation for transcriptional analysis when sufficient FF 
samples are unavailable [1, 21].

Several studies have tried to prove that gene 
expression profiling can be performed on FFPE samples 
like FF samples by showing that the gene expression 
profiles of the FFPE tumor samples are strongly correlated 
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with that of the matched frozen tumor samples [11, 
22–28]. However, a high correlation between two gene 
expression measurements does not guarantee that the 
two gene expression measurements are close, which 
will bring uncertainty to the applications of most current 
disease signatures based on risk scores summarized 
from expression measurements of the signature genes 
[29–34]. In this study, through comparing FFPE samples 
with their paired FF samples, we firstly showed that 
thousands of genes had at least two-fold change in FFPE 
samples compared with paired FF samples. Because the 
expression measurements of the signature genes in FFPE 
samples cannot be exactly transformed to the expression 
measurements in FF samples, the type of the risk-scores 
based signatures determined from FFPE (or FF) samples 
could not be applied to FF (or FFPE) samples.

Another type of tumor signatures is based on the 
relative expression orderings (REOs) of genes within 
samples [35–38], which is highly robust against large 
measurement variations introduced by experimental 
batch effects [39–41]. In view of the high correlation 
between paired FF and FFPE expression profiles [11, 
22–28], we reasoned that it would be possible that most 
of the stable REOs of gene pairs in FF samples could 
be maintained in the FFPE samples with partial RNA 
degradation. In this study, we confirmed this reasoning 
through comparing the REOs in FFPE samples with the 
REOs in the corresponding paired FF samples obtained 
from the same patients. Lastly, as a case study to 
demonstrate the robustness of REOs-based signatures, we 
developed a REOs-based signature from FFPE samples 
to distinguishing liver cirrhosis from hepatocellular 
carcinoma (HCC) and validated this signature in both FF 
samples and FFPE samples with degraded RNA.

RESULTS

The gene expression measurements of FFPE 
samples affected by RNA degradation

From the The Cancer Genome Atlas (TCGA), 
we extracted 12, 10 and 5 paired FF and FFPE samples 
obtained from the same patients with lung adenocarcinoma 
(LUAD), colon adenocarcinoma (COAD) and breast 
invasive cancer (BRCA), respectively (Table 1). These 
paired FF and FFPE samples were used to evaluate the 
influence of RNA degradation on the gene expression 
measurements in FFPE samples.

With FDR<0.05, we detected 4133 differentially 
expressed genes (DEGs) between the 12 FFPE samples 
and their paired FF samples of LUAD using the Rank 
Product (RP) algorithm which is resistant to experimental 
batch effects [42]. Among these DEGs, 2318 genes had at 
least 2-fold change in the FFPE samples compared with 
their paired FF samples (Figure 1). Similarly in COAD, 
we found 4073 DEGs between the 10 FFPE samples and 

their paired FF samples (RP, FDR<0.05), among which 
2185 genes had at least 2-fold change in the FFPE samples 
compared with their paired FF samples (Figure 1). 
Similarly in BRCA, we found 1316 DEGs between the 5 
FFPE samples and their paired FF samples, among which 
843 genes had at least 2-fold change in the FFPE samples 
compared with their paired FF samples (Figure 1). These 
results confirmed that gene expression measurements in 
FFPE samples were widely affected by RNA degradation 
and expression measurements of thousands of genes had 
at least 2-fold change in the FFPE samples compared with 
the FF samples. Therefore, considerable caution must be 
taken when we interpret gene expression data from FFPE 
samples.

In addition, the three lists of DEGs for the three 
types of cancer had 1205 overlaps, among which 99.17% 
had consistent up- or down-deregulation directions in the 
FFPE samples compared with the FF samples across the 
three cancer types (binomial test, P-value < 1.0E-16). 
This result indicated that the genes affected by the RNA 
degradation were largely independent of the tissue types.

The robustness of the REOs against RNA 
degradation in FFPE samples

Using the above FF and FFPE paired samples for 
LUAD, COAD and BRCA, we evaluated the consistency 
of REOs of gene pairs between every paired FF sample 
and FFPE sample extracted from the same patient.

For all the 200,610,465 gene pairs of measured 
genes, the average consistency score of the REOs between 
the FF and paired FFPE samples was 87.22% for LUAD 
(see Materials and Methods, Figure 2A). It is known that 
the REOs of gene pairs with small expression differences 
tend to be unstable due to random measurement variations 
[43]. After excluding 10% and 20% of the gene pairs 
with the closest gene expression levels in each of the FF 
samples, the average consistency scores for the remained 
gene pairs between the FFPE and paired FF samples 
increased to 90.96% and 93.96% for LUAD, respectively. 
Similarly for COAD and BRCA samples, after excluding 
10% of the gene pairs with the closest expression levels in 
the FF samples for each cancer, the average consistency 
scores for the remained gene pairs between the FFPE and 
FF samples were larger than 90% and the consistency 
scores increased as 20% of the gene pairs with the closest 
expression levels in the FF samples were excluded (Figure 
2B and 2C). These results showed that the REOs of gene 
pairs in FFPE samples were highly robust against RNA 
degradation.

It has been reported that the yield, purity, and 
integrity of mRNA progressively decrease with prolonged 
storage of the paraffin blocks [2, 44, 45]. Here, we 
evaluated the influence of the storage time on the REOs 
in the FFPE samples by analyzing seven FFPE normal 
prostate tissue samples stored for 11~21 years in the 
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GSE54809 dataset. We collected 281 FF normal prostate 
tissue samples from different data sources (Table 1) and 
identified 4,008,955 gene pairs with highly stable REOs 
in at least 99% of these accumulated FF normal prostate 
tissue samples [38]. Taking them as the golden standard, 
we found that above 94% of these highly stable REOs 
were maintained in each of the FFPE normal prostate 
tissue samples. Similarly, we also analyzed four FFPE 
normal liver tissue samples stored up to 20 years in the 
E-MTAB-2523 dataset. Taking 31,429,023 gene pairs 
with highly stable REOs in at least 99% of 495 FF normal 
liver tissue samples (Table 1) as the golden standard, we 

found 92.44% of these REOs were maintained in the FFPE 
liver tissues stored up to 20 years (Table 2). These results 
indicated that most of the highly stable REOs of gene pairs 
in the FF samples remained stable in the FFPE samples 
although gene expression measurements of FFPE samples 
were affected by the storage time [2, 44, 45].

A REOs-based signature identified from FFPE 
samples to distinguish liver cirrhosis from HCC

We collected 82 FFPE samples of liver cirrhosis 
from the GSE10140 dataset and 80 FFPE samples of 

Table 1: Description of paired FF and FFPE sample data and normal sample data used in this study

Dataset Platform Sample size Tissue type Storage type RIN(FF) RIN(FFPE)
#TCGA_ 
LUAD

IlluminaHiSeq_
RNASeqV2 12 pairs LUAD FFPE and FF 8.1~9.4 2.3~2.5

#TCGA_ 
COAD

IlluminaHiSeq_
RNASeqV2 10 pairs COAD FFPE and FF 7.3~9.8 2.0~2.6

#TCGA_ 
BRCA

IlluminaHiSeq_
RNASeqV2 5 pairs BRCA FFPE and FF 7.4~9.7 2.1~2.7

GSE54809 GPL6244 7

normal 
prostate

FFPE - -

GSE6956 GPL571 20 FF - -

GSE29079 GPL5175 48 FF - -

GSE32448 GPL570 40 FF - -

GSE46602 GPL570 14 FF - -

GSE11682 GPL4133 17 FF - -

GSE28204 GPL6480 4 FF - -

GSE35988 GPL6480/6848 28 FF - -

GSE38241 GPL4133 21 FF - -

GSE55597 GPL10558 16 FF - -

GSE70768 GPL10558 73 FF - -

E-MTAB-2523 IlluminaHiSeq 2000 4

normal liver

FFPE - -

GSE41804 GPL570 20 FF - -

GSE55092 GPL570 80 FF - -

GSE46408 GPL4133 6 FF - -

GSE50579 GPL14550 7 FF - -

GSE54236 GPL6480 80 FF - -

GSE36376 GPL10558 193 FF - -

GSE39791 GPL10558 72 FF - -

GSE57957 GPL10558 37 FF - -

Note:#TCGA_LUAD, #TCGA_COAD and #TCGA_BRCA denote mRNA_seq data of paired FF and FFPE samples for lung 
adenocarcinoma, colon adenocarcinoma and breast invasive cancer samples from TCGA, respectively.
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Figure 1: The fluctuation degree of gene expression measurements affected by RNA degradation in FFPE samples. 
Fold changes of DEGs between FFPE samples and their paired FF samples for lung adenocarcinoma (LUAD, shown in blue bar), colon 
adenocarcinoma (COAD, shown in red bar) and breast invasive cancer samples (BRCA, shown in green bar).

Figure 2: The consistency scores of REOs of gene pairs between every FFPE sample and its paired FF sample. The 
consistency scores between every paired FFPE and FF samples after excluding zero, 10% and 20% gene pairs with the smallest expression 
differences in each of the FF samples for lung adenocarcinoma A., colon adenocarcinoma B. and breast invasive cancer C.
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HCC from the GSE10141 dataset to train the signature. 
We extracted 12,567,591 gene pairs with identical REOs 
in more than 85% of the 82 liver cirrhosis samples, among 
which we found 143 gene pairs that had the reversal REOs 
in more than 85% of the 80 HCC samples. From these 
143 gene pairs, we selected the five gene pairs (Table 
3) with the top-ranked largest geometric mean of the 
average absolute rank difference in liver cirrhosis and the 
average absolute rank difference in HCC samples (see 
Materials and Methods). Using the five gene pairs as the 
signature, we classified a given sample according to the 
majority rule: if the REOs of more than half of the five 
gene pairs in the sample were consistent with the REOs 
in the liver cirrhosis samples, the sample was identified 
as the liver cirrhosis; otherwise, the HCC. In the training 
datasets, 93.75% of the HCC samples and 96.34% of the 
liver cirrhosis samples were correctly classified. Notably, 
through literature reviews, we found that CLDN10 [46], 
CDKN3 [47], CRHBP [48] and NEK2 [49] were reported 
to be associated with HCC, and SPINK1 [50] was 
associated with liver cirrhosis.

This REOs-based signature was validated in four 
datasets of FFPE samples and eight datasets of FF samples 
for liver cirrhosis and HCC. Taking the four datasets of 
FFPE samples as a whole, 92.57% of the 417 HCC 
samples and 92.89% of the 225 liver cirrhosis samples 
were correctly classified. Taking the eight datasets of FF 
samples as a whole, 94.00% of the 699 HCC samples and 
97.11% of the 346 liver cirrhosis samples were correctly 
classified. As described in Table 4, except the 35 FF 
samples of HCC in the GSE56140 dataset, above 90% 
of both the HCC and liver cirrhosis samples in each of 
the 12 datasets were correctly classified. For the 35 FF 
samples of HCC in the GSE56140 dataset, seven samples 
were wrongly classified as liver cirrhosis, possibly due to 

some unknown factors such as the impurity of the HCC 
samples that might have no sufficient proportions of tumor 
cells [51, 52]. In general, this case study demonstrated that 
a REOs-based transcriptional signature identified from 
FFPE samples could be applied robustly to both FF and 
FFPE samples.

DISCUSSION

To identify transcriptional diagnostic and prognostic 
biomarkers of tumors, researchers have strong desire to 
exploit the wealth of FFPE samples preserved in hospitals 
and tissue banks with precious clinical and follow-up 
data [5, 6, 53, 54]. However, as shown in this study, the 
expression measurements of thousands of genes had 
at least two-fold change in FFPE samples compared 
with paired FF samples due to the RNA degradation. 
Therefore, for transcriptional signatures based on risk 
scores summarized from the expression measurements 
of the signature genes, risk score thresholds predefined 
from FFPE (or FF) samples could not be applied to FF 
(or FFPE) samples directly. The intrinsic problem of 
incomparable gene expression measurements between 
FFPE and FF samples cannot be solved even if we could 
exactly measure low levels of gene expression in FFPE 
samples by RT-qPCR. In contrast, we found that the vast 
majority of the REOs of gene pairs in FFPE samples 
were not affected by RNA degradation. The robustness of 
REOs against partial RNA degradation makes it possible 
that REOs-based transcriptional signatures identified 
from FFPE samples could be applied robustly to both FF 
and FFPE samples. As demonstrated by the case study, 
a REOs-based signature consisting of five gene pairs 
extracted from FFPE samples could be applied to both FF 
and FFPE samples to distinguish liver cirrhosis from HCC. 

Table 2: The influence of the storage time on REOs of gene pairs in FFPE samples

Dataset Storage time(years) Consistency score

GSE54809

11 0.9668

12 0.9565

14 0.9666

16 0.9464

18 0.9468

19 0.9652

21 0.9611

E-MTAB-2523

0.17 0.9099

1.08 0.8644

5.17 0.9757

20.08 0.9244

Note: The average consistency scores between REOs of FFPE normal samples and stable REOs in normal FF samples.
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Thus, the precious FFPE samples could be fully exploited 
for the identification of REOs-based transcriptional 
signatures of tumors.

On the other hand, our analyses also showed that 
the REOs of some gene pairs, especially those gene pairs 
with small expression differences in FF samples, were 
not maintained in their paired FFPE samples, indicating 
that the influence of RNA degradation on some genes’ 
expression levels in the FFPE samples might be too large 
to remain their REOs in the FF samples. This result also 
suggested that subtle quantitative information of gene 
expression measurements of FFPE samples are unreliable, 
whereas the seemingly disadvantage of REOs analysis 
without using some subtle quantitative information of gene 
expressions is in fact a unique advantage. Especially, we 
could choose gene pairs with larger expression differences 
to develop robust REOs-based signatures, excluding gene 
pairs with small expression differences which tend to 
be unstable due to random variations of measurement 

[43]. This strategy would keep sufficient information 
for prognostic signature detection due to the widely 
correlated prognostic gene expressions [55]. In general, 
the subtle quantitative information of gene expression 
measurements are quite error-prone and uncertain due to 
various technical artifacts or ‘batch effects’ introduced 
by the differences in reagent lots, reaction conditions and 
operators [56–60]. Data normalization methods, such as 
Combat [61], DWD [57] and XPN [62], could distorts 
real biological signals [63]. In contrast, the REOs of 
gene pairs within samples are insensitive to experimental 
batch effects and data normalizations [64, 65] and thus 
could provide more accurate and robust patient-specific 
information for clinical applications [38]. In facts, 
prognostic signatures based on within-sample REOs have 
be successfully identified and validated for breast cancer 
[35, 37, 66, 67], lung cancer [68] and hepatocellular 
carcinoma [39]. Nevertheless, as shown in this study, 
that RNA degradation can affect some REOs of genes 

Table 3: The 5-gene-pair signature

Signature Gene A Gene B

pair1 CLDN10 SPINK1

pair2 CLDN10 CDKN3

pair3 CLDN10 LCN2

pair4 VIPR1 NEK2

pair5 CRHBP NEK2

Note: Gene A has a higher expression level than Gene B in liver cirrhosis.

Table 4: The prediction sensitivity scores of the signature in the validation datasets

Sample type Dataset Platform Number (Sensitivity) 
of HCC samples

Number (Sensitivity) 
of

Hepatitis/ cirrhotic 
liver samples

FFPE

GSE10142 GPL5474 - 225(0.9289)

GSE10186 GPL5474 118(0.9068) -

GSE19977 GPL8432 164(0.9390) -

GSE20017 GPL8432 135(0.9259) -

FF

GSE63898 GPL13667 228(0.9342) 168(0.9583)

GSE25097 GPL10687 268(0.9478) 40(1.0000)

GSE56140 GPL18461 35(0.8000) 34(0.9706)

GSE36411 GPL10558 42(0.9524) 21(0.9524)

GSE6764 GPL570 35(0.9429) 13(1.0000)

GSE9843 GPL570 91(0.9780) -

GSE17967 GPL571 - 47(1.0000)

GSE57725 GPL14951 - 23(0.9565)
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in FFPE samples in our analyses, it is still necessary to 
develop new technologies for RNA extraction protocols, 
RNA amplification and labeling methods to enhance the 
transcriptome data quality from FFPE samples [25, 28, 
69–71]. Especially, because measurement of low levels of 
gene expression in FFPE samples by RT-qPCR is feasible, 
it is desirable to develop RT-qPCR kit for translating the 
REOs-based signatures to clinical applications.

In summary, the REOs-based method will enable 
gene expression analysis of FFPE samples with RNA 
degradation that are widely stored in pathology archives 
around the globe.

MATERIALS AND METHODS

Data and preprocessing

All gene expression data analysed in this study 
were downloaded from the GEO (http://www.ncbi.nlm.
nih.gov/geo/) [72], ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) [73] and TCGA (http://cancergenome.nih.
gov/), as described in detail in Table 1. For the mRNA-
seq profiles of level 3 in TCGA, we removed those genes 
with zero expression values in both FF and FFPE samples 
and the remained 20031, 20201 and 20029 genes were 
analyzed for lung adenocarcinoma, colon adenocarcinoma 
and breast invasive cancer samples, respectively.

For the data measured by the Affymetrix platform, 
the Robust Multi-array Average algorithm [74] was used to 
do background adjustment for the raw mRNA expression 
data (.CEL files). For the data measured by the Illumina 
platform, we directly downloaded the processed data. For 
the data measured by the Agilent platform, we downloaded 
the raw fluorescent signal intensities data of the channel 
(gMedianSignal or rMedianSignal) for normal samples 
and used the intensities to minus the corresponding 
background signal intensities as the probe-expression 
matrix. Each probeset ID was mapped to Entrez gene 
ID with the platform file. If a probeset was mapped to 
multiple or zero gene, then the data of this probeset was 
deleted. If multiple probesets were mapped to the same 
gene, the expression value for the gene was defined as the 
arithmetic mean of the value of multiple probesets.

Evaluation of the REOs of gene pairs in each 
FFPE sample compared with its paired FF 
sample

All the genes in a sample are ranked according 
to their expression levels in ascending order. Pairwise 
comparisons are performed for all genes in each FF 
sample. Then, we calculated the rank difference for 
each gene pair in each FF samples by the equations as 
following:

=Rij Ri R j| - |

Ri and Rj represent the ranks of gene i and j in FF 
sample, respectively, and Rij is the absolute rank difference 
between the two genes. The gene pairs with the smallest 
Rij were considered to have closest expression levels.

The consistency score of these gene pairs in its 
paired FFPE sample was calculated as k/n, where n was 
the number of the gene pairs in FF samples and k was 
the number of gene pairs with the consistent REOs in the 
FFPE and FF samples.

Identification of highly stable REOs in normal 
tissue

For a particular tissue, pairwise comparisons were 
performed for all genes to identify gene pairs with stable 
ordering in accumulated normal samples from different 
data sources. For each gene pair (Gi, Gj), being viewed 
as an event with only two possible outcomes (Gi>Gj or 
Gi<Gj), the gene pairs which the expression level of Gi 
was higher (or lower) than that of Gj in more than 99% of 
accumulated normal samples were defined as highly stable 
gene pairs.

Developing a REOs-based signature to 
distinguish liver cirrhosis from HCC

Firstly, a gene pair (Gi and Gj) was selected when its 
REO, Gi > Gj in expression level, was identical in more 
than 85% of the liver cirrhosis samples, and was reversed 
(Gi <Gj) in more than 85% of the HCC samples. After 
selecting all such reversal gene pairs, we calculated the 
rank difference for each gene pair in each of the HCC or 
liver cirrhosis samples.

=vgRij mean Rij cirr mean Rij hcca [ ( )]* [ ( )]

Let mean Rij cirr[ ( )] and mean Rij hcc[ ( )]  represent 
the means of absolute rank differences of the gene pair 
(i, j) in all liver cirrhosis samples and all HCC samples, 
respectively. Then, we calculated the geometric mean of 
the mean Rij cirr[ ( )] and the mean Rij hcc[ ( )] to evaluate the 
reversal degree of the gene pair. The larger this geometric 
mean, the larger reversal degree of the REO for the two 
genes between the liver cirrhosis and HCC samples.

Finally, among all the reversal gene pairs, the gene 
pairs with the largest geometric mean of the absolute 
rank differences in liver cirrhosis and HCC samples were 
selected as the signature. For a given sample, if the REOs 
of more than half of the gene pairs signature in the sample 
were consistent with the REOs in the liver cirrhosis 
sample, the sample was identified as the liver cirrhosis; 
otherwise, the HCC.
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