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Molecular characterization of renal cell
carcinoma tumors from a phase III
anti-angiogenic adjuvant therapy trial

Robert J. Motzer 1,9 , Jean-François Martini2,9, Xinmeng J. Mu3,
Michael Staehler 4, Daniel J. George 5, Olga Valota 6, Xun Lin 2,
Hardev S. Pandha7, Keith A. Ching3,10 & Alain Ravaud8,10

Multigene assays can provide insight into key biological processes and prog-
nostic information to guide development and selection of adjuvant cancer
therapy. We report a comprehensive genomic and transcriptomic analysis of
tumor samples from 171 patients at high risk for recurrent renal cell carcinoma
post nephrectomy from the S-TRAC trial (NCT00375674). We identify gene
expression signatures, including STRAC11 (derived from the sunitinib-treated
population). The overlap in key elements captured in these gene expression
signatures, which include genes representative of the tumor stroma micro-
environment, regulatory T cell, andmyeloid cells, suggests they are likely to be
both prognostic and predictive of the anti-angiogenic effect in the adjuvant
setting. These signatures also point to the identification of potential ther-
apeutic targets for development in adjuvant renal cell carcinoma, such as
MERTK and TDO2. Finally, our findings suggest that while anti-angiogenic
adjuvant therapy might be important, it may not be sufficient to prevent
recurrence and that other factors such as immune response and tumor
environment may be of greater importance.

Understanding the key biologic processes involved in micro-
metastasis dissemination, colonization, nesting, dormancy,
immune evasion/suppression, and tumor microenvironment
modulation remains critical in identifying the right drug mode of
action for adjuvant therapy in patients at high risk of disease
recurrence1,2. Patients with localized (stage I–III) renal cell carci-
noma (RCC) commonly undergo radical or partial nephrectomy
with curative intent, but ~60% of the patients at high risk of disease
recurrence, based on a validated nomogram, will relapse3. Effec-
tive adjuvant treatment to prevent recurrence of RCC is an
unmet need.

Clear cell RCC (ccRCC) tumors, the most common histological
RCC subtype, are highly vascularized. These tumors frequently (>70%)
present with biallelic inactivation of the von Hippel-Lindau (VHL)
gene4. VHL inactivation leads to the stabilization and accumulation of
hypoxia-inducible factors (HIF-1α and HIF-2α). These transcription
factors activate numerous downstream targets, including vascular
endothelial growth factor (VEGF), the foremost growth factor in tumor
angiogenesis. The VEGF pathway contributes to the development and
metastasis of cancer in several additional ways. VEGF receptor-1
(VEGFR1)-positive hematopoietic progenitor cells (HPCs) and bone
marrow-derived cells play important roles in the colonization of
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premetastatic sites prior to tumor cell arrival1. The tumor cells that
survive the initial immune defense can survive for years as dormant
micrometastases. VEGFR1-positive HPCs and VEGFR2-positive endo-
thelial progenitor cells are thought to mediate the neovascularization
of these tumors1. VEGF contributes to immune evasion and suppres-
sion and can lead to changes in the tumor microenvironment via
effects on T cells, regulatory T cells (Tregs), myeloid-derived sup-
pressor cells, and dendritic cells5,6.

All but one of the clinical trials with tyrosine kinase inhibitors
(TKIs) of the VEGF pathway in the adjuvant RCC setting failed to show
clinical benefit7,8. There are various hypotheses to explain why S-TRAC
had a positive outcome while the other trials did not, including the
overall drug exposure/dose density and the clinicopathologic selec-
tion of the patient population enrolled7,9,10. S-TRAC enrolled patients
with ccRCC at high risk for recurrence post nephrectomy and
demonstrated significantly longer disease-free survival (DFS) with
adjuvant sunitinib compared with placebo11. Based on the S-TRAC
results, sunitinib received regulatory approval in the United States as
adjuvant treatment for adult patients at high risk of recurrent RCC
following nephrectomy.

Using clinical data from the S-TRAC trial and biospecimens col-
lected in the study, various approaches were deployed to identify and
possibly enrich those patients more likely to benefit from such an
adjuvant approach12–15, including a 16-gene Recurrence Score® assay
that looked at components of vasculature normalization, immune
response, inflammation, and cell growth and differentiation, and that
displayed strong prognostic performance but did not predict differ-
ential benefit from adjuvant therapy15.

Multigene assays have been shown to provide prognostic, and
sometimes predictive, information beyond traditional clinical para-
meters relevant for selection of adjuvant therapy in several tumor
types. Hence, we conducted comprehensive, integrated multi-omics
tumor analyses in a subset of 171 patients (n = 91 and 80 treated with
sunitinib and placebo, respectively) from the S-TRAC trial to identify
molecular subtypes associated to these patients, and potential targets
or pathways of interest that may inform treatment or combination
therapies for patients with RCC who are at high risk of recurrence
following nephrectomy. Furthermore, we looked for possible
mechanisms of resistance to TKIs in this setting.

In this work, we utilize tumor tissue obtained prospectively froma
large, global phase III trial of patients rendered disease-free by
nephrectomy, who are at high risk of RCC recurrence and treated with
adjuvant anti-angiogenic therapy (sunitinib) or placebo, we identify
three gene expression signatures (GES) consisting of genes repre-
sentative of the tumor stroma microenvironment that, when highly
expressed, are associated with poor outcome and short DFS. We show
that the overlap of elements in these three GES suggests that they are
likely to be prognostic and predictive of the anti-angiogenic effect in
the adjuvant setting, and we identify potential therapeutic targets for
development in adjuvant RCC.

Results
Classic ccRCC mutations do not predict outcome following
tumor resection
As part of a retrospective hypothesis-generating analysis, we sub-
mitted 171 tumor tissues from nephrectomy or biopsy of patients
enrolled in the S-TRAC trial (NCT00375674) to whole exome sequen-
cing (WES) to identify and, when possible, compare genetic correlates
of clinical outcome with the results reported elsewhere in the meta-
static setting. Molecular characterization of ccRCC has led to the
identification of commonly mutated genes, including PBRM1, SETD2,
and BAP1. After VHL, PBRM1 is the most commonly mutated gene in
ccRCC, which, depending on context, can act as a tumor suppressor or
oncogene16. A meta-analysis of seven studies in localized RCC found
that PBRM1 loss of function was associated with reduced overall

survival (OS) and progression-free survival (PFS), as well as advanced
clinicopathologic features17.

Applying WES to the samples from our cohort confirmed the
prevalence of alterations in VHL, PBRM1, SETD2, and BAP1 (Fig. 1a).
The prevalence of these alterations was comparable to those
reported in the IMmotion 150, IMmotion 151, and JAVELIN Renal 101
studies18–20. However, DFS was not significantly influenced by the
presence ofmutations in VHL, PBRM1, SETD2, and BAP1 in the overall
study population (Fig. 1b–d). Loss of expression of VHL is a hallmark
of ccRCC and, as expected, mutations in VHL were detected in the
majority of patients overall (64.9%) (Fig. 1a). Mutations in PBRM1
were the second-most prevalent (30.4%) (Fig. 1a). Although patients
with tumors harboring a PBRM1 mutation seem to have a shorter
DFS versus patients with wild-type tumor (Fig. 1b), PBRM1mutations
did not appear to differentiate DFS outcomes in treatment-specific
arms (Fig. 1e). As suggested by previous molecular analysis of early
stage ccRCC, although mutations in PBRM1 are frequent, they may
not differentiate aggressive versus non-aggressive tumors as much
as represent an early, potentially essential event in tumorigenesis
that does not impact significantly clinical outcome21. Conflicting
results were reported in previously untreated patients with
advanced metastatic (Stage IV) RCC18–20,22,23. In addition, expression
signatures for cancer cell subpopulations and immune evasion are
associated with PBRM1 mutation and survival in primary and
advanced RCC treated with checkpoint inhibitors24,25. Mutations in
BAP1, another key tumor suppressor gene located on chromosome
3p near SETD2, PBRM1, and SMARCC1 associated with poor prog-
nosis in many cancers26, were rare (12.9%) (Fig. 1a). These mutations
were not associated with a numerically shorter DFS in the adjuvant
setting (Fig. 1c, e), which is similar to previous findings in the first-
line metastatic setting20, but small numbers could have limited this
interpretation.

We also demonstrated thatMTORmutations were associatedwith
poor prognosis (Fig. 1e, f). Activating somatic mutations of MTOR are
known to occur at low frequency (~6%) and lead to hyperactive
mTORC1 [mammalian target of rapamycin complex 1] signaling27,28;
however, in our cohort of patients enriched with clinical character-
istics of high risk of recurrence, the frequency ofMTORmutation was
slightly higher, at 10.5% (Fig. 1a). Similarly, we observed treatment
arm–specificdifferences inDFS relative towild-typewhenmutations in
ARID1A (with mutation frequency of 11.1%) were present (Fig. 1e, g).
ARID1A encodes a protein that forms part of SWI/SNF [switch/sucrose
non-fermentable] chromatin remodeling complex; however, a
genome-scale RNAi- and CRISPR-Cas9 analysis classified PBRM1 and
ARID1A as separate functionalmodules, suggesting loss ormutation of
these genes might not be mechanistically related29.

Mutations in immune-related or chromatin homeostasis genes
influenced treatment outcome
We re-examined the WES data to analyze functional relationships
among the genes associated with differential DFS between mutated
and non-mutated tumors for the specific gene of interest in the
S-TRAC study. A set of variants in either THEMIS, WDFY4, or CSPG4
that did not predict outcome in the overall population but were
associated with longer DFS in sunitinib-treated patients were also
identified (Fig. 1h, i). Interestingly, these three genes are connected
to T-cell activity and maintenance: THEMIS has been shown to be
required for peripheral CD8+ T-cell maintenance30,31; WDFY4 for
antitumor immunity by activating immunological T cells32,33; and
CSPG4 for activation, maturation, proliferation, and migration of
different immune cell subsets34. In addition, mutations in CTCFL,
KMT2D, PPIP5K1, and ERICH6B were also associated with longer DFS
in sunitinib-treated patients (Fig. 1I); of note, the main variant allele
detected and driving the effect for ERICH6B, pS174T, is actually a
germline variant. CTCFL may be required to promote resistance
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phenotype through formation of BORIS-regulated alterations in
chromatin35,36, KMT2D for the making of histone methyltransferase37,
and PPIP5K1 for regulating cell motility38.

High tumor mutational burden is associated with poor
prognosis
As previously established in the context of metastatic disease, low
tumormutational burden (TMB) versus high TMBwas prognostic of
better survival outcomes39. In this adjuvant setting, low versus high
TMB (based onmedian cutoff, without using a pre-set cutoff of 10 or
20 mutations per Mb) was associated with a numerically longer DFS
in the overall population (Fig. 2a). This effect was mainly driven by
the placebo arm (hazard ratio [HR] 2.89; 95% confidence interval
[CI]: 1.40–5.93; p = 0.0052; Fig. 2b). Interestingly, treatment with
sunitinib in the adjuvant setting largely abrogated this prognostic
effect (HR 0.76 [95% CI: 0.37–1.55]; p = 0.5619; Fig. 2b), suggesting
that high TMBmay be confoundedwith a clinical benefit to adjuvant
sunitinib.

Previously defined immune and angiogenic-associated tran-
scriptomic signatures predict outcome in the overall cohort
population
Next, we investigated previously defined GES established in the
advanced metastatic setting (Stage IV) in the two studies, IMmotion
150 and JAVELIN Renal 101, in the subset of 133 cases that were suc-
cessfully profiled in the S-TRAC trial. These two studies represent a
different patient population comparedwith the patients in the S-TRAC
trial who had locally advanced, completely resected primary tumors
(Stage III); however, both IMmotion 150 and JAVELIN Renal 101 utilized
sunitinib (standard of care at the time for advanced/metastatic stage
disease) as comparator arm. The IMmotion 150 trial compared atezo-
lizumab (programmed cell death ligand 1 [PD-L1] inhibitor) and ate-
zolizumab plus bevacizumab (anti-angiogenesis agent) versus
sunitinib, and the JAVELIN Renal 101 trial compared axitinib (anti-
angiogenesis agent) plus avelumab (PD-L1 inhibitor) versus
sunitinib18,20. In the overall S-TRAC study population, low versus high
expression of myeloid inflammation GES (IMmotion 150
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Fig. 1 | Mutational analysis of selected genes. aHeatmap of selected genes based
on whole exome sequencing. Kaplan–Meier plots stratified by mutation vs muta-
tion not detected in the overall cohort for b PBRM1; c BAP; and d SETD2. e Forest
plot for treatment arm effect of gene mutations and DFS association stratified by
mutation vs mutation not detected. Data are presented as hazard ratio (HR) and
95% CI. Kaplan–Meier plots stratified by mutation vs mutation not detected in the
overall cohort for f MTOR; and g ARID1A. h Heatmap of gene mutations that
influenced sunitinib treatment outcome based on whole exome sequencing.
i Forest plot for treatment arm effect of additional gene mutations and DFS asso-
ciation stratified by mutation vs mutation not detected. Data are presented as HR
and 95% CI. HR<1 indicates longer DFS in mutation group; HR>1 indicates longer
DFS in mutation not detected group. 1Cox proportional hazards model with
<median as the reference group was used to calculate HR and 95% CI. 2Cox
regression HR p-value is used to compare between Wild Type/Mutation groups. A

HR<1 indicates better survival in theMutation group,while a HR>1 indicates better
survival in the Wild Type group. HR reference level is <median, p-value is from
Logrank test. 3Two-sided p-value for overall Wild Type/Mutation-by-treatment
interaction fromCoxmodelwith treatment group andwild-type/mutation status as
two independent variables. ARID1A AT-rich interaction domain 1A, BAP1 BRCA1-
associated protein 1, CI confidence interval, CSPG4 chondroitin sulfate proteogly-
can 4, CTCFL CCCTC-binding factor-like, DFS disease-free survival, ERICH6B
glutamate-rich 6B, HR hazard ratio, KMT2 lysine methyltransferase 2D, MTOR
mechanistic targetof rapamycin kinase,NEnotestimable, PBR1proline-richprotein
BstNI subfamily 1, PPIP5K1 diphosphoinositol pentakisphosphate kinase, SETD2
SET domain-containing 2, histone lysine methyltransferase, THEMIS thymocyte
selection-associated, TMB tumor mutational burden, TP53 tumor protein 53, VHL
Von Hippel-Lindau tumor suppressor, WDFY4 WDFY family member 4.
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myeloid inflammation GES) was associated with longer DFS (HR 2.22
[95% CI: 1.27–3.88]) (Fig. 3a); the effect was further accentuated in the
sunitinib-treated group, whereby longer DFS was associated with
lower expression of the myeloid inflammation GES (HR 3.60 [95% CI:
1.62–8.03]) (Fig. 3b). High versus low expression of the T-cell effector
(Teff) GES (IMmotion 150 Teff GES) was associated with a numerically
longer DFS in the overall S-TRAC study population (HR 0.69 [95% CI:
0.40–1.19]) (Fig. 3c). Similarly, high versus low expression of the
ImmuneGES established in the JAVELINRenal 101 study (JAVELINRenal
101 ImmuneGES)was associatedwith longer DFS in the overall S-TRAC
study population (HR 0.53 [95% CI: 0.30–0.92]) (Fig. 3d). The JAVELIN
Renal 101 ImmuneGES consists of 26genes that comprise regulators of
both adaptive and innate immune responses (T cell and natural killer
[NK] cells), cell trafficking, and inflammation but displayed limited
overlap with the IMmotion 150 Teff signature20.

With application of the IMmotion 150 angiogenesis GES to the
S-TRAC samples, a high versus low expression of angiogenesisGESwas
associated with a numerically longer DFS with HR: overall 0.64 (95%CI
0.37–1.10); sunitinib 0.71 (95% CI 0.34–1.50); and placebo 0.56 (95% CI
0.25–1.28) (Fig. 3b, e). This association was further observed and
somewhat stronger when we used the similar yet distinct (with only
CD34 and KDR present in both signatures) angiogenesis GES that was
derived from the JAVELIN Renal 101 study20: overall HR 0.53 (95% CI:

0.31–0.93); sunitinib HR 0.52 (95% CI: 0.25–1.08); placebo HR 0.46
(95% CI 0.20–1.07) (Fig. 3b, f). In the JAVELIN Renal 101 trial, angio-
genesis GES was significantly associated with longer PFS in the suniti-
nib arm and it did not differentiate PFS in the combination arm
(avelumab plus axitinib) in the setting of metastatic RCC.

The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma
classification, immune cell-type specific gene expression pro-
files, and other metabolic signatures
Based on unsupervised clustering methods, four stable messenger
RNA (mRNA) expression subtypes (m1–m4) have been previously
identified by The Cancer Genome Atlas Kidney Renal Clear Cell Car-
cinoma (TCGA KIRC) in their RCC cohort27. Applying this classification
to the S-TRACoverall population showed a stratifiedDFSwith anorder
of m1, m2, m4, andm3 from longest to shortest DFS (Fig. 4a. Similarly,
classifying the patients from the JAVELIN Renal 101 study had an order
of m1, m2, m4, and m3 from longest to shortest PFS in the sunitinib
treatment arm20. The m3 group, which is enriched with deletion of
CDKN2A andmutations in PTEN and is associatedwith a short OS27, has
a worse prognosis with sunitinib in all three studies (Fig. 4b)20,27.

To further characterize the tumor microenvironment composi-
tion of the samples from the patients enrolled in S-TRAC, we inferred
64 cell types using the xCell transcriptional signature-based method
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(Fig. S1)40. We examined these signatures in the context of DFS in the
overall S-TRAC study and thenby treatment arm (Fig. 4c). In the overall
cohort, monocytes, type 1 T-helper, and NK T cells were associated
with worse DFS, whereas CD4+ T cells, CD8+ T cells, CD8+ central
memory T cells, multipotent progenitors, erythrocytes, and hemato-
poietic stem cells were associated with prolonged DFS (p <0.05).
Interestingly, when focusing on the sunitinib arm alone, fibroblasts
were associated with worse DFS, whereas NK, CD4+, and CD8+ T cells
were associated with better DFS. In the placebo arm, NK T cells,
monocytes, osteoblasts, Tregs, and type 1 T-helper signatures were
associated with shorter DFS. In contrast, hematopoietic stem and
mesangial cell signatures were associated with longer DFS. In addition,
althoughmonocytes were strongly associatedwith shorter DFS except

in the sunitinib arm, in contrast, fibroblasts were associated with
shorter DFS in the sunitinib arm only.

Elastic net combinatorial biomarker approach identified tran-
scriptomic signatures associated with high risk of recurrence
and poor prognosis
The application of the GES established in advanced and metastatic
RCC to the DFS data fromS-TRAC trial in patients with RCC at high risk
of recurrence post nephrectomy showed the importance of the
angiogenic component as well as the immune component of the
tumors and microenvironments. We therefore explored the develop-
ment of GES that would be relevant to lower-stage disease, with the
intent to further identify patientswho are at the highest risk for relapse
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based on their clinicopathologic characteristics and could potentially
benefit fromadditional combination therapy strategies for this setting.

First, we focused on the sunitinib treatment arm of the S-TRAC
study to identifymolecular characteristic thatmight associate with the
resistance to anti-angiogenesis adjuvant treatment and could be pre-
dictive in nature. Using the sunitinib treatment arm dataset only, we
identified a GES signature that consists of 11 genes (STRAC11): APO-
BEC3A, AMT, PRKAB1, MROH8, SLPI, TDO2, SNX29, SLC16A1, MERTK,
ARRDC1, and STEAP1 (Fig. 5a). In the placebo arm, low and high
STRAC11 GES expression groups had similar DFS (HR 0.8 [95% CI:
0.36–1.82]; Fig. 5b). In contrast, in sunitinib-treated patients, low ver-
sus high expression of the STRAC11 GES was associated with longer

DFS (HR 0.05 [95% CI: 0.02–0.14]) (Fig. 5c). Following the co-
expression and network analyses, this signature was found to be
enriched for genes involved in the regulationof the stromacomponent
of the tumor (TDO2, STEAP1) as well as Treg cells (SLC16A1, PRKAB1)
and myeloid cell (APOBEC3A, MERTK, SNX29) subsets (Table 1).

To verify its strength, the STRAC11 GES signature was applied to
two independent datasets in the advancedRCC setting: the TCGAKIRC
dataset (Cancer Genome Atlas Research, 2013) (Fig. 5d, e) and JAVELIN
Renal 101 metastatic RCC population (Fig. 5f, g). In the TCGA KIRC
dataset, expression was particularly high in m3, and to a lesser extent,
inm4TCGAKIRC subtypes. As anticipated, low versus high expression
of STRAC11 GES was associated with longer PFS and longer OS (Fig. 5d,
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e). In the JAVELIN Renal 101 overall population, low versus high
expression of STRAC11 GES was associated with longer PFS (HR 0.69
[95% CI: 0.56–0.85]) (Fig. 5f). In sunitinib-treated patients in the
JAVELINRenal 101 trial, low versus high expression of STRAC11GESwas
associated with longer PFS (HR 0.58 [95% CI: 0.43–0.77]), but did not
differentiate PFS in patients treated with avelumab plus axitinib (HR
0.90 [95% CI: 0.65–1.23]) (Fig. 5g).

We also investigated the placebo arm of the S-TRAC study to
identify the molecular characteristics that might associate with a
higher risk of recurrence, independent of anti-angiogenesis adjuvant

therapy with sunitinib. Using the same approach, we identified a GES
that consists of 14 genes (STRAC14) and that is set to be prognostic in
nature, beyond the UISS clinic-pathological classification (Fig. S2A). In
the overall study population, low versus high expression of STRAC14
GES was associated with longer DFS (HR 0.36 [95% CI: 0.21–0.64])
(Fig. S2B). In the placebo arm, low versus high expression of the
STRAC14 GES was associated with longer DFS (HR 0.07 [95% CI:
0.02–0.24]) (Fig. S2C). Similar to STRAC11, the STRAC14 signature was
also verified in the TCGA KIRC dataset and JAVELIN Renal 101 meta-
static RCC population (Figs. S2D–G). Following the co-expression and

Table 1 | Genes included in STRAC11, STRAC13, and STRAC14

Gene Class/Function

STRAC13 and STRAC11 AMT Aminomethyltransferase (Glycine Cleavage System Protein T)

STRAC13 CXCR1 High Affinity Interleukin-8 Receptor A; recruits immune suppressive cells such as the myeloid-derived suppressor cells to the
tumor microenvironment

ATG14 Autophagy-Related Protein 14-Like Protein; regulates cytoprotective autophagy (role in drug resistance)

FPR2 Formyl Peptide Receptor 2; promotes invasion and metastasis of some cancers

SPIN3 Spindlin-Like Protein 3; a tumor suppressor, pro-apoptotic, downregulates CYCD1

ZNF415 Zinc Finger Protein 415; involved in transcriptional regulation; promoter aberrantly hypermethylated in oropharyngeal squa-
mous cell carcinoma

THEM4 Thioesterase Superfamily Member 4; facilitates apoptosis by negatively regulating Akt/PKB signaling

TXNIP Thioredoxin Interacting Protein; a tumor suppressor in various cancers; regulate the metabolism and division of cells by
inhibiting their ability to take up glucose

ADHFE1 Hydroxyacid-Oxoacid Transhydrogenase; a breast cancer oncogene

UFSP1 UFM1-Specific Peptidase 1 (non-functional)

ZKSCAN7 Zinc Finger With KRAB And SCAN Domains 7; may be involved in transcriptional regulation

BIRC7 Baculoviral IAP Repeat Containing 7; inhibits apoptosis by inhibiting proteolytic activation of capsases

HIST2H3A H3 Clustered Histone 15; core component of nucleosome

STRAC11 APOBEC3A Apolipoprotein B MRNA Editing Enzyme Catalytic Subunit 3A; induces mutagenesis in cancer cells, and contributes to tumor
evolution

PRKAB1 Protein Kinase AMP-Activated Non-Catalytic Subunit Beta 1; a regulatory subunit of the AMP-activated protein kinase (AMPK),
can act as either a tumor suppressor (prevent tumorigenesis) or a tumor promoter (after tumorigenesis occurred)

MROH8 Maestro Heat Like Repeat Family Member 8

SLPI Secretory Leukocyte Peptidase Inhibitor; modulates the inflammatory and immune responses and the promotion of cell
proliferation

TDO2 Tryptophan 2,3-Dioxygenase; may play a role in cancer through the suppression of antitumor immune responses

SNX29 Sorting Nexin 29; circular RNA derived from this gene reduced myoblast proliferation and promoted cell differentiation

SLC16A1 Solute Carrier Family 16 Member 1; a key controller of the cell cycle and mitosis, oncogene role in promoting cancer cell
proliferation

MERTK MER Proto-Oncogene, Tyrosine Kinase; regulates cell survival, migration, differentiation, and phagocytosis of apoptotic cells;
increases tumor immunogenicity

ARRDC1 Arrestin Domain-Containing 1; a tumor suppressor in ccRCC in the Hippo pathway

STEAP1 Six Transmembrane Epithelial Antigen Of The Prostate 1; promotes proliferation, migration, invasiveness, and tumorigenicity

STRAC14 ECE2 Endothelin Converting Enzyme 2; involved in the processing of various neuroendocrine peptides

TMEM220 Transmembrane Protein 220

TOMM40 Translocase of Outer Mitochondrial Membrane 40; essential for import of protein precursors into mitochondria

NDUFS6 NADH:Ubiquinone Oxidoreductase Subunit S6; interact with CD147 in the mitochondria and may play a role in the multidrug
resistance of cancer cells

NEB Nebulin; muscle protein that may be involved in maintaining the structural integrity of sarcomeres and the myofibril’s
membrane

ZNF727 Zinc Finger Protein 727; may be involved in transcriptional regulation

IRF6 Interferon Regulatory Factor 6; may be a transcriptional activator

ZNF483 Zinc Finger Protein 483; may be involved in transcriptional regulation

ACHE Acetylcholinesterase (Cartwright Blood Group); has a role in neuronal apoptosis

LIPC Hepatic Triacylglycerol Lipase; plays a role in in cancer progression and metastasis

RAB3IL1 RAB3A Interacting Protein Like 1; may have a role in synaptic vesicle exocytosis

SAMD15 Sterile Alpha Motif Domain-Containing 15

MTMR8 Myotubularin Related Protein 8; in complex with MTMR9, negatively regulates autophagy

PKP1 Plakophilin 1; may be involved in molecular recruitment and stabilization during desmosome formation

STRAC11, 13, 14 gene expression signatures of 11, 13, and 14 genes.
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network analyses, the STRAC14 signature was also found to be enri-
ched for genes involved in the regulation of the stroma component of
the tumor, as well as Treg cells and myeloid cell subsets (Table 1).

Finally, we expanded this exploration with the overall sample set,
looking for the group of patients at the highest risk of recurrence
based onmolecular criteria. Using the overall sample set, we identified
a GES signature that consisted of 13 genes (STRAC13) (Fig. S3A). In the
overall study population, low versus high expression of STRAC13 GES
was associated with longer DFS in the overall study population
(Fig. S3B) and in the sunitinib and placebo arms (Fig. S3C). The
STRAC13 signature was also verified in the TCGA KIRC dataset and
JAVELIN Renal 101 metastatic RCC population (Fig. S3D–G), and it was
found to be enriched for genes involved in the regulationof the stroma
component of the tumor as well as Treg cells, general T cells, and
myeloid cell subsets (Table 1).

Discussion
We report a comprehensive genomic and transcriptomic analysis of
tumor samples from patients lacking overt metastases but at high risk
for recurrent RCC post nephrectomy. These analyses were performed
using data from patients treated in S-TRAC, a phase III trial comparing
adjuvant sunitinib to placebo and meeting its primary endpoint of
prolonging DFS. We confirmed the importance of the angiogenic
context as a prognostic and predictive marker of the outcome. We
identified three GES based on the sample set considered for the dis-
covery. Each signature consists of genes representative of the tumor
stroma microenvironment, including fibroblasts, Treg cells, and mye-
loid cells that, when highly expressed, were associated with poor
outcomes and short DFS. The overlap in key elements captured in
these three GES suggests that they are likely to be prognostic and also
predictive of the anti-angiogenic effect in the adjuvant setting. These
signatures also point to the identification of potential therapeutic
targets tobe considered for development in adjuvant RCC, suchasMer
proto-oncogene tyrosine kinase (MERTK) and Tryptophan 2,3 dioxy-
genase (TDO2).

The STRAC11 GES (derived from the sunitinib treatment arm)
identified a group of patients who aremore likely to benefit from anti-
angiogenic adjuvant therapy with sunitinib. When the published
angiogenic signatures derived from studies in patients withmetastatic
RCC in IMmotion 150 GES and JAVELIN Renal 101 GES18,20 were applied
to the S-TRAC study population with localized RCC at high risk for
recurrence, IMmotion 150 GES appeared to be prognostic while
JAVELIN Renal 101 GES seemed to be predictive of outcomes with
adjuvant sunitinib. While both signatures are pointing to a proangio-
genic phenotype, the genes included in each signature are not over-
lapping; this is consistent with the fact that even though anti-
angiogenic agents have been studied and approved in mRCC for
more than a decade, there is still no clinically validated biomarker or
signature used to identify the patients who will benefit from these
agents; accordingly, additional work is required to further optimize
the signatures reported to date. Thus, high levels of expression of
angiogenesis signatures are associated with a better outcome, and
treatment with anti-angiogenic therapy alone does not appear to
increase the overall benefit, as these patients have more favorable risk
factor characteristics regardless of treatment. In the sunitinib arm,
high expression of the myeloid-inflamed phenotype was associated
with poor outcomes. Altogether, these findings suggest that targeting
the VEGF pathway alone may not be sufficient to prevent recurrence
and that other factors such as immune response and the tumor
environment are, at least, of similar importance. Checkpoint inhibitors
are currently being studied in the adjuvant setting41,42. Recently, the
Keynote-564 phase 3 trial demonstrated a benefit in relapse-free sur-
vival for pembrolizumab compared to placebo in the adjuvant setting
of RCC following nephrectomy43. Use of the STRAC11 GES in the cor-
relative analyses of the completed adjuvant trials studying single-agent

checkpoint inhibitors would further validate our findings and poten-
tially help with better characterization of the patients at high risk of
recurrence.

Furthermore, it is possible that the addition of a third agent that is
able to modulate the tumor microenvironment may be an effective
strategy to potentiate the response to the combined anti-angiogenic
and PD-1/PD-L1 blockade in ccRCC.MERTK (part of STRAC11) encodes
theMer proto-oncogene tyrosine kinase (MERTK). Blockade ofMERTK
macrophage receptor increases tumor immunogenicity and potenti-
ates antitumor immunity by inducing the tumor-cGAS- and host-
STING-dependent type I interferon (IFN) response44. Activation of the
c-GAS-STING pathway causes an increase in PD-L1 expression; how-
ever, when combined with PD-1 blockade, models of established
tumors previously resistant to PD-1 blockade alone regressed45.

TDO2 (also part of STRAC11) is potentially another target for
combination with anti-angiogenic therapy. Higher expression of TD02
was associated with poor survival outcomes in breast cancer46,47. Tar-
geting indolamine-2,3-dioxygenase-1 (IDO1) expression enhanced
response to IFN treatment in RCC cell lines48. Furthermore, IDO1 is
known to promote tumor neovascularization by modulating the
expression of IFN-γ and interleukin (IL)-649. The immunomodulating
activities of IDO1 and TDO2 led to the development of an inhibitor of
these two enzymes, which is currently under investigation in a phase I
trial (ClinicalTrials.gov, NCT03641794).

Other STRAC11 genes that have been implicated in kidney injury
or cancer progression include SLPI50,51, SLC16A152, and ARRDC153.
Downregulation of STEAP1 increased proliferation and clonogenicity,
and promoted cell migration, invasion, and the progress of mesench-
ymal transition in endometrial carcinomas54 and breast cancer55. In
gastric cancer, expression of STEAP1 has been shown to promote
proliferation, migration, invasiveness, and tumorigenicity56.

On the DNA sequencing side, and in line with previous publica-
tions, we identified mutations in MTOR, which were slightly more fre-
quent in the S-TRAC high-risk patient population than previously
reported27. One recently reported phase 3 trial of adjuvant everolimus
compared with surveillance alone following nephrectomy showed a
numerical advantage in favor of everolimus, and a stronger signal in
patients at very high risk for relapse57. Mutations in MTOR were enri-
ched in S-TRAC patients selected to be at high risk for relapse were a
poor prognosticmarker.We also identified potential target genes that,
when mutated, were associated with shorter DFS in the placebo arm,
but prolonged DFS upon adjuvant treatment with sunitinib. WDFY4
was reported to be essential for the cross-presentation of tumor-
derived antigens and for antiviral and antitumor immunity33. Somatic
mutations inCSPG4were found tobeassociatedwithmembranous PD-
L1 expression in Chinese patients with RCC58. THEMIS encodes a T-cell
lineage-specific protein, which is essential for the maintenance of
peripheral CD8+ T cells and for proliferative CD8+ T-cell responses to
low-affinity peptidemajor histocompatibility complex signals aided by
cytokines30,31. Interestingly,whilehighTMBwas apoorprognosis in the
placebo arm as previously established, it did not appear to have the
same impact in the sunitinib treatment arm. This effectmight bedue to
the fact that patients with high tumor CD8 positivity derived greater
benefits from sunitinib treatment, as previously reported in this same
cohort of patients13.

Some limitations of the current analyses are due to the great
majority of the patients who had disease recurrence with distant
metastases, thus restricting our findings and conclusions to the
metastatic process and not the local progression. In addition, due to
the size of the subpopulation with available tumor tissue properly
consented for these analyses (171 patients, 27.8% for WES; 133
patients, 21.6% for gene expression profiling) versus the total study
population (615 patients), some of the analyses are likely to be
insufficently powered to detect potentially significant or mean-
ingful differences.
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In summary, our analysis suggests that the immunosuppressive
environment of the micrometastasis at the nesting site is likely as
important as, if not more than, the angiogenic phenotype in identify-
ing effective therapy in the adjuvant RCC setting. It further suggests
that adjuvant therapy should aim at targeting some of the key ele-
ments captured in the GES discovered in this study. Altogether, these
findings may inform therapeutic strategies and more personalized
approaches for adjuvant therapy in patients with RCC at high risk of
recurrence.

Methods
These analyses comply with all relevant ethical regulations. The
S-TRAC trial was conducted in accordancewith the ethics principles of
the Declaration of Helsinki and Good Clinical Practice guidelines,
defined by the International Council for Harmonization. All the
patients provided written informed consent for inclusion in the trial
and 212 patients provided informed consent for exploratory analyses.
The protocol, amendments and informed consent forms were
approved by the institutional review board or independent ethics
committee at each trial site (Table S2). An independent external data
monitoring committee reviewed efficacy and safety11.

Experimental model and subject details: S-TRAC study
In the S-TRAC trial11, patients with RCC were randomized 1:1 to receive
sunitinib (50mg/day) or placebo on a 4-weeks-on/2-weeks-off sche-
dule for nine cycles (~1 year), or until disease recurrence, the occur-
rence of secondary malignancy, significant toxicity, or consent
withdrawal. Key inclusion criteria included: diagnosis with clear cell,
loco-regional (defined as ≥T3 and/or N1-2) RCC; lack of macroscopic
residual or metastatic disease confirmed by blinded independent
central review (BICR); no prior systemic or anti-angiogenic treatment
for RCC, and treatment initiation within 3–12 weeks of nephrectomy.
The primary endpoint was the duration of DFS, defined as the interval
between randomization and the first tumor recurrence, the occur-
rence of metastasis or a secondary cancer (as assessed by BICR),
or death.

Of the 615 patients in the intent-to-treat population in S-TRAC
trial, anonymized archival tumor tissue from nephrectomy or tumor
biopsy (ormalin-fixed paraffin-embedded [FFPE] block or slides) were
collected on an optional basis for only 212 patients who properly
consented for exploratory analysis. Following the prior tumor tissue
analyses, 193 individual specimens were available for molecular pro-
filing, of which 171 (27.8%) (sunitinib, n = 91; placebo, n = 80) returned
results for theWES analysis, and 133 (21.6%) (sunitinib, n = 72; placebo,
n = 61) returned results for the GES analysis; 11 cases failed both DNA
andRNA extractions, while another 11 failed theDNAextraction and/or
did not pass QC (at the library or sequencing steps) and similarly 51
failed the RNA extraction and/or QC steps. This cohort represents a
subset of the 191 patients previously included in the immunohis-
tochemistry analysis for staining of PD-L1, CD4, CD8, and CD6813. It is
also representing a subset of the 193 patients with T3 RCC included in
the primary analysis of the 16-gene signature previously published15.
Patient demographics and baseline characteristics were balanced
between the sunitinib and placebo groups for the WES and GES ana-
lyses (Table S1). The study was conducted primarily in Europe, with
fewer than 10% of patients enrolled in the United States and ~10%
enrolled in Asian countries, thus very few non-White patients were
included in the study.

Whole exome and transcriptome sequencing
Archival de-identified FFPE tumor tissue blocks from nephrectomy or
tumor biopsy were obtained from patients who provided informed
consent for genomic analyses. Sample were processed as per below
and the same sections were used for both DNA and RNA extractions.

For WES (Accuracy and Content Enhanced [ACE] version 3; Illu-
mina NovaSeq), resulting sequences were processed by the Personalis
ACE Cancer Exome pipeline (Personalis, Inc, Menlo Park, CA), which
uses BWA,GATK,MuTect, VarDict, and Picard to generate variant calls.
Variant calls were further filtered using Personalis proxy-normal
database (which consists of in part the use of normal variant data-
base MuTect, the Genome Aggregation Database (gnomAD; https://
gnomad.broadinstitute.org)59 and custom filters to remove many
germline variants found in normal tissue as well as sequencing plat-
form bias. Mutations with a minimum of five mutant reads (that is,
found on at least five separate DNA molecules in an individual tumor
sample) that were not annotated as synonymous variants and anno-
tated as resulting in a change in protein coding sequence were inclu-
ded in the analysis.

The clinical significance of TMB was assessed through WES ana-
lysis. The presence of non-synonymous single nucleotide variants per
megabase (NSSNV/Mb) defined the TMBhigh and low status relative to
the median value.

Whole-transcriptome profiles were generated using RNA-seq
(ACE version 3) on FFPE tumor tissue. Transcript levels were quanti-
fied by the Personalis ACE Cancer Transcriptome Analysis pipeline
(Personalis, Inc, Menlo Park, CA), which uses STAR version 2.4.2a-p1 to
align reads to the NCBI hs37d5 annotation 105 reference genome and
produces transcripts per million (TPM) values for each gene. TPM
values were log2 transformed for further analysis of individual genes
or standardized gene pathway signature scores. Briefly, for each gene,
we calculated the mean expression and s.d. across samples. Then, we
subtracted the mean and divided by the s.d. to standardize the gene
score to be centered at zero with units of s.d. (z-score). The pathway
score for each sample was calculated as the average of the standar-
dized values for the set of genes within the pathway. To assess sample
purity and ruleout potential bias, tumorpuritywas calculated from the
corresponding RNA-seq expression data using the ESTIMATE
method60. Using the RNA ESTIMATE Tumor Purity score, the tumor
purity ranged from 28% to 92% with a median of 55%. Overall, tumor
purity did not bias the tumor mutation burden; the mutant status of
individual geneswas not associatedwith increased tumor purity; and it
did not confound gene expression.

Gene expression signature analyses
GES analyses included published signatures from the IMmotion
150 study “[Teff, angiogenesis, myeloid inflammation (Minf)]”, and
the JAVELIN Renal 101 study [Immune, angiogenesis]18,20.

TCGA subtype classification labels by unsupervised gene expres-
sion clustering27 were used to define centroids from the z-scored
scaled expression level of the top 20% variable genes from the TCGA
KIRCdataset. Expressiondata from the trialwere z-scored andmapped
to the nearest centroid to assign the subtype label. The method used
was implemented by the Data4Cure molecular affinity app. RNA-seq
data was processed using xCell to generate scores for 64 cell type
signatures38.

Elastic net analysis. Multi-feature signatures were derived using
samples with complete data from the sunitinib arm for STRAC11, the
placebo arm for STRAC14, and from both arms for STRAC13. For each
dataset, we performed 1000 bootstrap runs of fitting a Cox propor-
tional hazards model for DFS with regularization by an elastic net
penalty61 and a fivefold cross-validation. Features were ranked by the
frequency observed in the bootstraps, and the number of top features
was selected using a local maximum concordance index. A composite
signature score was computed by a weighted sum of the top features,
and each feature was weighted by its average coefficient across
bootstrap models. The STRAC14, STRAC13, and STRAC11 GES were
further verified using two independent datasets, the JAVELIN Renal

Article https://doi.org/10.1038/s41467-022-33555-8

Nature Communications |         (2022) 13:5959 9

https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org


101 study in patients with metastatic advanced RCC (n = 720) and the
KIRC dataset of TCGA (n = 488).

Quantification and statistical analysis
For gene expression analyses, DFS by BICR was compared between
biomarker stratum by <median vs ≥median values of a particular
parameter using Kaplan–Meier analysis. DFS was also compared
between the two treatment groups within a biomarker stratum using
the Kaplan–Meier method. For the mutational analyses, Cox propor-
tional hazards model with wild-type samples as the reference group
was used to calculate HR and 95% CI. A HR <1 indicates better DFS in
the mutant group, whereas a HR >1 indicates better DFS in the wild-
type group. Log-rank two-sided test was performed to compare
between wild-type and mutant groups. Multivariate Cox proportional
analysis of DFS by BICR was performed on the gene expression and
mutational data adjusted by the patient’s age and sex. No adjustments
of p-values or CIs for multiplicity were performed.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Relevant summarized data and supplemental materials cited in the
manuscript are publicly available62. Source data are available with this
manuscript. The tumor tissue sequencing raw data that support the
findings of this study have been submitted to the European Genome-
Phenome Archive (EGA) with accession numbers EGAS00001006528
(transcriptome sequencing) and EGAS00001006529 (exome sequen-
cing); due to informed consent limitations on patient confidentiality
and secondary use of data, restrictions apply to the availability of the
data. Anonymizeddata canbemade available from the authorsunder a
Data Access Agreement upon reasonable request and with permission
of the Pfizer Data Access Committee.

Additional datasets used in this analysis included subsets of TCGA
databases (https://doi.org/10.1038/nature12222; https://xenabrowser.
net/datapages/?dataset=tcga_RSEM_gene_tpm&host=https://toil.
xenahubs.net; https://portal.gdc.cancer.gov/projects/TCGA-KIRC) and
a subset of data from the JAVELIN Renal 101 Study B9991003 (https://
www.nature.com/articles/s41591-020-1044-8#Sec33; https://static-
content.springer.com/esm/art%3A10.1038%2Fs41591-020-1044-8/
MediaObjects/41591_2020_1044_MOESM3_ESM.xlsx; Clinical Table S11
and Expression Table S13). Source data are provided with this paper.

Code availability
The R scripts used for elastic net analyses are available62. R statistical
software environment version 3.5 was utilized (https://www.r-project.
org/). Data4Cure was utilized for analysis and visualization (https://
www.data4cure.com). SAS version 9.4 (TS1M5) was utilized for data
analysis (https://www.sas.com/). Processing of Whole Exome and
Whole Transcriptome raw sequencing data into summarized data was
performed at Personalis (https://www.personalis.com/biomarker-
discovery/).
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