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Abstract

Social neuroscience uses increasingly complex paradigms to improve ecological validity, as investigating aggressive
interactions with functional magnetic resonance imaging (fMRI). Standard analyses for fMRI data typically use general
linear models (GLM), which require a priori models of task effects on neural processes. These may inadequately model non-
stimulus-locked or temporally overlapping cognitive processes, as mentalizing about other agents. We used the data-driven
approach of independent component analysis (ICA) to investigate neural processes involved in a competitive interaction.
Participants were confronted with an angry-looking opponent while having to anticipate the trial outcome and the oppo-
nent’s behaviour. We show that several spatially distinctive neural networks with associated temporal dynamics were
modulated by the opponent’s facial expression. These results dovetail and extend the main effects observed in the GLM
analysis of the same data. Additionally, the ICA approach identified effects of the experimental condition on neural systems
during inter-trial intervals. We demonstrate that cognitive processes during aggressive interactions are poorly modelled by
simple stimulus onset/duration variables and instead have more complex temporal dynamics. This highlights the utility of
using data-driven analyses to elucidate the distinct cognitive processes recruited during complex social paradigms.
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Introduction

The field of social neuroscience is a research area undergoing
rapid changes. Recent emphasis is placed on external validity of
experimental designs that aim at investigating social interactive
processes (Schilbach et al., 2013). Consequently, more complex

experimental designs are starting to replace standardized stim-
ulus presentation and fixed stimulus-response designs.

In previous research, we have used such designs to shed
light on the neural basis of aggression in healthy adults.
Specifically, we have adapted the well-established Taylor
Aggression Paradigm (TAP; Taylor, 1967) for use with functional
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magnetic resonance imaging (fMRI; Krämer et al., 2007) and elec-
troencephalography (Krämer et al., 2008). The TAP is set up as a
competitive reaction time task, in which the participant com-
petes with an ostensible opponent. In each round, the loser gets
punished with an aversive stimulus, the intensity of which is
determined by the winner. Using this approach, we studied, for
instance, the effects of psychopharmacological manipulations
on aggression and its neural underpinnings (Krämer et al., 2011),
influences of inter-individual variability in sensitivity to threat
on mentalizing networks (Beyer et al., 2014) and effects of trait
aggressiveness on decision-related frontal activity during
aggressive encounters (Krämer et al., 2008; Krämer et al., 2009).
Further and in order to investigate the role of the neural proc-
essing of angry facial expressions during aggressive interac-
tions, we implemented video feedback of an opponent in the
TAP. Data analyses of this study within the framework of classi-
cal general linear modelling (GLM) established a negative corre-
lation between orbitofrontal activity to angry vs neutral faces
and participants’ aggressive behaviour (Beyer et al., 2015).

However, traditional data analysis strategies may be inad-
equate for the use with such complex designs. The widely used
GLM approach requires the definition of onset regressors for
stimulus presentations and responses. In simple stimulus-
response designs, this approach is assumed to model most of
the underlying task-related processes. Despite its wide use and
popularity, the GLM-approach can be problematic, for example
if the chosen number of regressors is too small or too large to
optimally model the task-related variance of the signal (Poline
and Brett, 2012). In social interactions, many processes can be
assumed to occur throughout the task, without being strictly
stimulus or response-locked. Within the GLM framework,
BOLD-signal changes related to such processes may be unob-
servable, due to the lack of an a priori model of the process-
related timings.

In the case of the TAP, such simultaneous cognitive proc-
esses involve the evaluation of opponent-related information,
selecting a punishment level and anticipating the following
task stages. Given the difficulty in pinpointing these processes
to a specific onset, analysis approaches using fixed models of
stimulus-driven BOLD-changes may fail to characterize the
neural processes actually underlying behaviour in the TAP.

Further, in simple experimental designs, temporal deriva-
tives may be used to account for shifts between task onset and
BOLD-response. In tasks as the TAP, where many cognitive
processes likely occur in short succession and may partially
overlap, adding temporal derivatives to a large number of
regressors will result in design collinearity. The shortfalls of
GLM-based analysis for disentangling different task contribu-
tions is largely due to the univariate nature of the approach,
where individual voxels are being tested against an experimen-
tal design. Multi-variate approaches, by comparison, are able to
incorporate the information across multiple voxels’ time series
and therefore will exploit spatially distributed statistical regu-
larities in the data. Investigating the entire time-course of the
TAP in this manner should be helpful to reveal effects that do
not fit the a priori model.

Independent component analysis (ICA) constitutes such
an approach. This method identifies spatial patterns of BOLD-
signal changes across the entire brain and the entire
experiment time-course (McKeown et al., 1998) based on the
assumption of statistical independence between these maps. As
such, this method does not implement any a-priori assumptions
as to onsets or locations of task effects. Due to this model-free
nature, ICA is especially useful for artefact detection, denoizing of

data and analysing resting state data (Beckmann, 2012). For the
same reason, it is also useful for the analysis of task-related data
that consist of long and inhomogeneous task periods (Beckmann,
2012), as for example, during motor sequence learning (Kincses
et al., 2008). ICA can be used to explore spatial network properties
as the composition of the default mode network (Leech et al.,
2011) and to explore temporal dynamics of networks across task
onset and offset (Scott et al., 2015).

In this study, we explored the use of probabilistic ICA
(Beckmann and Smith, 2004) on complex, task-fMRI data
derived from our version of the TAP where the opponent
showed neutral and angry facial expressions. We re-analysed
data previously studied with a GLM to test the validity of the
approach by directly comparing ICA and GLM results and to ver-
ify additional information gained by the model-free analysis. In
a first step, we identified task-related networks among all ICA
components to identify those that are recruited during the
aggressive interaction. We further investigated how these relate
to different task conditions, i.e. whether activity in these net-
works was modulated by angry vs neutral facial expressions of
the opponent. Finally, the GLM analyses revealed a correlation
between activity in the dorsal anterior cingulate cortex (dACC)
and intra-subject variability in aggressive behaviour in angry
trials (Beyer et al., 2015). Thus, we also related component activ-
ity to between-trial, within-subject variability in aggressive
behaviour, to show whether the recruitment of a neural system
including the dACC would be differentially modulated during
trials in which participants chose to aggress or refrained from
aggression.

Thus, the aim of this study was to allow for a direct compari-
son between GLM and data-driven analysis approaches. We
hypothesized that the ICA should uncover networks reflecting
activation patterns observed in the GLM analysis. That is, one or
more networks spanning mPFC and superior temporal gyrus
should show increased activity in early task stages of angry tri-
als. Activity patterns observed for the outcome phase (increased
activity in angry trials across areas in temporal parietal and pre-
frontal cortex) should likely split up into subnetworks. A net-
work including dACC should be sensitive to punishment
selections on a per-trial basis.

Materials and methods
Participants and experimental procedure

Forty-one male healthy volunteers participated in the study.
Upon arrival in the laboratory, participants received instruc-
tions together with their ostensible opponent. They then
entered the scanner for the aggression task (see below). After
scanning, participants completed a post-experimental ques-
tionnaire assessing potential suspicion concerning their oppo-
nent’s involvement in the task. Afterwards, participants were
fully debriefed and paid for their participation.

One participant was excluded from data analysis due to
excessive movement (>4 mm) during functional scanning and
two due to pathological findings in their anatomical images.
Five participants were excluded because they reported suspi-
cion about their opponent’s participation in the TAP and one
participant was excluded, because he selected a punishment
level in less than one-third of trials. Thus, 32 participants (mean
age¼ 23.3 years, 62.7 years) were included in the GLM analyses.
For the analysis presented here, one additional participant was
excluded due to poor whole-brain coverage in the functional
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MRI data.1 Thus, data of 31 subjects were included in this
analysis.

All participants gave written informed consent and received 8
Euro per hour as compensation for their participation. The study
was approved by the Ethics Committee of the University of
Lübeck and performed according to the Declaration of Helsinki.

Aggression task

A detailed description of the task setup can be found in Beyer
et al. (2015). Briefly, participants were introduced to a confeder-
ate of the experimenter who they believed would be playing
against them in a competitive reaction time task, the TAP. We
used a version of the TAP adapted for the use in fMRI-research.
The game is split up into a decision phase in which the partici-
pant selects a punishment level for his opponent, the reaction
time task, and an outcome phase in which participants learn
whether he won or lost as well as learn the punishment level
selected by the opponent. If the participant loses, he receives
the punishment stimulus at the end of the outcome phase. We
used an aversive noise as punishment, which could be adjusted
in terms of loudness. This noise was adjusted individually such
that, with the scanner running a functional scan, participants
could clearly perceive the different noise levels, and judged the
loudest noise as uncomfortable, but non-painful. At the begin-
ning of each decision phase, we implemented video sequences
showing the opponent during the punishment selection, bear-
ing either a neutral or angry facial expression. An outline of a
single trial for the TAP is given in Figure 1A. Two-second video
sequences of the opponent were presented at the beginning of
each trial, before participants made their punishment selection.
In one-third of trials, the opponent showed an angry expression
while making the punishment selection. In two-third of trials,
he showed a neutral expression.

MRI data acquisition

Structural and functional MRI images were recorded on a Philips
Achieva 3-T scanner (Philips Healthcare, the Netherlands) with a
standard 8-channel head coil. Functional images (624 volumes)
were acquired in ascending order using a single-shot gradient-
echo echo-planar imaging (EPI) sequence sensitive to blood oxy-
gen level dependent (BOLD) contrast (TR¼ 2500 ms, TE¼ 25 ms,
flip angle 80�, in-plane resolution 2.5� 2.5 mm2, image matrix
80� 80, FOV 200 mm, slice thickness 2.5 mm, 47 transversal slices,
SENSE factor 2.0). High resolution structural images were
obtained by means of a T1-weighted 3 D turbo gradient echo
sequence with SENSE acceleration (SENSE factor 2;
FOV¼ 240 mm; matrix¼ 240� 240; 180 sagittal slices of 1 mm
thickness).

Data pre-processing

Data pre-processing was performed using the FSL5.0 toolbox
FEAT (Jenkinson et al., 2012). Pre-processing included the follow-
ing steps: brain extraction; motion correction; spatial smooth-
ing with a 5 mm kernel; registration to a brain-extracted
structural image and a standardized image in MNI-space.

To further remove movement artefacts from the functional
data, we used the toolbox for Automatic Removal Of Movement
Artefacts (AROMA; Pruim et al., 2015). This toolbox uses FSL’s
MELODIC (Beckmann and Smith, 2004) toolbox to run ICA on
single-session data. Movement-related components are then
automatically identified and removed from the data by means
of spatial regression. The cleaned data were then high-pass fil-
tered with a 100-s frequency cut-off using FEAT.

Independent component analysis

The main steps of the analysis procedure are shown in Figure 1.
The pre-processed functional images were submitted to an ICA
using the FSL5.0 toolbox MELODIC. To ensure comparability of
components between subjects, we used the concatenation
option to conduct a group-level ICA. Thus, all functional

Fig. 1. Methods. The outline of a single trial of the TAP is shown in (A). (B) The eigenspektrum analysis for the estimation of the optimal number of components. (C)

The frequency analyses for the task time-course and example component time-courses are shown. (D) The task regressors for the early and late half of the task, con-

volved with an HRF, overlaid on the boxcar function for the entire trial.

1 For multi-variate analysis of fMRI data, whole-brain coverage is of
greater importance than for GLM analyses, in which independent tests
are performed for each voxel.
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datasets were concatenated in time and a single ICA decompo-
sition was generated for the entire dataset (Calhoun et al., 2001).
After inspection of the initial eigenspectrum analysis performed
by MELODIC (Figure 1B), we fixed the number of components to
be extracted to 30, a value at the upper limit of the optimal
range estimation. Spatial maps were oriented according to their
distribution of z-scores such that the maximum absolute z-
scores had positive values, and were thresholded at z> 3.0. This
method can result in task-negative component time courses,
reflecting a relative deactivation of voxels weighted positively
for respective component. Of these 30 components, task-
related, non-artefact components were identified in the follow-
ing steps: we visually inspected all components and excluded
those representing common patterns of motion, physiological
artefacts and high frequency noise artefacts (Beckmann, 2012;
n¼ 12). For the remaining components (n¼ 18), we imported the
component time courses, as given by the melodic toolbox, into
MATLAB. Thus, for each component, we obtained a single time
course, with all trials from all participants concatenated. Each
data point in these time courses corresponds to one MRI vol-
ume. Using MATLAB’s fast Fourier transform (fft) function, we
performed a Fourier transform of the component time courses
to identify the characteristic frequency of each component’s
time-course. For each component, we determined the frequency
of maximal power.

We also computed a Fourier transform for the task time
course, with all trials across all participants concatenated,
which, given the timing of the task (trial duration of 24�28 s)
resulted in a peak in frequency power at 0.04 Hz (Figure 1C). We
then compared the peak frequency of the task time course to
the peak frequencies of the component time courses.

We used this approach of spectral matching to explore, for
each component, whether its signal time course was related to
the task (i.e. oscillating in the same frequency as the task), with-
out explicit modelling of task onsets. Thus, a component time
course could be identified as task-related, even if it was not
phase-locked to a specific event in the task or the task onset
itself. Sixteen components showed a maximum of frequency
power at 0.04 Hz and were thus included in further analysis as
task related (Figure 1C). The remaining two components (com-
ponents 12 and 13) showed a maximum of frequency power at
0.08 Hz. As shown in Figure 3, the signal time courses of these
components showed two large peaks within a trial, during early
and late task stages, and we therefore included them in the
data analysis as well.

Time course analysis

For the 18 task-related components, we conducted time course
analyses to test:

a. whether a component was differentially modulated during
angry and neutral trials;

b. whether activation of a component was related to between-
trial variability in punishment selection.

We did not perform a dual regression analysis, but used the
original component time courses, which are based on a concate-
nation of the subject-wise data, to extract subject specific time
courses. The concatenated signal time course for each compo-
nent was split up into subject-specific sections, thus resulting
in 31 time-courses per spatial group component. Each subject-

wise time course consisted of 624 data points, corresponding to
three runs of 208 MRI volumes.

For the visualization of component time courses, we set up
two boxcar functions for the task by splitting each trial into an
early phase (volumes 1�3 after task onset) and a late phase (vol-
umes 4�6 after task onset). These boxcar functions were con-
volved with a hemodynamic response function and served as
reference for the visualization of component time courses.

For each subject, time courses were split up into trial-wise
time courses of 15 volumes each (corresponding to 37.5 s follow-
ing trial onset). Note that volumes 13�15, which overlapped
with the beginning of the next trial, were included for visualiza-
tion only and were not included in further analysis.

To test which component time courses were differentially
modulated by angry and neutral trials, we conducted paired t-
tests for time points 3�12 following trial onset. Time points at
the beginning of each trial, prior to any plausibly expected
hemodynamic modulation (1 and 2), and later time points over-
lapping with following trials (13, 14 and 15) were omitted from
this analysis. For each time point, we computed the subject-
wise means for angry and neutral trials. We then compared
angry against neutral trials across subjects. For statistical analy-
ses, we used a threshold of P< 0.05, Bonferroni-corrected for the
number of components and time points tested [n¼ 180 (18 com-
ponents of 10 time points each); corrected P< 0.0003].

As the GLM-analysis showed a correlation of neural reactivity
to angry facial expressions and aggressive behaviour within sub-
jects, we additionally tested whether this finding could be repli-
cated using the component time courses. Note that as this
analysis is based on previous findings in the same datasets, sig-
nificant results should not be understood as a replication of pre-
vious findings. Rather, this analysis serves better understanding
of potential differences in the results gained by GLM-based and
data-driven analysis approaches.

Within participants, we standardized punishment selections
across all trials. For each subject, we then calculated correlation
coefficients between trial-wise punishment selections and com-
ponent time course values for time points 3�6 (corresponding
to the early task phase in which the punishment selection was
made). Thus, for each subject we obtained 72 correlation coeffi-
cients (18 components with 4 time points each). We conducted
one sample t-tests to compare these coefficients across sub-
jects, using a P-value threshold of 0.05 Bonferroni corrected for
72 comparisons (P< 0.0007). As this analysis was conducted
complementary to the main analysis of comparing time courses
between conditions, we did not additionally correct for the com-
parisons between conditions. As noted above, any positive find-
ings from this analysis need to be interpreted with caution.

To test the reproducibility of the results and their depend-
ence on the AROMA motion correction, we repeated the above
analyses without running AROMA.

Results
Task-related, condition-unspecific components

Task-related components, which were not differentially modu-
lated during angry and neutral trials, included components
spanning mostly sensory and motor areas (Figure 2), thus likely
related to task-events as stimulus presentation and button
presses. For example, component 2 included mostly auditory
cortex and its activity peaked following task offset. This
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component was therefore likely related to the presentation of
the punishment sound (Figure 3). Other components repre-
sented activation of the visual system with a time course corre-
sponding to the presentation of visual stimuli in decision and
outcome phase (components 5 and 6) and the motor system,
corresponding to the button presses during decision phase and
reaction time task (component 9).

During the late task phase, increased activity was observed
in a network including bilateral inferior and middle frontal
gyrus, anterior insula, the cingulate gyrus ranging from anterior
to posterior areas, inferior parietal lobule and middle temporal
gyrus (component 11; Figure 3). Again, this component did not
differentiate between conditions.

Effects of angry vs neutral facial expressions on
component time courses

In the GLM-analysis, comparing angry>neutral trials showed
increased activity during the decision phase in mPFC, inferior
frontal gyri and middle/superior temporal gyri. For the outcome
phase, this contrast showed increased activity in left temporal
pole, middle temporal gyrus and precentral gyrus, the right infe-
rior frontal gyrus, fusiform gyrus, superior parietal lobule, and
thalamus (Beyer et al., 2015). Based on the following results, we
propose that these activation patterns are related to modulation
of several distinct neural systems. We found components that
specifically differentiate between task conditions in late task
stages, as well as some which show significant differences
across the entire task time course.

Fig. 2. Component maps. Spatial maps are shown for task-related, condition-

unspecific components (excluding those shown in Figure 3). Spatial maps are

thresholded at z>3.0.

Fig. 3. Condition-unspecific components. Shown are examples of task-related,

condition-unspecific components with their spatial maps on the left and the

corresponding mean time-courses on the right. Error bars denote standard

errors of the mean.
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Overall, six components showed differential activity during
neutral and angry trials, reflected in significant differences
between component time courses for angry and neutral trials.

Component 4 showed strong overlap with effects observed
using the GLM model, both for the decision and outcome
phases. As can be seen in Figure 4, it showed a decrease in activ-
ity during neutral trials, but was less modulated by angry trials.
The difference between angry and neutral regressors was signif-
icant for both early and late task stages (time points 4, 5, 7 and
8). This component included a large area in medial prefrontal
cortex ranging from ventral to dorsal areas, as well as bilateral
inferior frontal cortex, bilateral middle temporal gyrus, left
angular gyrus, the right caudate and two clusters in the cingu-
late gyrus (Figure 4).

Also for component 12, the difference between angry and
neutral trials was significant for both early and late task stages
(time points 4, 5, 6 and 8). This component included areas in
medial and superior frontal gyrus, bilateral medial and superior
temporal gyrus, right middle to inferior frontal gyrus and the
precuneus (Figure 5). Thus, these areas partially correspond to
those observed for the angry>neutral contrast for the decision
phase in the GLM-analysis while for example the precuneus
was not observed in the GLM analysis. The time-course for this
component however, suggests that this neural system is not
exclusively involved in the decision phase, but during later task
stages as well (Figure 5).

A network including bilateral middle and superior frontal
gyrus, anterior cingulate gyrus, inferior parietal lobule, precu-
neus, middle temporal gyrus and left inferior frontal gyrus
showed increased activity during the early task phase (compo-
nent 7; Figure 3). This component showed a decrease in activity
during later task stages, which was reduced for angry trials.

For component 13, the difference between angry and neutral
trials was significant during later task stages (time points 8 and
9). This component included a medial frontal area including
part of the supplementary motor area, bilateral areas of middle
to inferior frontal gyrus, inferior parietal lobule bilaterally, left
superior and middle temporal gyrus, left precuneus and thala-
mic areas (Figure 5). This component showed increased activity
during the late stages of angry trials.

The time-course of component 15 showed a significant dif-
ference between angry and neutral trials during late task stages
(time point 9). This component spanned posterior cingulate
gyrus bilaterally, including most of the precuneus, as well as
inferior parietal lobule, superior temporal gyrus and a cluster in
the anterior cingulate cortex (Figure 5). Activity in this compo-
nent showed an increase mainly following the task offset in
angry trials. Thus, while being clearly task-related and condi-
tion specific, this component‘s time course did not fit the mod-
elled task time course and consequently includes mainly areas
not observed in the GLM analysis.

Similarly, component 17 showed a difference between angry
and neutral regressors in the late phase of the task (time point
11). As can be seen in Figure 4, this component showed a task-
related decrease in activity, which was stronger in neutral trials,
followed by an increase in activity after task offset. The compo-
nent included areas in bilateral angular gyrus, superior frontal
gyrus, medial frontal gyrus and precuneus.

These results suggest that the areas observed in the GLM
analysis belong to several distinct and distributed neural sys-
tems that are recruited throughout the task. Importantly, the
ICA results do not suggest specific modulation of neural sys-
tems by task condition during the decision phase. Rather,
effects found early on during the task persist during later task
stages as well.

Fig. 4. Task-negative components. Shown are spatial maps of components with

decreased activity during the task and significant differences between angry

and neutral trials. Mean time-courses for each component are shown on the

right, error bars denote standard errors of the mean.

Fig. 5. Task-positive components. Shown are spatial maps of components with

increased activity during the task and significant differences between angry and

neutral trials. Mean time-courses for each component are shown on the right,

error bars denote standard errors of the mean.
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Correlations between aggressive behaviour and component
time courses did not reach significance for any of the compo-
nents. Thus, trial-to-trial variability of punishment selections
was not consistently related to any of the components’ BOLD
magnitude time-courses across participants.

To allow for comparison with time courses obtained with the
standard GLM analysis, we used the same GLM design as
described in Beyer et al. (2015). For three key regions of interest
from the original angry>neutral contrast reported in Beyer et al.
(2015) we created 5 mm ROIs around the peak coordinates of the
original analysis (mPFC [�2, 44, 40], left superior temporal gyrus
[�44, �56, 22], left inferior frontal gyrus [�56, 24, 10]) using the
Matlab toolbox marsbar (Brett et al., 2002). We then extracted FIR
time courses time locked to trial onset, separately for angry and
neutral trials. These are shown in Supplementary material S3.

Re-analysis without AROMA

Without AROMA motion correction on the subject level, the
number of non-artefact components was reduced to 11.
Consequently, task-related components contained more wide-
spread networks reflecting combinations of the originally found
networks. Supplementary material S1 shows task-related net-
works similar to those reported above, with time courses that are
significantly different between conditions. The overall amount of
signal variance explained by non-artefact components was lower
for this analysis than the ICA run after denoizing with AROMA
(see Supplementary material S2). Overall, this re-analysis con-
firms the reproducibility and robustness of the reported ICA
results, as well as the advantage of applying AROMA motion cor-
rection prior to the group-level ICA.

Discussion

In this study, we used ICA to explore which distributed neural
systems are recruited during different stages of an aggressive
interaction, how these networks are affected by angry com-
pared to neutral facial expressions of the task opponent, and
whether they are related to aggressive behaviour.

Extending our previous results from standard GLM analyses
(Beyer et al., 2015), this approach revealed several task-related
networks, some of which were differentially affected by angry
and neutral trials.

Modulation of task-positive effects by experimental
condition

In angry trials, a fronto-temporal network was recruited during
early stages of the task, when participants saw their opponent
make his punishment selection and chose a punishment for
their opponent (component 12). This network showed a second
peak of activity following the late task stages, possibly reflecting
processing of the outcome phase information or of the entire
trial. The areas constituting this component are mostly part of
the mentalizing network (Lieberman, 2007), such as mPFC, mid-
dle and superior temporal gyrus, inferior frontal gyrus and pre-
cuneus. Thus, it appears that the same cognitive and affective
processes evoked by videos of an angry-looking opponent at the
beginning of a trial were re-activated following the outcome
phase, once participants could integrate the opponent’s facial
expression with his punishment selection. A similar network
was recruited during the outcome phase of angry trials, when
participants were informed about their opponent’s selection
and whether they won or lost (component 13). Thus, these

networks reflect the degree to which different task stages were
relevant for the social interaction: they were sensitive to the
facial expression of the opponent, and they showed two peaks,
one during the decision phase and one during the outcome
phase.

At the end of angry trials, increased activity was found in a
network of anterior cingulate cortex, precuneus, superior tem-
poral gyrus and inferior parietal lobule (component 15). These
regions are associated with integration of perception and action
(Rizzolatti et al., 2006), visual perspective taking (Schurz et al.,
2013) and cognitive control (Shenhav et al., 2013). Possibly, this
component reflects the planning of future actions based on the
preceding interaction with an angry opponent.

Modulation of task-negative effects by experimental
condition

In component 4 (spanning mPFC, IFG, posterior cingulate and
STS), we found a negative component time-course, which was
more strongly modulated in neutral than angry trials. Thus,
while in neutral trials this network showed a decrease in activ-
ity, it remained closer to the baseline level in angry trials. It
showed an additional increase in activity following angry trials.
Thus, baseline activity (or what would be used as baseline in a
GLM, i.e. the beginning of the inter-trial interval) in this compo-
nent was modulated by the preceding trial. The dorsal mPFC
and posterior cingulate have been shown to be highly similar in
connectivity profiles and functional reactivity, and are related
to social cognition and memory processes (Amft et al., 2015). IFG
and STS similarly are associated with social cognitive processes
as understanding the actions and intentions of someone else
(Lieberman, 2007).

Similarly, a network of medial and superior frontal gyrus,
angular gyrus and precuneus (component 17) showed a
condition-specific peak following the offset of angry trials. This
finding indicates the occurrence of mentalizing processes fol-
lowing interactions with a threatening opponent.

Besides being part of the mentalizing network, mPFC, precu-
neus and superior temporal areas are typically associated with
the so-called default mode network, a group of brain areas
showing decreased activity in many cognitive tasks, but
increased activity in tasks requiring social information process-
ing (Schilbach et al., 2008). Activity in the default mode network
during rest has been related to the ease with which participants
take the mental perspective of another person and self-report
social skills (Spunt et al., 2015). Thus it appears that the decision
phase and reaction time task of the TAP principally constitute a
(non-social) cognitive task leading to the typical observation of
decreased activity in the default mode network. However, in
angry trials, this effect is weakened, possibly reflecting a shift
from cognitive processing of the immediate task demands
towards reflection on the social aspects of the interaction with
the opponent.

The default mode network is typically treated as a fixed set
of brain regions that show similar patterns of task-related deac-
tivation (Esposito et al., 2006). The exact regions included may
differ between studies though and differentiations between
core networks and extended networks based on activity and
connectivity profiles have been proposed (Amft et al., 2015; M.
Göttlich et al., submitted for publication). However, our results
suggest that in the context of a social interaction, the DMN
splits up into different sub-networks, with partially overlapping
spatial maps, but different temporal dynamics. Component 15
spatially corresponds to typically described DMN-regions
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observed in resting state (Leech et al., 2011) and shows an
increase in activity at the end of angry trials, in correspondence
with the idea that this component reflects internally directed
thought (Leech et al., 2011). Component 4, on the other hand
shows the task-related decrease in activity typical for the DMN,
but involves a larger medial prefrontal cluster, whereas the
broad PCC cluster typically associated with the DMN is split into
two distinct, smaller clusters in the PCC. Component 17 simi-
larly shows the DMN-typical task-related decrease in activity
and includes DMN-related areas as mPFC and angular gyrus,
but also superior frontal gyrus.

Thus, while with the current study it is not possible to
explicitly differentiate between mentalizing and default mode
networks, functions associated with both networks, such as
contemplation of internal states of the self or other people
(Uddin et al., 2007), pose the most plausible explanation for their
increased activity during anger trials.

Comparison of ICA and GLM approaches

In a GLM-analysis, each voxel is treated as an independent
entity, with separate regression analyses conducted for all vox-
els. As such, this approach is blind to a priori information about
how cognitive processes should be represented in the brain, i.e.
the activation of neural systems. Furthermore, each voxel is
assigned one coefficient based on the fit of the model to this
voxel‘s time course. This may be problematic in some cases, as
different cognitive processes may affect overlapping neural sys-
tems, i.e., the activity level of a given voxel may be driven by
distinct, potentially counteracting neural processes. ICA, on the
other hand, enters all voxels simultaneously into the model
estimation and uses spatial information to define neural sys-
tems involved in a given cognitive process. Practically, one clear
advantage of the ICA approach over GLM analysis is the differ-
entiation between networks that show similar difference values
in the same region. For example, both components 4 and 12
showed higher activity in angry than neutral trials in mPFC dur-
ing the decision phase. However, in component 4 this was due
to stronger reduction of activity in neutral trials, in component
12 angry trials produced a stronger task-positive effect. In a
GLM analysis, comparing angry vs neutral contrast values on
the voxel level would produce one positive cluster, combining
the results of these two different neural networks, as we found
in the GLM analysis conducted previously (Beyer et al., 2015).
Similarly, comparing angry against neutral outcome phases in
the GLM analysis revealed large, unspecific effects across wide
areas of the brain (Beyer et al., 2015). Our current results suggest
that this effect may indeed reflect a combination of the effects
represented in components 4, 12 and 13, all of which showed
increased activity towards the end of angry trials.

Effects involving the regressor in the GLM contrasting angry
against neutral trials for the early task stage (the decision
phase) were not reflected in our ICA results. We found no
condition-specific component time courses that were specifi-
cally modulated by early task stages. Rather, the neural systems
affected by angry videos in the beginning of a trial showed simi-
lar effects during later task stages as well. Furthermore, the
time-courses of components 15 and 17, peaking after task offset,
were similar to that of the auditory component reflecting the
punishment sound. In a GLM analysis, these effects would be
difficult to observe as typically, the offset of a task is not explic-
itly modelled and signal variability related to this would there-
fore be best explained by the regressor modelling the onset of
the punishment sound. The sensitivity of these effects to the

experimental condition suggests that cognitive processes
related to the social interaction occur during the resting period.
Thus, in cases where the time-courses of different neural proc-
esses overlap, or are not known a priori, the data-driven analy-
sis approach grants a better understanding of which networks
are involved in a given task, and which neural processes con-
tribute to an observed difference value between experimental
conditions.

In none of the components did the correlation between trial-
wise aggressive behaviour and single-trial time-course values
reach significance. Thus, activity in these task-related networks
was not consistently related to punishment selection. In our
previous analysis we found a trial-wise modulation of dACC
activity by punishment selection in angry trials (Beyer et al.,
2015). Thus, for such specific investigations of within-subject
variability, the GLM approach may be more sensitive. As the
concatenation approach for ICA group analysis finds networks
that are similar across subjects and trials, neural networks with
a high spatial variability across the task may not be detected.
Other approaches as investigating subject-specific time courses
or using Tensor ICA (Beckmann and Smith, 2005) instead of the
concatenation analysis may be more sensitive to variability on
the subject level. Tensor ICA however, requires task time
courses to be comparable between subjects, which was not the
case with our randomized experimental design.

Regardless of the method used, however, the ICA approach
by nature is best suited to detect large-scale neural networks,
and may be less sensitive for the detection of individual,
smaller regions. This limitation can have particular relevance
for task-based MRI data with a uniform time course dominating
the analysis which, as in the present example, can lead to a rel-
atively low number of identified components.

Another limitation of the ICA approach which has to be con-
sidered is the post-hoc nature of interpreting the results. While
for resting-state data predictions can be made as to which net-
works should typically be found, for task-related data this anal-
ysis is, at this point, more exploratory. Any interpretation of the
functional meaning of observed effects is based on our knowl-
edge stemming from traditional, GLM-based studies showing
increased (or decreased) activity in a given brain region during
tasks aimed at eliciting certain cognitive or affective processes.
Nevertheless, ICA allows for the identification of the neural
processes which are recruited during a given task stage. The
functional meaning of these neural processes will have to be
established by future research implementing ICA on tasks
assumed to evoke similar or differential social and cognitive
processes.

Conclusions

Using ICA to re-analyse data from a complex social fMRI-
paradigm, we compared this approach to classical GLM analy-
sis. We were able to differentiate between several neural sys-
tems involved during different stages of the task, which in the
GLM analyses resulted in wide-spread, unspecific activation
patterns. Furthermore, we found condition-specific component
time courses that did not fit the regression model. Thus, in such
complex social tasks, this approach can help to understand
which neural systems are involved in the task and how their
temporal dynamics map onto the task time course. Possibly,
findings from an ICA might be used to form optimized GLM
regressors in future studies using similar tasks. The ICA was in
our case less sensitive to within-subject variability in behaviour
than the GLM approach. Thus, to gain an optimal understanding
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of task effects on neural processes, combining both analysis
strategies would be the recommended approach.

Supplementary data

Supplementary data are available at SCAN online.
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Orbitofrontal cortex reactivity to angry facial expression in a
social interaction correlates with aggressive behavior. Cereb
Cortex 25(9), 3057–63.

Brett, M., Anton, J.L., Valabregue, R., Poline, J.B. (2002). Region of
interest analysis using the MarsBar toolbox for SPM 99.
Neuroimage 16(2), S497.

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J. (2001). A method
for making group inferences from functional MRI data using
independent component analysis. Hum Brain Mapp 14(3), 140–51.

Esposito, F., Bertolino, A., Scarabino, T., Latorre, V., Blasi, G.,
Popolizio, T., Tedeschi, G. (2006). Independent component
model of the default-mode brain function: assessing the
impact of active thinking. Brain Res Bull 70(4–6), 263–9.
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