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The STAT signaling pathway is important in dendritic cell (DC) development and function. Tumor cells can induce STAT
signaling, thereby inhibiting DC maturation and immunostimulatory functions, leading to hampered efficacy of DC-based
immunotherapies. Platinum-based chemotherapeutics can inhibit STAT signaling, thereby making them an interesting tool to
improve DC development and function. In this study, we provide a comprehensive overview of STAT expression and
phosphorylation during DC differentiation and maturation and investigate the effects of platinum drugs on STAT signaling
during these processes. Monocytes were differentiated into monocyte-derived DCs (moDCs) with IL-4 and GM-CSF and
matured with cytokines or TLR ligands. STAT expression and phosphorylation were analyzed by western blotting, and moDC
viability and phenotype were analyzed by flow cytometry. Platinum drugs were added at day 3 of differentiation or at the start of
maturation to investigate regulation of the STAT signaling pathway. All STAT proteins were expressed during moDC
differentiation and STAT1, STAT5, and STAT6 were phosphorylated. No significant changes occurred in the expression and
phosphorylation state of the STAT proteins during differentiation. After maturation with TLR ligands, the expression of STAT1
increased, but other STAT proteins were not affected. Phosphorylation of STAT1 and STAT3 increased during maturation,
where TLR ligands induced significantly higher levels of phosphorylation than cytokines. Platinum drugs cisplatin and
oxaliplatin significantly inhibited phosphorylation of STAT6 during differentiation and maturation. Treatment did not affect the
phenotype or viability of the cells. As STAT6 is an important regulator of DC function, these findings suggest a role for
platinum-based chemotherapeutics to enhance DC function via inhibition of STAT signaling, thereby potentially enhancing
efficacy of DC-based immunotherapies.

1. Introduction

The signal transducer and activator of transcription (STAT)
signaling pathway is regulated by a family of 7 STAT
proteins that can be induced by over 50 cytokines, growth
factors, and hormones. Binding of these factors to their
receptors initiates the phosphorylation of receptor-
associated Janus kinases (JAKs). Phosphorylated JAKs
subsequently form a docking site for STAT proteins where
they are phosphorylated. Phosphorylated STAT proteins
can then directly bind to DNA and regulate gene transcrip-

tion [1]. Additionally, nonreceptor tyrosine kinases, like
the Src kinase family, can induce STAT signaling directly
in the cytoplasm [2]. Mutations in proteins of the STAT
signaling pathway have been linked to many human disor-
ders and often result in some form of immunodeficiency,
indicating their important role in modulating immune cell
function [3, 4]. For example, STAT3 was shown to be impor-
tant in the development of T cell memory [5], but it also
induces differentiation and functional regulation of immune
inhibitory myeloid-derived suppressor cells (MDSCs) [6].
Furthermore, activation of STAT proteins is critical for
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differentiation, phenotype, and function of dendritic cells
(DCs), regulating both immunostimulatory and inhibitory
mechanisms [7–9].

Dendritic cells are the antigen-presenting cells of the
immune system that are present in all tissues, where they
scan their environment for signs of danger in the form of
protein antigens. After encounter with an antigen, they
mature, migrate to lymph nodes, and present antigens to
lymphoid cells, thereby efficiently inducing naïve T cells into
antigen-specific effector T cells. This property makes them an
attractive tool for stimulating antitumor immunity using
immunotherapeutic approaches, such as DC vaccination
[10]. The two main blood-circulating DC subsets in humans
are conventional DCs and plasmacytoid DCs (pDCs). These
two subsets exert different functions in immune responses,
as conventional DCs have high cross-presentation capacity
and pDCs are important in antiviral immunity by producing
interferon-α [11]. Conventional DCs mainly develop from
myeloid precursor cells originating from the bone marrow,
which differentiate into immature myeloid DCs in the spleen.
pDCs, on the other hand, originate from a lymphoid progen-
itor cell and differentiate in the bone marrow [12]. Due to the
low frequency of blood-circulating DCs in human peripheral
blood, monocyte-derived DCs (moDCs) are routinely used as
an in vitro model to study the development and function of
DCs. MoDCs are generated from peripheral blood mono-
cytes, by the addition of granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin (IL)-4. They
resemble naturally occurring blood DCs in their ability to
upregulate costimulatory molecules in response to matura-
tion stimuli and present captured antigens to T cells [13].

Different STAT proteins are involved in the regulation of
DC development and functional maturation. STAT1 regu-
lates pDC generation from murine progenitor cells [14].
Moreover, STAT1 is required for the induction of antigen-
specific cytotoxic T cell activity by DCs [7, 15]. STAT5 regu-
lates the differentiation of DCs by inducing expansion of
conventional DCs and inhibiting development of pDCs [16,
17]. STAT5 is also required for DC activation through upreg-
ulation of costimulatory molecules and enhanced chemokine
production [18]. Interestingly, STAT3 and STAT6 have both
stimulatory and inhibitory effects on DCs. Several studies
have shown that STAT3 and STAT6 induce the differentia-
tion of progenitor cells into immature DCs [17, 19–21].
However, STAT3 induction by tumor-derived factors, such
as IL-6, inhibits DC maturation [22, 23]. Moreover, STAT3
and STAT6 negatively regulate the immunostimulatory func-
tion of DCs by inducing the expression of the inhibitory mol-
ecules programmed death-ligand (PD-L) 1 and 2 [8, 9].
Additionally, STAT3 has been described to modulate the
development of tolerogenic DCs, inhibit the expression of
HLA-DR and costimulatory molecules CD80 and CD86,
and reduce the ability of DCs to prime interferon-γ produc-
tion by T cells [24–27]. These observations propose STAT
signaling as a possible target to modulate DC development
and function.

Several studies have shown that anticancer platinum
drugs, including oxaliplatin and cisplatin, are regulators of
the STAT signaling pathway. Platinum-based drugs can

inhibit phosphorylation of STAT1, 2, 3, 5, and 6 in cancer
cells, by specifically blocking the SH2 domain of the STAT
proteins, which functions as a docking site of the STAT pro-
tein to its receptor, thereby inhibiting de novo STAT phos-
phorylation [28–30]. Additionally, platinum drugs affect
STAT6 phosphorylation in moDCs [9]. Treatment of colon
cancer patients with DC vaccination in combination with
oxaliplatin resulted in functional tumor antigen-specific T
cell responses, as well as improved nonspecific T cell prolifer-
ation [31]. This effect is possibly caused by the inhibitory
effect of oxaliplatin on STAT signaling, as exposure of mature
moDCs to platinum drugs in vitro downregulated STAT6-
dependent PD-L2 expression, thereby enhancing their ability
to induce T cell proliferation [9]. Altogether, these observa-
tions emphasize the potential role of platinum drugs in mod-
ulating STAT signaling to enhance the function and possibly
the development of DCs.

Despite the wealth of evidence showing the importance
of STAT signaling in DC development and function, a com-
prehensive expression profile of STATs during differentia-
tion and maturation of (mo)DCs is still lacking. Given the
reported inhibitory effect of platinum drugs on STAT6
phosphorylation in moDCs, we aim to investigate the role
of oxaliplatin and cisplatin on the expression and phosphor-
ylation of different STAT proteins during moDC develop-
ment. We provide an overview of the regulation of the
STAT signaling pathway during moDC differentiation and
maturation using either cytokines or TLR ligands as matura-
tion stimuli. Furthermore, our results show that platinum
drugs significantly inhibit phosphorylation of STAT6 during
both moDC differentiation and maturation and we observed
a trend in inhibition of STAT3 phosphorylation during mat-
uration, which was however not statistically significant.
These findings suggest that platinum drugs could be a poten-
tial tool to enhance the function of DCs by inhibition of
STAT signaling and thereby possibly induce the efficacy of
DC-based vaccines.

2. Material and Methods

2.1. MoDC Generation and Culture. Peripheral blood mono-
nuclear cells (PBMCs) were isolated from healthy donor
blood (Sanquin, Nijmegen, Netherlands) by density gradient
centrifugation using lymphoprep (Axis-Shield). Adherent
cells were obtained as previously described [32]. Immature
DCs were generated by culturing the adherent cells in X-
VIVO medium (Lonza) containing 2% human serum (San-
quin), with IL-4 (300 U/ml) and GM-CSF (450 U/ml; both
CellGenix) for 6 days. On day 6, DCs were maturated with
either a cytokine cocktail containing prostaglandin E2
(PGE2; 10 μg/ml; Pfizer), tumor necrosis factor (TNF)-α
(10 ng/ml), IL-1β (5 ng/ml), and IL-6 (15 ng/ml; all Cell-
Genix) or with toll-like receptor (TLR)3 and TLR7/8 ligands,
poly[I:C] (20 μg/ml; Enzo), and R848 (4 μg/ml; InvivoGen),
respectively, for 24 hours.

2.2. Platinum Treatment.MoDCs were treated with clinically
relevant concentrations of platinum drugs during differenti-
ation or maturation [9]. Oxaliplatin (5 mg/ml, TEVA), at a
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concentration of 4 μg/ml or 7 μg/ml, or cisplatin (1 mg/ml,
Accord), at a concentration of 2.5 μg/ml or 5 μg/ml, was added
to the culture medium, either at day 3 to day 4 or at day 6 to
day 7, to investigate the effect on differentiation and matura-
tion, respectively. Cells were harvested by adding 4°C PBS
and were washed with PBS. Around 1million cells were stored
at 4°C for further flow cytometry analysis the same day and all
other cells were snapfrozen and stored at -80°C until lysis.
Purity of the harvested moDCs was on average 88%.

2.3. Flow Cytometry Analysis. Expression levels of maturation
markers and costimulatory molecules were evaluated using
flow cytometry. Between 50,000 and 80,000 cells per well
were first stained for cell viability using Fixable Viability
Dye eFluor450 (1 : 2000 dilution; eBioscience) in PBS for 20
minutes. Thereafter, single stainings were performed with
the antibodies shown in Table 1 (all Miltenyi) for 30 minutes
in autoMACS Running Buffer (Miltenyi). Antibodies were
properly titrated to obtain an optimal signal to noise ratio.
Cells were analyzed using a FACSVerse flow cytometer
(BD). Quality control of the flow cytometer’s performance
and coefficient of variation (CV) values were monitored on
a day-to-day basis using CS&T beads (BD). Data was ana-
lyzed using FlowJo V10 software (Treestar) by first gating
the moDC population based on forward and sideward scatter
and selecting live cells that were negative for Fixable Viability
Dye eFluor450, whereafter data was visualized using Graph-
Pad Prism software.

2.4. Western Blot Analysis. STAT protein expression and
phosphorylation status was assessed by western blotting. Cell
pellets were lysed in lysis buffer (pH 7.8) containing 50 mM
Tris base, 1 mM EDTA, 150 mM NaCl (all Merck), 1%
NP40 (Roche Diagnostics), 1 : 100 phosphatase inhibitor
cocktail 2 and 3 (Merck), 1X protease inhibitor cocktail,
and 1X PhosSTOP (both Roche Diagnostics). Before poly-
acrylamide gel electrophoresis, Laemmli sample buffer (Bio-
Rad) was added 1 : 5 to cell lysates containing 25 μg of protein
for STAT1, 3, 5, and 6, 100 μg for pSTAT1, 3, and 6, or 200
μg for pSTAT5. Samples were fractioned by electrophoresis
in 8% SDS-PAGE gels, using 30% 37.5 : 1 Acrylamide/Bis
solution (Bio-Rad) and further processed for western blot
analysis [33]. After blocking, the primary antibodies in
Table 2 were used for overnight staining at 4°C.

After washing, membranes were incubated with 1 : 5000
goat-anti-rabbit IRDye800 (LI-COR Biosciences, order no.
926-32211), 1 : 5000 goat-anti-mouse IRDye680 (LI-COR
Biosciences, order no. 926-32220), and 1 : 5000 goat-anti-rat
IRDye680 (Invitrogen, order no. A21096) as secondary anti-
bodies and analyzed with the Odyssey Imaging system (LI-
COR Biosciences).

2.5. Statistical Analysis. Western blot quantification and
phenotype data are normalized to the loading control
and are depicted as relative expression to day 2 or day 6
+ SEM (Figures 1 and 2) or as relative expression to con-
trol + SEM (Figures 3 and 4). Statistical testing was per-
formed using one-way ANOVA followed by Bonferroni’s
multiple comparison test comparing STAT expression

and phosphorylation at all analyzed days to each other
in Figures 1 and 2 and the platinum conditions to their
control in Figures 3 and 4.

3. Results

3.1. STAT Expression and Phosphorylation during moDC
Differentiation. The expression and tyrosine phosphorylation
state of STAT proteins during differentiation of monocytes
into moDCs was assessed by western blotting. Monocytes
were cultured in medium containing IL-4 and GM-CSF for
6 days. Medium was refreshed on day 3 (Figure 1(a)). The
expression and phosphorylation of STAT1, STAT3, STAT5,
and STAT6 were analyzed onmoDCs at days 2 to 6 of the dif-
ferentiation process. At day 2, expression of all total STAT
proteins was observed and remained at a similar level until
day 6 (Figures 1(b) and 1(c)). Additionally, the upper band
of STAT5, which is the α-isoform, increased during differen-
tiation. Stable levels of phosphorylated STAT1 were observed
from day 2 to day 6 and phosphorylation of STAT3 was weak
or not detectable. Phosphorylation of STAT5 slightly
decreased on days 4, 5, and 6 when compared to day 3 and
STAT6 phosphorylation moderately increased at day 6, but
these changes were not statistically significant. Furthermore,
phosphorylation of STAT2 and STAT4 was not observed
during differentiation as well as maturation and is therefore
not shown (Supplementary figure 1).

3.2. STAT Expression and Phosphorylation during moDC
Maturation. On day 6, moDCs were stimulated with either
a cytokine cocktail or TLR ligands and mature moDCs were
harvested at day 7 (Figure 1(a)). Several maturation markers,
such as HLA-ABC and HLA-DR/DP/DQ, and costimulatory
markers, CD80 and CD86, were shown to be upregulated on
moDCs compared to day 2, indicating the moDCs had a
matured phenotype (Supplementary figure 2A, B). The
gating strategy for viable moDCs is shown in Supplementary
figure 2C. Viability of the cells did not change upon
culturing from day 2 until day 7 (Supplementary figure 2D).
STAT expression and phosphorylation in moDCs harvested
on day 6, before addition of the maturation stimuli, were
compared to day 7 after TLR-induced or cytokine-induced
maturation (Figures 2(a) and 2(b)). Expression of STAT3,
STAT5, and STAT6 did not change after maturation,
compared to day 6, whereas STAT1 expression significantly
increased after TLR-induced maturation and remained
unchanged after cytokine-induced maturation. Furthermore,
phosphorylation of STAT1 and STAT3 significantly
increased after TLR-induced maturation while only a
moderate and not significant increase was observed after
cytokine-induced maturation. Both maturation stimuli did
not significantly alter STAT5 and STAT6 phosphorylation,
although cytokine maturation seemed to induce
phosphorylation of STAT5 and STAT6 more than
maturation with TLR ligands.

3.3. Platinum Drugs Alter Expression and Phosphorylation of
STAT6 during moDC Differentiation. To determine the effect
of platinum drugs on STAT expression and phosphorylation
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during monocyte differentiation into moDCs, cells were
treated with clinically relevant doses of oxaliplatin (4 μg/ml
or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml) at day 3 of dif-
ferentiation. Figure 3(a) shows the expression and phosphor-
ylation levels of STAT1, STAT3, STAT5, and STAT6 on day
4 of differentiation after 24 hours of platinum treatment.
Quantification revealed that expression levels of STAT1 and
STAT5 were not significantly altered by the addition of plat-
inum drugs (Figure 3(b)). STAT3 expression was signifi-
cantly decreased but only by the highest concentration of
oxaliplatin, and STAT6 expression was increased but only
by the lowest concentration of oxaliplatin. Phosphorylation
of STAT1 and STAT5 was also not altered by treatment with
oxaliplatin or cisplatin, whereas phosphorylated STAT3 was
not detectable at day 4. Phosphorylation of STAT6 was sig-
nificantly downregulated by cisplatin at a concentration of
5 μg/ml compared to control, and a similar trend was
observed for the lowest concentration of cisplatin. The
increase observed in the expression of total STAT6 empha-
sizes the potency of especially cisplatin to specifically inhibit
phosphorylation of STAT6. In addition, to investigate the
effect of platinum drug treatment on the phenotype of the
immature moDCs, expression of HLA-ABC and HLA-
DR/DP/DQ and costimulatory molecules CD80 and CD86
was analyzed (Figure 3(c)). These markers were not affected
by the platinum drugs, indicating that the treatment does
not alter the phenotype of the moDCs. Viability of the
moDCs was also not affected by the platinum drugs (Supple-
mentary figure 3A).

3.4. Platinum Drugs Alter Phosphorylation of STAT3 and
STAT6 during moDC Maturation. To determine the effect

of platinum drugs on STAT protein expression and
phosphorylation during moDC maturation, oxaliplatin (4
μg/ml or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml)
was added at day 6, together with the maturation stimuli.
Figure 4(a) shows STAT protein expression levels and
phosphorylation state on day 7 of maturation with TLR
ligands or cytokines in the presence or absence of plati-
num drugs. Oxaliplatin and cisplatin did not significantly
affect the expression of STAT1, STAT3, STAT5, and
STAT6 on day 7 after maturation with either TLR ligands
or cytokines (Figures 4(a) and 4(b)). Changes in phos-
phorylation of STAT1 and STAT5 were observed,
although not significant due to high donor variance and
no trend could be observed towards upregulation or
downregulation of phosphorylation by the platinum drugs.
Although it was not a significant trend, a slight decrease in
the phosphorylation of STAT3 was observed by the high-
est concentration of cisplatin in TLR-matured moDCs, as
well as by both platinum drugs in cytokine-matured
moDCs. Furthermore, treatment of moDCs with oxalipla-
tin (7 μg/ml) or cisplatin significantly inhibited the phos-
phorylation of STAT6 at day 7 compared to untreated
matured moDCs. The lowest concentration of oxaliplatin
significantly decreased phosphorylation of STAT6 in
cytokine-matured moDCs, but not in TLR-matured
moDCs. The expression levels of HLA-ABC and HLA-
DR/DP/DQ and costimulatory marker CD86 were not
affected by treatment of the mature moDCs (Figure 4(c)).
Only the highest concentration of cisplatin significantly
inhibited the expression of CD80 on TLR-matured moDCs.
Viability of the moDCs was not affected by the treatment
(Supplementary figure 3B).

Table 1: Antibodies used for flow cytometry.

Target Fluorophore Clonality Dilution Order no.

REA isotype APC REA293 1 : 80 130-104-615

HLA-ABC APC REA230 1 : 80 130-101-466

HLA-DR/DP/DQ APC REA332 1 : 160 130-104-870

mIgG1 isotype APC IS5-21F5 1 : 80 130-113-758

CD80 APC 2D10 1 : 80 130-099-710

CD86 APC FM95 1 : 160 130-114-095

Table 2: Primary antibodies used for western blotting.

Target Origin and clonality Dilution Company Order no.

STAT1 Rabbit-polyclonal 1 : 1000 Cell Signaling 9172

pSTAT1 Rabbit-monoclonal 1 : 1000 Cell Signaling 9167

STAT3 Rabbit-monoclonal 1 : 1000 Cell Signaling 4904

pSTAT3 Rabbit-monoclonal 1 : 1000 Cell Signaling 9145

STAT5 Rabbit-monoclonal 1 : 1000 Cell Signaling 94205S

pSTAT5 Rabbit-monoclonal 1 : 250 Cell Signaling 4322T

STAT6 Rabbit-polyclonal 1 : 1000 Santa Cruz sc-621

pSTAT6 Mouse-monoclonal 1 : 1000 BD Biosciences 611567

Tubulin Rat-monoclonal 1 : 1000 Novus NB100-1639
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4. Discussion

In this study, we provided a comprehensive profile of the
expression levels and phosphorylation state of STAT pro-
teins during differentiation of human monocytes into
moDCs and during moDC maturation. In addition, we
reported that the platinum drugs oxaliplatin and cisplatin

inhibit STAT phosphorylation during moDC development.
These results provide new insights into STAT protein
expression and phosphorylation during moDC develop-
ment in vitro and have implications for the use of
platinum-based chemotherapeutics to modulate STAT
expression in moDCs, thereby possibly improving their
immune stimulatory function.
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Figure 1: MoDC development protocol and expression and phosphorylation of STAT proteins during monocyte differentiation into moDCs.
(a) Experimental design for differentiation and maturation of monocytes into mature moDCs. (b) Expression and phosphorylation of STAT1,
STAT3, STAT5, and STAT6 on days 2 to 6, with tubulin used as loading control. One representative band of 3 donors is shown. (c)
Quantification of STAT expression and phosphorylation, normalized to tubulin, shown as relative expression to day 2 moDCs (n = 3).
Data are depicted as mean + SEM.
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We observed stable expression of STAT1, STAT3,
STAT5, and STAT6 during differentiation. Interestingly,
the expression of the α-isoform of STAT5 increased during
this process, alluding to possible functional differences
between STAT5 isoforms in DC differentiation. Expression
of phosphorylated STAT1 did not change during differentia-

tion, and phosphorylation of STAT3 was not detected.
STAT5 phosphorylation slightly decreased on days 4 to 6
compared to day 3 of the differentiation process, which could
possibly be related to the change in STAT5 isoform expres-
sion we observed. However, this decrease was not significant.
STAT6 phosphorylation was detectable from the start of
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Figure 2: Expression and phosphorylation of STAT proteins during moDC maturation. (a) Expression and phosphorylation of STAT1,
STAT3, STAT5, and STAT6 on day 6, before addition of maturation stimuli, and day 7 after maturation with TLR ligands or cytokines,
with tubulin used as loading control. One representative band of 4 donors is shown. (b) Quantification of STAT expression and
phosphorylation, normalized to tubulin, shown as relative expression to day 6 moDCs (n = 4). Data are depicted as mean + SEM. ∗P <
0 05; ∗∗P < 0 01; ∗∗∗P < 0 001.
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differentiation and did not also relevantly change upon dif-
ferentiation. Expression and phosphorylation of STAT pro-
teins can be explained by the presence of IL-4 and GM-CSF
in the culture medium during differentiation. In mouse
DCs, GM-CSF has been shown to induce expression of
STAT1, STAT3, STAT5, and STAT6 [34]. Additionally, the

GM-CSF receptor is readily expressed in monocytes, explain-
ing why this effect of GM-CSF is already observed from day 2
onwards [35]. GM-CSF also induced STAT5 phosphoryla-
tion in human monocytes, which could explain the observed
expression of phosphorylated STAT5 during moDC differen-
tiation [35]. In CD34+ human progenitor cells that were
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Figure 3: Expression and phosphorylation of STAT proteins and phenotype of moDCs during differentiation in the presence or absence of
platinum drugs. (a) Expression and phosphorylation of STAT1, STAT3, STAT5, and STAT6 on day 4 of differentiation in the presence or
absence of oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml), with tubulin used as loading control. One representative
band of 3 donors is shown. (b) Quantification of STAT expression and phosphorylation, normalized to tubulin, shown as relative
expression to untreated control cells (n = 3). Data are depicted as mean + SEM. (c) Expression of HLA-ABC and HLA-DR/DQ/DQ and
costimulatory molecules CD80 and CD86 by moDCs treated with oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml)
during differentiation as compared to untreated moDCs. The mean fluorescence intensities (MFIs) of live cells are shown as mean fold of
untreated control cells + SEM (n = 4). ∗P < 0 05.
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Figure 4: Expression and phosphorylation of STAT proteins and phenotype of moDCs during maturation in the presence or absence of
platinum drugs. (a) Expression and phosphorylation of STAT1, STAT3, STAT5, and STAT6 on day 7 after maturation in the presence or
absence of oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml), with tubulin used as loading control. One representative
band of 3 donors is shown. (b) Quantification of STAT expression and phosphorylation, normalized to tubulin, shown as relative
expression to untreated control cells (n = 3). Data are depicted as mean + SEM. (c) Expression of HLA-ABC and HLA-DR/DQ/DQ and
costimulatory molecules CD80 and CD86 by moDCs treated with oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin (2.5 μg/ml or 5 μg/ml)
during maturation as compared to untreated moDCs. The MFIs of live cells are shown as mean fold of untreated control cells + SEM
(n = 4 (TLR maturation) or n = 3 (cytokine maturation)). MoDCs matured with TLR ligands and moDCs matured with cytokines are
obtained from different donors. ∗P < 0 05; ∗∗P < 0 01; ∗∗∗P < 0 001.
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differentiated using GM-CSF, high expression of STAT5 and
low levels of phosphorylated STAT5 were detected at day 3.
STAT5 expression decreased until day 7, whereas phosphor-
ylated STAT5 expression increased over the same period
[36]. This is different from our observations that expression
and phosphorylation of STAT5 are not significantly altered
during differentiation. This interesting difference might be
caused by the different origins of the DC subsets and could
also be dependent on the difference in cytokine cocktail such
as the addition of IL-4 to the cocktail we used. IL-4 directly
induces STAT6 phosphorylation in human and mice, and
IL-4 and GM-CSF have a synergistic stimulatory effect on
STAT1 phosphorylation in mouse studies, which correlates
with our observations on STAT1 and STAT6 phosphoryla-
tion [37]. Phosphorylation of STAT3 was weak or not
detectable during differentiation of monocytes, although it
has been described that IL-4 can induce phosphorylation of
STAT3 in monocytes [38]. This is an interesting observation
as it has been reported that induction of STAT3 phosphory-
lation in progenitor cells leads to inhibited differentiation
into mature DCs and induced development of immune
inhibitory MDSCs, which could negatively affect their func-
tionality in DC-based vaccines [39].

Phosphorylation of STAT2 and STAT4 was not observed
during either differentiation or maturation, although effects
of these STAT proteins on DC development and function
have been described. For example, a partial loss-of-function
mutation within STAT2 reduces the amounts of both pDCs
and conventional DCs in mice and impairs their ability to
mature in response to TLR stimulation [40]. Moreover,
STAT2 is required for DC-mediated cross-presentation
[41]. Similarly, STAT4 induces DC maturation and enhances
the capacity of DCs to prime cytotoxic T lymphocytes [42,
43]. The difference in the expression pattern of phosphor-
ylated STAT2 and STAT4 compared to our study is prob-
ably due to the use of different cell types and different
stimulatory cytokines.

Cisplatin significantly reduced STAT6 phosphorylation at
day 4 of differentiation when added at day 3. It has however
been described that cisplatin treatment inhibits differentiation
of moDCs. After treatment of monocytes during differentia-
tion, the percentage of CD14+ undifferentiated monocytes
increased and the percentage of CD1a expressing mature cells
decreased [44]. This indicates that adding platinum com-
pounds during monocyte differentiation could hamper differ-
entiation of precursor cells into moDCs, possibly through
inhibition of STAT6 phosphorylation. However, treatment of
moDCs with platinum chemotherapeutics did not affect the
expression levels of HLA-ABC, HLA-DR/DP/DQ, CD80,
and CD86 nor the percentage of cells positive for these
markers (data not shown), indicating that the possible ham-
pering of moDC differentiation by platinum drugs is not
caused by phenotypical changes. Furthermore, it shows that
the effect of platinum drugs on STAT6 phosphorylation is
not related to changes in the phenotype. Nonetheless, given
the knowledge that platinum treatment inhibits moDC devel-
opment, inhibition of STAT6 phosphorylation with platinum
drugs during differentiation might ultimately not be beneficial
for DCs used in DC-based immunotherapies.

Maturation of moDCs with TLR ligands poly[I:C] and
R848 or with a cytokine cocktail consisting of PGE2, TNF-
α, IL-1β, and IL-6 had no effect on the expression or phos-
phorylation of STAT5 and STAT6. The cytokine cocktail
slightly induced the phosphorylation of STAT1 and STAT3
compared to day 6. This is probably caused by the presence
of IL-6 in the cytokine cocktail, which is a known inducer
of phosphorylation of STAT1 and STAT3 [23, 45]. However,
the increase in STAT1 and STAT3 phosphorylation was not
strong, indicating that other cytokines in the cocktail might
influence the effect of IL-6 on phosphorylation or phosphor-
ylation itself. STAT3 expression was unaltered after matura-
tion, whereas STAT1 expression was significantly increased
by TLR ligands. Although STAT3 is described to inhibit mat-
uration of moDCs, phosphorylation was strongly increased
by maturation with TLR ligands [26]. Phosphorylation of
STAT1 was also significantly higher after maturation with
TLR3 and TLR7/8 ligands, compared to the cytokine cocktail.
The differences in effects of the maturation stimuli on STAT1
expression and phosphorylation can be explained by obser-
vations that TLR signaling in DCs induced STAT1 expres-
sion and phosphorylation, whereas cytokine maturation
with PGE2 and TNF-α did not induce phosphorylation of
STAT1. Additionally, PGE2 and TNF-α also did not induce
phosphorylation of STAT3 and STAT6 [46]. Furthermore,
moDCs themselves are also capable of secreting cytokines
that could exert autocrine and paracrine effects on STAT
expression and phosphorylation. For example, the addition
of TLR ligand R848 during differentiation of moDCs
increased the phosphorylation of p38 and p42, which drives
the production of IL-6 and IL-10 that can in turn induce
phosphorylation of STAT3 [8]. This process possibly con-
tributes to the higher level of phosphorylated STAT3 after
maturation with TLR ligands, compared to cytokines.

Phosphorylation of STAT1 has a stimulatory effect on
DCs and is required for the generation of antigen-specific
cytotoxic T cells [15]. As our observations indicate that
TLR ligands induce higher STAT1 phosphorylation than
cytokines, TLR-induced maturation would be favorable over
cytokine-induced maturation to stimulate DC function. This
is emphasized by the observation that TLR-matured moDCs
have higher T cell stimulatory capacity than moDCs matured
with cytokines [47]. However, TLR maturation also induced
higher levels of phosphorylated STAT3. STAT3 phosphory-
lation is related to inhibition of DC function in several stud-
ies, as it downregulates expression of HLA-DR and
costimulatory molecules CD80 and CD86 [25, 27]. Further-
more, STAT3 induces PD-L1 expression on DCs, which is
required for the development of tolerogenic DCs, and
reduces the ability of DCs to prime interferon-γ production
by T cells [8, 24, 26]. STAT6 was also phosphorylated after
maturation with TLR ligands and induces PD-L2 expression
on moDCs, which is an important T cell inhibitory molecule
[9]. Therefore, inhibiting the phosphorylation of these
STATs during maturation with TLR ligands could enhance
the immunostimulatory function of moDCs. We observed a
trend towards inhibition of STAT3 phosphorylation by cis-
platin when added at the start of maturation with either cyto-
kines or TLR ligands, although this was not significant.

9Journal of Immunology Research



Cisplatin and oxaliplatin significantly inhibited STAT6 phos-
phorylation during TLR-induced and cytokine-induced mat-
uration, confirming earlier observations that cisplatin and
oxaliplatin inhibit STAT6 phosphorylation in moDCs [9].
Inhibition of especially STAT6 phosphorylation by platinum
compounds could possibly explain the beneficial effect of
oxaliplatin in colon cancer patients that were treated with
moDC vaccination. Combination treatment enhanced
tumor-antigen T cell responses and improved nonspecific T
cell proliferation, which could be due to enhanced DC func-
tion by oxaliplatin [31].

Our findings in moDCs indicate that combination ther-
apy with platinum compounds possibly also enhances the
efficacy of naturally occurring blood-DC vaccines, which
are a promising alternative to moDC vaccines [48]. However,
there are indications that platinum drugs have dissimilar
effects on different DC subsets. Treatment with platinum
drugs induced the T cell proliferative capacity of both TLR-
matured moDCs and CD14+ monocytes activated with the
superantigen staphylococcal enterotoxin B [9, 44]. However,
cisplatin stimulated the development of IL-10 producing tol-
erogenic DCs after TLR stimulation of bone marrow-derived
mouse DCs, but there are no indications for a similar effect in
human DCs [49]. Furthermore, oxaliplatin impaired the
function of TLR9-activated pDCs, possibly by upregulation
of PD-L1. The differential effect could be the result of differ-
ent STAT expression profiles, as STAT3 and STAT6 phos-
phorylation was not observed during pDC maturation, in
contrast to what we observed during moDC maturation.
pDCs do however respond differently to oxaliplatin treat-
ment when activated with TLR7 ligands, which partially
restored their T cell proliferative capacity. CD1c+ myeloid
DCs also induced lower T cell proliferation when treated with
oxaliplatin during TLR-induced activation [50]. However,
oxaliplatin enhanced the T cell stimulatory capacity of
CD1c+ myeloid DCs when treated in the presence of IL-4
and GM-CSF (data not shown). Therefore, future research
is needed to assess if platinum drugs stimulate blood-DC
subsets similar to moDCs and what adjuvants are needed to
create the optimal environment for platinum drugs to poten-
tiate DC function. Ultimately, platinum drugs could be an
interesting potential tool to regulate the STAT signaling
pathway in order to improve DC function and enhance the
efficacy of DC-based immunotherapies.
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Supplementary Materials

Supplementary figure 1: expression and phosphorylation of
STAT2 and STAT4 during moDC differentiation and matu-
ration. A: expression and phosphorylation of STAT2 and
STAT4 on days 4 to 6 of differentiation, with actin used as
loading control. One representative band of at least 2 donors
is shown. B: expression and phosphorylation of STAT2 and
STAT4 on day 6, before addition of maturation stimuli and
day 8 after maturation with TLR ligands or cytokines, with
actin used as loading control. One representative band of at
least 3 donors is shown. Supplementary figure 2: phenotype
and viability of moDCs during differentiation and matura-
tion. A: representative FACS histogram plots of HLA-ABC,
HLA-DR/DP/DQ, CD80 and CD86 expression by moDCs
during days 2 and 6 of differentiation and on day 7 after mat-
uration with TLR ligands or cytokines. B: MFI of HLA-ABC,
HLA-DR/DP/DQ, CD80 and CD86 expression on moDCs
during day 2 and 6 of differentiation and on day 7 after mat-
uration with TLR ligands or cytokines. The MFIs of live cells
are shown as mean + SEM (n = 4). C: representative dotplot
and FACS histogram of the gating strategy of moDC based
on FSC and SSC scatter and subsequent viable cells based
on negative staining of fixable viability dye 450 (DCM-450).
D: viability of moDCs on days 2 and 6 of differentiation
and on day 7 after maturation with TLR ligands or cytokines.
Data are depicted as mean + SEM (n = 4). Day 2 and day 6-7
moDCs were obtained from different donors. Supplementary
figure 3: viability of moDCs during differentiation and matu-
ration in the presence or absence of platinum drugs. A: via-
bility of moDCs on day 4 of differentiation in the presence
or absence of oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin
(2.5 μg/ml or 5 μg/ml). B: viability of moDCs on day 7 after
maturation with TLR ligands or cytokines in the presence
or absence of oxaliplatin (4 μg/ml or 7 μg/ml) or cisplatin
(2.5 μg/ml or 5 μg/ml). Data are depicted as mean + SEM
(n = 3). MoDCs matured with TLR ligands and moDCs
matured with cytokines were obtained from different donors.
(Supplementary Materials)
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