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Anti-oxidant cellular defenses have typically been considered an
obligatory protective response to the Great Oxidation Event (GOE)
some 600 million years ago. However, recent evidence suggests that the
earliest forms of Life arose sometime between 3.7 and 1.9 billion years
ago, long before the GOE [1,2]. The earth's environment during the
Arachean and Proterozoic periods contained ferrunginous followed by
euxinic oceans characterized by anoxic and sulfidic conditions [3].
Intriguingly, ancient forms of Life, such as arachea prokaryotes, contain
anti-oxidant defense enzymes such as catalase that actively decomposes
peroxide to water, its presumed primary function [4]. What then would
be an evolutionary purpose for selecting peroxidase activity in an
organism existing in an anoxic, sulfidic environment long before the
abundance of oxygen?

Recent work in the field of hydrogen sulfide chemical biology and
its associated metabolites has revealed a rich and complex role of
reactive sulfur species (RSS) in regulating numerous cellular oxidation/
reduction responses including respiration, signal transduction, gene
expression, cell proliferation and death [5]. However, questions remain
regarding how sulfide metabolism is regulated in various tissues and
under different conditions. The report by Olson and colleagues sheds
important new light on the evolutionary question above with the
finding that catalase functions not only as a peroxidase to metabolize
reactive oxygen species (ROS), but also as a highly effective sulfide-
sulfur oxido-reductase regulating RSS metabolism. The authors also
provide clear evidence that catalase ‘dual’ functions depend on both
biochemical substrate and environmental conditions [6].

The results from this study are surprising and profound for an
enzyme that has classically been attributed to detoxification of per-
oxide. The data reveal that catalase oxidizes hydrogen sulfide under
normoxic conditions, but reduces sulfane sulfur under hypoxia.
Interestingly, catalase was found to reduce a wide range of sulfane
sulfur species such as dithiothreitol (DTT), garlic oil, diallyl trisulfide
(DATS), thioredoxin (Trx), and sulfur dioxide (SO2). These data suggest
that catalase serves as an important sulfide oxidase under normoxic
conditions where the action of sulfide would be less desirable or
harmful; but acts as a sulfane reductase to generate hydrogen sulfide
under hypoxic conditions, which could stimulate cytoprotective re-

sponses. However, a limitation of the current study was use of high
concentrations of RSS species beyond what has previously been
reported in vivo using precise analytical methods [7–10].

Nonetheless, the molecular and cellular physiology implications of
this discovery are significant. These findings indicate that catalase
might serve as an alternative regulator of hydrogen sulfide production
under different oxygen tensions with a predominant oxidase function
under normoxic conditions but a sulfur reductase function at hypoxic
conditions. This suggests that sulfide quinone reductase (SQR) may not
be the only catabolic pathway for hydrogen sulfide metabolism, which
could be important in mitigating its toxicological effects. Conversely,
catalase may serve as an important sulfane reductase during hypoxia
leading to increased hydrogen sulfide levels that would be cytoprotec-
tive through various signal transduction, apoptosis, and cell prolifera-
tion pathways [5]. The potential role of catalase as a key regulator of
these chemical biology responses is underscored by the fact that
catalase single nucleotide polymorphisms (SNP's) are associated with
chronic disease states influenced by hydrogen sulfide, such as cancer
and metabolic disorders [11–13]. However, the impact of these SNP's
on catalase sulfide oxidase or sulfur reductase activity requires further
study. Moreover, this finding provides an alternative mechanism that
may explain catalase protective mechanisms given that hydrogen
peroxide reactivity and abundance may be less that previously reported
[14,15]; especially as a recent report from the Olson laboratory has
convincingly shown that RSS robustly react with known ROS detectors
and dyes [16].

As would be expected, these fascinating results lead to many more
questions, such as: How prominent is catalase sulfide oxidase activity
versus other known sulfide metabolism pathways such as SQR? To what
extent does catalase sulfur reductase activity contribute to cellular
hydrogen sulfide protection compared to other hydrogen sulfide
generating enzymes (e.g. CSE, CBS, or 3-MST)? Which catalase
dependent metabolic reactions predominant between reactive oxygen
or sulfur species under normoxic or hypoxic conditions? Is catalase
enzyme activity important in regulating sulfide/sulfur metabolism
during disease states of differential oxygen tensions? Future studies
will answer these and many other questions, yet this initial study
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provides provocative and exciting insight into new concepts of redox
biology beyond reactive oxygen metabolism.
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