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Background: Right ventricular (RV) performance is a key determinant of mortality

in pulmonary arterial hypertension (PAH). RV failure is characterized by metabolic

dysregulation with unbalanced anaerobic glycolysis, oxidative phosphorylation, and

fatty acid oxidation (FAO). We previously found that acetazolamide (ACTZ) treatment

modulates the pulmonary inflammatory response and ameliorates experimental PAH.

Objective: To evaluate the effect of ACTZ treatment on RV function andmetabolic profile

in experimental PAH.

Design/Methods: In the Sugen 5416/hypoxia (SuHx) rat model of severe PAH, RV

transcriptomic analysis was performed by RNA-seq, and top metabolic targets were

validated by RT-PCR. We assessed the effect of therapeutic administration of ACTZ

in the drinking water on hemodynamics by catheterization [right and left ventricular

systolic pressure (RVSP and LVSP, respectively)] and echocardiography [pulmonary

artery acceleration time (PAAT), RV wall thickness in diastole (RVWT), RV end-diastolic

diameter (RVEDD), tricuspid annular plane systolic excursion (TAPSE)] and on RV

hypertrophy (RVH) by Fulton’s index (FI) and RV-to-body weight (BW) ratio (RV/BW).

We also examined myocardial histopathology and expression of metabolic markers in

RV tissues.

Results: There was a distinct transcriptomic signature of RVH in the SuHx model

of PAH, with significant downregulation of metabolic enzymes involved in fatty acid

transport, beta oxidation, and glucose oxidation compared to controls. Treatment

with ACTZ led to a pattern of gene expression suggestive of restored metabolic

balance in the RV with significantly increased beta oxidation transcripts. In addition, the

FAO transcription factor peroxisome proliferator-activated receptor gamma coactivator

1-alpha (Pgc-1α) was significantly downregulated in untreated SuHx rats compared to

controls, and ACTZ treatment restored its expression levels. These metabolic changes

were associated with amelioration of the hemodynamic and echocardiographic markers
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of RVH in the ACTZ-treated SuHx animals and attenuation of cardiomyocyte hypertrophy

and RV fibrosis.

Conclusion: Acetazolamide treatment prevents the development of PAH, RVH, and

fibrosis in the SuHx rat model of severe PAH, improves RV function, and restores the RV

metabolic profile.

Keywords: carbonic anhydrase inhibitor, cardiac metabolism, fatty acid oxidation, right heart failure, Sugen 5416

hypoxia model

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a progressively
debilitating and ultimately fatal chronic disorder. Patients
are often diagnosed at advanced stages of the disease and
develop worsening exertional shortness of breath that seriously
compromises their quality of life. The pathophysiology of PAH
involves pulmonary vasoconstriction and vascular remodeling
that promote right ventricular (RV) heart hypertrophy and
failure (1). RV function is recognized as the most important
prognostic factor (2), and RV failure (RVF) is the principal
cause of death in PAH. Despite our improved understanding
of the molecular and pathogenetic mechanisms of the disease
(3–5), state-of-the-art therapies currently provide only modest
improvements in quality of life, and thus, there is an unmet
clinical need to develop novel therapies. The primary mechanism
targeted by current therapies is vasoconstriction, while therapies
that improve RV function do not exist (6). While there has
been progress in our understanding of the molecular basis
of RVF in PAH, little to no progress has been made in
translating this knowledge to clinical therapies (7). In order
to improve clinical outcomes in PAH, we must leverage our
improved understanding of the pathogenesis of RVF to develop
novel therapeutic strategies that directly or indirectly improve
RV function (8). In the adult heart, most of the energy
requirements (>95%) are provided through mitochondrial
oxidative phosphorylation of lipids/fatty acids (FAs) and glucose.
FA oxidation (FAO) accounts for 50–70% of energy production,
and only about 30% is derived from glucose oxidation (GO)
(9). In PAH, RVF is characterized by decreased FAO and
increased glycolysis (10). This phenomenon has been described
in PAH patients and preclinical models (9, 11–17). Nevertheless,
the pathobiological mechanisms that account for this effect
are unknown, and specific pharmacotherapies targeting the
dysregulated RV metabolism have not been developed.

Carbonic anhydrases (CAs) are ubiquitously expressed
enzymes that catalyze the enzymatic hydration of carbon
dioxide to bicarbonate and protons. CAs facilitate GO (18), and
evidence suggests that CA inhibitors (CAIs) suppress GO and
promote FAO (19). Importantly, CAIs are effective in left heart
failure, as they improve left ventricular (LV) systolic function
by echocardiography in vivo (20) and prevent cardiomyocyte
hypertrophy in vitro (21). However, their effect on RV function
in PAH has not been studied.

In the well-established Sugen 5416/hypoxia rat model
of PAH (SuHx-PAH), a clinically relevant rodent model,

the remodeled RV demonstrates a gene expression profile
consistent with a multilevel impairment of FA metabolism
(16). This includes increased glycolysis, decreased FAO, and
mitochondrial dysfunction. We hypothesized that in SuHx-
PAH, CA inhibition with acetazolamide (ACTZ) will promote
FAO to restore FA utilization and improve RV function. In
this manuscript, we report that treatment with ACTZ improves
all aspects of FA transport and FAO and ameliorates adverse
RV remodeling.

MATERIALS AND METHODS

Animal Model
Adult (12-week-old) male Sprague–Dawley rats (250–300 g) were
purchased from Charles River Laboratories (Wilmington, MA)
and acclimatized for 2–3 days prior to the experiments. PAH
was induced as previously described (22) with a subcutaneous
injection of 20 mg/kg Sugen 5416 (Sigma, St. Louis, MO) in
dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO), placement
in hypoxia (9% O2) for 3 weeks, and return to normoxia.
Oxygen was controlled to 9%± 0.2% by an OxyCycler controller
(BioSpherix, Redfield, NY), and ventilation was adjusted with
a fan and port holes to remove CO2 and ammonia. Control
rats were injected with an equal volume of vehicle (DMSO) in
normoxia. The endpoints of the study were 24 days after injection
(Supplementary Figure 1).

Treatment Protocol
Rats were randomized into control and ACTZ treatment groups.
ACTZ (Spectrum, Gardena, CA) (1.7 mg/ml) was added to the
drinking water. Sucrose (5% w/v) was added to treated and
control animals to increase water intake. Water consumption
was monitored and estimated to be ∼20ml per rat per
diem or ∼100 mg/kg/day. The treatment protocol consisted
of administration of ACTZ from days 7 to 24. Experimental
groups: Ctrl (normoxia control with vehicle injection), SuHx
(Sugen/Hypoxia), SuHx+ACTZ (Sugen/Hypoxia treated with
ACTZ; Supplementary Figure 1).

Hemodynamic and Ventricular Hypertrophy
Measurements
Hemodynamic measurements were performed as previously
described (23). Animals were anesthetized with inhalation of 3%
isoflurane, intubated through a tracheotomy, and mechanically
ventilated on a rodent ventilator (Harvard Apparatus, tidal
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volume 1 ml/100 g body weight, 60 breaths per minute). The
thoracic cavity was opened by incision of the diaphragm. A
23-gauge butterfly needle with tubing attached to a pressure
transducer was inserted first into the right ventricle and
then into the left ventricle, and pressure measurements were
recorded with PowerLab monitoring hardware and software
(ADInstruments, Colorado Springs, CO). Mean RV systolic
pressure (RVSP) and LV systolic pressure (LVSP) (in mmHg)
over the first 10 stable heartbeats were recorded. Mean
pulmonary artery pressure (mPAP) for all experimental animals
was calculated using our previously published and validated
formula (mPAP = 0.53 × RVSP + 2.3) (r2 = 0.92) (22). RV
hypertrophy (RVH) was assessed by weighing RV mass and
expressed as Fulton’s index (FI, ratio of RV weight to the
LV+septal weight) or as the ratio of RV weight to total body
weight (RV/BW).

Lung and Heart Histology and
Morphometric Analysis
In a subset of experimental animals, the lungs were inflated by
perfusing the trachea with cold 4% paraformaldehyde (PFA),
excised, and fixed in 4% PFA overnight at 4◦C followed
by paraffin embedding. Lung sections (6µm) were stained
with hematoxylin and eosin (H&E) and examined with light
microscopy. Images of the arterioles were captured with a
microscope digital camera system (Nikon) and analyzed using
ImageJ (NIH, USA). Arterioles of comparable size (50–100µm
diameter) per rat from the lungs of 5–6 different rats from
each experimental group were evaluated. The percent wall
thickness was determined by dividing the area occupied by
the vessel wall by the total cross-sectional area of the arteriole
as previously reported (4). This method accounts for uneven
vessel wall thickness and areas that have obliquely sectioned
pulmonary arterioles. In a subset of animals, the heart was
stopped in diastole with a KCl injection and the heart was
fixed in formalin, embedded in paraffin, and the RV free
wall was sectioned longitudinally. Cardiomyocyte hypertrophy
was evaluated in H&E-stained sections by measuring the
cellular diameter at the level of the nucleus as previously
described (24). We used Masson’s trichrome stain to detect
collagen deposition and quantify interstitial and perivascular
fibrosis using ImageJ software as previously described (25).
All analyses were performed in a blinded fashion to the
experimental groups.

Echocardiography
Transthoracic 2D M-mode and Doppler images were acquired at
the Brigham and Women’s Hospital’s Cardiovascular Physiology
Research Core facility with a Visual Sonics 3100 ultrasound
system equipped with an MX250 (13–24 MHz) probe as
previously described (26). In brief, animals were lightly
anesthetized with isoflurane (1–3%) titrated to maintain a
minimum heart rate of 300/min while they continued to
breathe spontaneously for the duration of the procedure.
Pulmonary hemodynamics were assessed by measurement of
pulmonary artery acceleration time (PAAT), pulmonary artery

ejection time (ET), and the PAAT/ET ratio to account for
heart rate variability. To assess RV morphology and function,
the following measures were obtained using M-mode: end-
diastolic RV free wall thickness (RVFWTd), end-diastolic RV
diameter (RVEDD), and derived tricuspid annular plane systolic
excursion (TAPSE). Images were analyzed with Vevo-Lab
software (V.3.1.1 FUJIFILM Visualsonics, Toronto, Canada).
The sonographer and the analyzer were both blinded to the
experimental groups.

Isolation of mRNA and Transcript
Expression Analysis
RNA isolation, analysis, and reporting followed minimum
information for publication of quantitative real-time polymerase
chain reaction (PCR) experiments (MIQE) criteria (27).
Cardiac tissues were lysed with TRIzol reagent (Invitrogen)
per manufacturer’s instructions and homogenized. RNA
quantity and quality were assessed with NanoDrop 2000c
spectrophotometer (NanoDrop Technologies). Complementary
DNA was generated with the SuperScript III First-Strand
Synthesis System (Invitrogen). Quantification of mRNA
transcript levels was performed with StepOnePlus RT-PCR
cycler (Applied Biosystems) using iTaq Universal SYBR Green
Supermix (Bio-Rad, Hercules, CA). Gene-specific primers
for all transcript variants were designed across exon–exon
junctions when possible and ordered through Integrated DNA
Technologies (see Supplementary Table 1 for primer sequences).
Nucleoporin 133 (Nup133) was used as a housekeeping gene for
normalization. Expression was analyzed with the comparative Ct
method (28).

RNA Sequencing
The RV free wall was dissected and snap frozen in liquid nitrogen.
RNA extraction and quantification and sample integrity were
performed byNovogene using Nanodrop spectrophotometer and
Agilent 2100 bioanalyzer, respectively. Library preparation and
sequencing were performed using an Illumina Platform PE150
by Novogene. Fastq files obtained from paired-end sequencing
were aligned to the Rattus Norvegicus 6.0 ENSEMBL genome
using standard parameters in STAR version 2.5.4a. Raw count
files were generated next using Htseq version 0.9.1 with –t exon
option enabled to ensure transcript specificity. Differential gene
expression was performed using DESeq2 version 1.26.0 using
standard parameters. Counts were normalized using a negative
binomial distribution as is standard with DESeq2. Experimental
and control groups were compared using a Wald test in a
pairwise comparison. Only genes with a multiple-comparison
adjusted P < 0.05 were considered significant in the comparison.
Gene Ontology analysis was performed using the PANTHER
classification system and a statistical overrepresentation test on
significantly changed genes.

Western Blotting
Western blot analysis was performed as previously described (4).
Briefly, RVs were homogenized in radioimmunoprecipitation
assay (RIPA) lysis buffer containing cOmpleteTM protease
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inhibitor (Roche, Indianapolis, IN), and protein concentration
was determined by Pierce BCA protein assay kit (ThermoFisher).
Proteins were separated by 12% Tris SDS polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes
(Bio-Rad) using a semi-dry system (Bio-Rad). Membranes were
blocked with 5% w/v non-fat dry milk, incubated with primary
antibodies (4◦C, overnight), and incubated with secondary
antibodies at room temperature for 1 h. Proteins were detected
by horseradish peroxidase (HRP) chemiluminescence, and lanes
were quantified using ImageJ analysis software. An antibody
against ACADM (1:10,000; ERP3708) was purchased from
Abcam. The vinculin antibody (1:1,000; E1E9V) was purchased
from Cell Signaling and was used as a loading control.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
(GraphPad Software, La Jolla, CA). We used one-way ANOVA
with Tukey’s posttest (when comparing multiple groups) or
Student’s t-test (when comparing two groups). Where numbers
permitted, we used the D’Agostino and Pearson omnibus
normality test, and data with non-Gaussian distribution were
analyzed by Kruskal–Wallis test with Dunn’s posttest or Mann–
Whitney U test. Data are presented as individual data points and
mean with standard deviation (SD) or as mean with standard
error of the mean (SEM). Individual statistical tests are described
in the corresponding figure legends. P < 0.05 were considered
statistically significant.

RESULTS

Transcriptional Signature of Right
Ventricular Hypertrophy in Sugen
5416/Hypoxia-Induced Pulmonary
Hypertension
We used RNA sequencing to characterize the transcriptomic
profile of the RV and evaluate differential expression of
genes during SuHx-induced RVH at an early time point,
24 days after Sugen injection and hypoxic exposure. There
was a distinct transcriptomic signature in the RV of SuHx
animals compared to controls, with 1,129 upregulated and
892 downregulated genes with a false discovery rate (FDR)
<5% (Figure 1; Supplementary Figure 2). We subsequently
performed quantitative PCR (qPCR) on a different cohort of
animals to validate the RNA sequencing data. We successfully
validated four of the transcripts that were among the most
significantly and differentially upregulated (Table 1). We then
proceeded with gene ontology analysis that revealed that the
most upregulated transcripts were related to inflammatory
pathways, cell proliferation, and cytoskeleton organization
and that the most downregulated pathways were related to
mitochondrial function and metabolic processes including
fatty acid oxidation (FAO) and lipid metabolism (Figure 2;
Data Sheets 1–6 in Supplementary Material). When we
evaluated transcripts involved in FAO, most significantly
changed (FDR <5%) transcripts were downregulated

FIGURE 1 | Differential expression of RV genes reveals a distinct signature between Sugen 5416/hypoxia (SuHx) and control (Ctl) groups. (A) Volcano plot of the

cardiac mRNA transcripts of the RV in the SuHx vs. Ctl groups. Significantly downregulated genes are in blue, significantly upregulated genes are in pink,

nonsignificant genes are in gray. Highlighted, upregulated classic markers of ventricular hypertrophy and failure (Nppa, Nppb), downregulated genes involved in fatty

acid metabolism (Ppargc1a Cpt1a, Acadm, Acox1, and Acsl1), and upregulated genes that were used for RNA sequencing validation (Ankrd2, Fam110c, FCGR3a,

and Cpeb1). (B) Z-score heatmap of 65 significantly differentially expressed genes related to metabolic pathways between SuHx and control groups, n = 5 individual

animals per group. For experimental design (see Supplementary Figure 1).
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(Supplementary Figure 3), suggesting a metabolic switch with
decreased FAO.

Treatment With Acetazolamide Prevents
Pulmonary Hypertension and Vascular
Remodeling in Sugen
5416/Hypoxia-Induced Pulmonary
Hypertension
As we previously reported, early treatment with ACTZ (from
days 7 to 24 after SuHx-Protocol, Supplementary Figure 1)
led to significantly lowered RVSP and mPAP compared to
those of the SuHx group (Figures 3A,B), without affecting the
LVSP (Figure 3C). RVH as assessed by FI and RV/BW were
significantly decreased in the SuHx/ACTZ group (Figures 3D,E).
Histologic evaluation of peripheral lung sections showed that
there was increased wall thickness of arterioles <100µm in

TABLE 1 | Validation of RNA sequencing.

Gene Pathway RNA sequencing PCR validation

Fold change Mean FC SEM p-value

Ankrd2 Muscle

differentiation

82.82346937 6.3222 1.378 0.0157

Fam110c Cell migration 81.57599817 4.471 0.63 0.004

Fcgr3a Tissue

remodeling

38.00645515 14.15 2.066 <0.0001

Cpeb1 Cell migration 28.80605667 4.649 0.6437 <0.0001

Top differentially expressed genes in the RV of SuHx vs. control rats validated by qPCR in

an independent cohort of animals (n = 5 per group).

diameter in SuHx animals and a significant reduction in wall
thickness in pulmonary arterioles in the ACTZ treatment group.
Given the early time point in the disease course (3 weeks), we did
not observe any occlusive or plexiform lesions, known to occur
at 13–14 weeks after SuHx exposure (Figures 3F,G).

Carbonic Anhydrase Inhibitor
Acetazolamide Improves Right Ventricular
Compliance and Function Without
Compromising the Left Ventricular
Function
To evaluate the effects of ACTZ on the RV, we first assessed
PAAT, which is a measure of PAP, vascular resistance, and RV
compliance. As expected, SuHx animals had a significantly lower
PAAT (Supplementary Figure 4) that significantly increased
after ACTZ treatment and was similar to the control group.
To normalize for heart rate variability, we used the ratio of
PAAT to ET with similar results. The PAAT/ET ratio threshold
of ≤0.25, which we have previously shown to be a reliable
diagnostic marker of pulmonary hypertension (PH) (26), was
consistently less or equal to 0.25 in all but one SuHx animal and
was≥0.25 in all controls and all but two ACTZ treatment animals
(Figure 4A). Similarly, the echocardiographic marker of RVH—
RV wall thickness (RVWT)—was significantly lower in the
SuHx/ACTZ group compared to the SuHx group. Our previously
validated RVWT cutoff value of >1.03mm that reliably predicts
RVH captured all SuHx animals. For the ACTZ treatment group,
although there was improvement of RVH, it did not reach the
baseline levels (Figure 4B). To evaluate RV function, we utilized
RV end-diastolic diameter (RVEDd), which was significantly
increased in the SuHx group and tricuspid annular plane systolic
excursion (TAPSE), which was significantly decreased in the

FIGURE 2 | Gene ontology enrichment analysis of biological processes in the RV transcripts between Sugen 5416/hypoxia (SuHx) and control groups. (A) The top 25

most significantly downregulated and (B) the top 25 most significantly upregulated terms by false discovery rate (FDR).
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FIGURE 3 | Treatment with acetazolamide (ACTZ) ameliorates Sugen 5416/hypoxia (SuHx)-induced pulmonary hypertension (PH). Improved hemodynamic

parameters with ACTZ treatment (A) Right ventricular (RV) systolic pressure (RVSP), (B) mean pulmonary artery pressure (mPAP), and (C) left ventricular systolic

pressure (LVSP) in mmHg in the three experimental groups [control (Ctl), SuHx, and SuHx+ACTZ] (n = 10–21 animals per experimental group). Amelioration of RV

hypertrophy (RVH) with ACTZ treatment, (D) Fulton’s index (FI), and (E) RV-to-body weight ratio (n = 6–9 animals per experimental group) (FI, ratio of RV weight to left

ventricular+septal weight). Amelioration of pulmonary vascular remodeling after treatment with ACTZ. (F) Morphometric analysis of pulmonary vascular remodeling

assessed by % wall thickness. n = 6–15 arterioles (diameter 50–100µm) from n = 5–6 animals per group. (G) Representative images of pulmonary arterioles on

H&E-stained lung sections of Ctl, SuHx, and SuHx animals treated with ACTZ. Scale bars = 25µm. Arterioles indicated by arrows. Data presented as mean ± SEM.

Statistical analysis by one-way ANOVA and Tukey’s post-hoc test. Error bars are mean ± SEM (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).

SuHx animals. ACTZ treatment restored these measures back
to the normal values, as there was no difference with the
control group, indicating significantly improved RV function
(Figures 4C,D). Finally, we evaluated the effects of ACTZ
treatment on the systemic circulation, and we did not observe
any differences between groups in the LV function, as assessed
by unchanged ejection fraction (EF), fractional shortening (FAC),
and cardiac output (Supplementary Figures 5A–C). Similarly,
there were no changes in indices of LV remodeling as assessed
by LV end-diastolic volume and posterior and anterior wall
thickness (Supplementary Figures 5D–F).

Acetazolamide Prevents Development of
Cardiomyocyte Hypertrophy and Right
Ventricular Interstitial Fibrosis
Cardiomyocyte hypertrophy as assessed by analysis of
H&E-stained sections from RVs demonstrated that ACTZ
treatment prevented hypertrophy at the cardiomyocyte level
(Figures 5A,B). We then assessed the classic markers of cardiac
hypertrophy and failure, atrial natriuretic peptide (ANP,
Nppa), and brain natriuretic peptide (BNP, Nppb), which were
found to be significantly elevated in the SuHx group by RNA

sequencing (RNA-seq), and these were again validated to be
significantly increased in the SuHx animals of this cohort.
We found significantly decreased Nppa mRNA levels and a
nonsignificant trend of decreased Nppb mRNA levels in the
RVs in the SuHx/ACTZ group compared to the SuHx group
(Figures 5C,D). We also noted increased levels of RV interstitial
fibrosis in the SuHx group as assessed by Masson’s trichrome
staining, and this was significantly decreased in the SuHx/ACTZ
group (Figures 6A,B). We did not observe any difference in
perivascular fibrosis in between groups. We also evaluated RV
expression of several markers of fibrosis (Tgfb1, Col1a1, and
Col3a1), and all were significantly elevated in the SuHx animals
and were attenuated by treatment with ACTZ (Figures 6C–E).

Acetazolamide Partially Restores the
Dysregulated Metabolic Profile of the Right
Ventricle in Sugen 5416/Hypoxia-Induced
Pulmonary Hypertension
Metabolic switching with suppression of beta oxidation is one
of the hallmarks of RVF, which was also supported by our
RNA-seq data set in the SuHx group. Validation of the RNA-
seq data in a separate cohort of animals by real-time PCR
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FIGURE 4 | Improved echocardiographic parameters in Sugen 5416/hypoxia (SuHx)-induced pulmonary hypertension (PH) with acetazolamide (ACTZ) treatment. (A)

Pulmonary artery acceleration time to ejection time ratio (PAAT/ET). Representative pulmonary artery Doppler waveform and quantitative data (n = 5–14 animals per

group). (B) Right ventricular (RV) wall thickness in diastole (RVWT). Representative M-mode images from the right parasternal long axis imaging view and quantitative

analysis (n = 6–8 animals per group). (C) RV end-diastolic diameter (RVEED). Representative M-mode images and quantitative data (n = 5–8 animals per group). (D)

Tricuspid annular systolic excursion (TAPSE). Representative images and quantitative data (n = 5–9 animals per group). Experimental groups: Control, SuHx, and

SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s post-hoc test. Error bars are mean ± SEM (*P < 0.05, **P < 0.01, and ***P < 0.001).

showed that three key genes involved in fatty acid transport
including cell membrane transport (Cd36) and mitochondrial
transport (Cpt1a and Cpt1b) were significantly downregulated
in the right ventricles of SuHx animals, and ACTZ treatment
restored the expression of Cd36 but had no effect on Cpt1a
and b. Similarly, we confirmed the downregulation of FAO
transcripts, including Acetyl-CoA dehydrogenases for small,
medium, and large FA in right ventricles of SuHx animals,
and ACTZ treatment significantly upregulated the expression all
three enzymes (Figure 7A). This downregulation of Acadm in
SuHx was also seen at the protein level, and there was a trend
of increased expression with ACTZ treatment (Figures 7E,F).
We then assessed transcription factors that regulate FAO.
Peroxisome proliferator-activated receptor gamma coactivator
1-alpha (Pgc-1α) was significantly downregulated in the SuHx
group, as observed in the RNA-seq data set and confirmed in this
cohort, and ACTZ treatment increased its expression levels back
to baseline. Peroxisome proliferator-activated receptor (Ppar)
gamma (Ppar-γ ) showed a similar trend, and there were no
differences on Ppar-α, estrogen-related receptor (Err) alpha, Err-
a, and Err-γ (Figure 7D).

We subsequently evaluated markers of glycolysis and found
that glucose transporter 1 (Glut1) was significantly upregulated
in the SuHx group, and ACTZ treatment decreased its expression

to baseline levels. Insulin-regulated glucose transporter 4 (Glut
4) was downregulated in the SuHx rats, and there was a
trend toward increased expression with ACTZ treatment. No
significant differences were found in the rest of the glycolytic
transcripts between the three groups, including hexokinase I and
II (HkI, HkII) and lactate dehydrogenases A and B (Ldha, Ldhb),
similar to the transcriptomic data (Figure 7B). We then assessed
transcripts involved in the citric acid cycle and found significant
downregulation of pyruvate dehydrogenase b (Pdhb) mRNA
in the SuHx group with the expression returning to control
levels in the SuHx/ACTZ group. We did not find significant
differences in the expression of other enzymes of the citric acid
cycle including citrate synthase (Cs) and isocitrate dehydrogenase
(Idh2) (Figure 7C). We found a similar pattern in the metabolic
profile of the LV when we evaluated the expression of the
above markers, but the changes were of a smaller magnitude
(Supplementary Figure 6).

DISCUSSION

We report a distinct transcriptomic signature of RVH in the
early phase of SuHx-induced PAH (3 weeks) that is suggestive
of dysregulated metabolic pathways in association with RVH and
fibrosis. We further demonstrate a favorable response to ACTZ
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FIGURE 5 | Amelioration of right ventricular (RV) cardiomyocyte hypertrophy in acetazolamide (ACTZ)-treated Sugen 5416/hypoxia (SuHx) animals. (A) Representative

longitudinal RV free wall sections stained with hematoxylin and eosin. Black lines indicate cell diameters at the level of the nucleus. Scale bar 20µm. (B) Quantitative

analysis of myocyte size in the three experimental groups (n = 6–9 animals per group). Real-time PCR analysis of mRNA levels of the cardiac hypertrophy transcripts

(C) atrial natriuretic peptide (Nppa) and (D) brain natriuretic peptide (Nppb) in RV from the experimental groups (n = 10–12 per group). Experimental groups: Control,

SuHx, and SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s post-hoc test. Error bars are mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.

FIGURE 6 | Amelioration of interstitial cardiac fibrosis in the right ventricle of Sugen 5416/hypoxia (SuHx) animals treated with acetazolamide (ACTZ). (A)

Representative cardiac tissue sections stained with Masson’s trichrome stain to detect interstitial and perivascular fibrosis. Scale bar 20µm. (B) Quantitative analysis

of interstitial fibrosis in the RV in the three experimental groups (n = 6–9 animals per group). Real-time PCR analysis of the fibrosis associated transcripts (C–E)

transforming growth factor-β1(Tgfb1), collagen α-1(I) chain (Col1a1), collagen α-1(III) chain (Col3a1) (n = 10–12 per group). Experimental groups: Control, SuHx, and

SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s post-hoc test. Error bars are mean ± SEM (*P < 0.05, **P < 0.01, and ***P < 0.001; ns,

nonsignificant).
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FIGURE 7 | Effects of acetazolamide (ACTZ) treatment on right ventricular (RV) metabolism associated markers in Sugen 5416/hypoxia (SuHx) animals. (A) Fatty acid

transport and oxidation transcripts. (B) Glucose uptake and glycolysis markers. (C) Tricarboxylic acid cycle enzymes. (D) Mitochondrial transcription factors. (E)

Representative immunoblots for beta oxidation enzyme medium-chain specific acyl-CoA dehydrogenase (ACADM) and (F) quantitative analysis of ACADM protein

levels in the three experimental groups (n = 3 per group). Experimental groups: Control, SuHx, and SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s

post-hoc test. Error bars are mean ± SEM (*P < 0.05, **P < 0.01 compared to control, and #P < 0.05 compared to SuHx).

treatment with prevention of RVH and fibrosis, improvement of
RV compliance and function, and a shift toward normalization
of the RV gene expression that suggests reversal of metabolic
switching at the transcriptomic level.

The transcriptomic profile of the RV in the SuHx rat model
of PAH was previously described by Legchenko et al. (29) who
performed RNA-seq analysis at a much later time point (9
weeks) and used a 3-week-hypoxic group as control. At this
late stage of RVF that was associated with increased mortality,
the transcriptomic analysis along with complementary imaging
modalities demonstrated inhibition of fatty acid transport and
oxidation along with abnormal glucose uptake, mitochondrial
dysfunction, and impaired oxidative phosphorylation (29).
These findings are also in agreement with findings in humans
with end-stage PAH (30). In our studies, we demonstrate a
similar inhibition of fatty acid transport and oxidation at the
transcriptomic level, at a much earlier time point, suggesting that
these metabolic alterations occur early in the disease process and
thus may be therapeutically targeted.

The contribution of RV metabolic reprogramming to PH-
associated RVF was also demonstrated by Graham et al. (31)

who described the vascular adaptation of the RV to experimental
PH in the SuHx model in female rats at Denver altitude.
Using stereology, these authors found significant augmentation
of the RV vascular network in the PH animals. Additionally,
using steady-state metabolomics at the 8-week time point,
they demonstrated that the altered substrate utilization by
the RV is not due to inadequate metabolic substrate delivery
but rather due to an intrinsic RV metabolic switch in
substrate utilization.

Drake et al. (32) evaluated the molecular signature of RVF
using the SuHx model and pulmonary artery banding (PAB) +
Cu+2-low diet model in rats and compared it to the adaptive
RVH transcriptomic signature of the chronic hypoxic and
PAB rat models. They used microarray and pathway analysis to
conclude that the most significant changes in RVF were related to
cell growth, angiogenesis, and energy metabolism. Importantly,
they demonstrated that these changes were reversible with
carvedilol treatment in the SuHx model. Another study by
Gomez-Arroyo et al. (16) also tried to elucidate the metabolic
dysregulation between adaptive and maladaptive RVH by
comparing the RV metabolic profile of the PAB model and the
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SuHx model, respectively. The authors emphasized the impact
of Pgc-1α downregulation on the transcriptional regulation of
enzymes regulating beta oxidation during RVF. In this study, in
which the length of hypoxic exposure after Sugen injection was
4, as opposed to 3 weeks in our study, a pattern of downregulated
transcripts of acyl-CoA-dehydrogenases distinguished RVF
from adaptive RVH in which acyl-CoA-dehydrogenase
expression was increased. We observed the same pattern in
our model at an earlier time point after 3 weeks of hypoxic
exposure (decreased RV expression of Pgc-1α and acyl-CoA-
dehydrogenases), and ACTZ treatment was associated with an
increased expression similar to the control animals. This further
supports our hypothesis that ACTZ has a favorable effect on
RV dysfunction.

Furthermore, Potus et al. (33) reported on the transcriptomic
signature of decompensated RVF in the monocrotaline (MCT)
model and found changes in mitochondrial, inflammatory, and
angiogenic abnormalities. Although our study lacks the detailed
hemodynamic profiling of this prior study in the MCT model,
the overall theme of mitochondrial–metabolic dysregulation
is remarkably similar and corroborated by studies in human
patients with end-stage PAH (30). A recent study by Murashige
et al. (34) in patients with left heart failure provided definitive
evidence that fatty acid utilization is the primary fuel source in
normal human heart and that cardiac failure is accompanied
by decreased fatty acid utilization. This study also supports
an increased role for proteolysis in cardiac failure as well as
increased utilization of ketones and lactate.

RV fibrosis was previously described in several models
of PAH including the hypoxic (35), MCT (36), and SuHx
models (37, 38), as well as in the PAB model that is not
characterized by pulmonary vascular disease (38). Although
initially adaptive, excessive RV fibrosis can impair RV function
by various mechanisms including RV stiffness and diastolic
dysfunction, impaired excitation–contraction coupling,
disrupted coordination of myocardial contraction, and
ventricular dilation (39). In agreement with prior studies
(38, 40), we found significantly increased interstitial fibrosis in
the RV in SuHx animals, whereas perivascular fibrosis was not
increased. We found a significant decrease of RV fibrosis in the
SuHx model of PAH in response to ACTZ treatment, and this
was associated with improved echocardiographic markers of
RV function. Other studies have reported similar findings with
the use of the oral endothelin receptor antagonist bosentan in
the hypoxic model (35), inhaled iloprost in the SuHx and PAB
models (38), and the beta blocker bisoprolol in the MCT model
(36). Additionally, da Silva Gonçalves Bós et al. (40) reported
reversal of established PAH in the SuHxmodel with the use of the
oral acetylcholinesterase inhibitor pyridostigmine. RV fibrosis
is also a known feature of human PAH and is associated with
RV dysfunction, but whether this is a causal and fully reversible
process amenable to therapeutic targeting needs to be evaluated
further (39).

Despite the beneficial effects we observed with ACTZ in our
studies, the role of CAs in the pathogenesis of PH remains
unclear. We have previously shown that CA II (CA2) is
upregulated in the alveolar macrophages of SuHx animals at
both the mRNA and protein levels that this coincided with

macrophage activation. As a result, we found that ACTZ
was associated with amelioration of pulmonary and systemic
inflammation in the SuHx model (22). In addition, CA2 mRNA
was increased in the lungs of SuHx animals compared to controls
and in the lungs of human patients with idiopathic PAH. Given
that CAs are ubiquitously expressed throughout the body, it is
possible that ACTZ has pleiotropic effects as a CA inhibitor. In
addition, ACTZ exerts physiologic effects that are independent of
CA inhibition as reported by Shimoda et al. (41). Specifically in
the heart, we speculate that ACTZ restores substrate utilization
by promoting FAO, which has been shown to be beneficial as
demonstrated by Legchenko et al. (29) with the use of Ppar-γ
agonist pioglitazone. Additional studies are needed to further
elucidate the molecular mechanisms underlying the protective
effect of CA inhibition in RV function in PH. There are several
limitations to our study. In our current study, ACTZ treatment
was initiated 1 week into hypoxia, a time point when the PH
phenotype of the SuHx model is not fully established (42);
it should therefore be considered preventive. We previously
showed that ACTZ ameliorated established disease when used at
weeks 5–7 after SuHx, so it would be important to examine the
RV metabolic profile at this later time point. Additionally, the
dose and route of administration of ACTZ in this study (∼100
mg/kg/day in drinking water) were based on prior work that
demonstrated its effectiveness and tolerance in the experimental
animals (22, 43). Other investigators have used doses of 10–200
mg/kg/day via the intraperitoneal route (44) indicating that the
dose response and themost effective route of administration need
to be further evaluated. Finally, our findings show a dysregulation
at the gene expression level of the different metabolic pathways
suggestive of a metabolic switch; however, further studies in
cardiomyocytes are needed to elucidate the exact metabolic
alterations in substrate utilization.

In conclusion, the unique RV transcriptomic signature of
the SuHx model of PAH reveals a metabolic gene dysregulation
with downregulation of transcripts that involve FAO. Our data
support that this metabolic gene dysregulation occurs early in the
disease process before the development of overt RVF. Treatment
with ACTZ, a CA inhibitor, prevents PH and vascular remodeling
with additional beneficial effects on the RV performance, crucial
for patient outcomes. The improved RV function is associated
with a partial restoration of the dysregulated metabolic profile
including the expression of Pgc1a transcription factor, which
is a key regulator of FAO and mitochondrial biogenesis. We
suggest that the CA inhibitor ACTZ may exert pleiotropic
beneficial effects in PAH that need to be further delineated in
preclinical studies. In addition, given that ACTZ is currently
in clinical trials for PAH, it is important to rigorously
characterize its effects on cardiac function in order to leverage
them therapeutically.
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Supplementary Figure 1 | Overview of the experimental design. Rats were

injected with SU5416 (Sugen) or control DMSO and placed into hypoxia for 3

weeks. For the treatment group (SuHx+ACTZ); acetazolamide (ACTZ) was added

to the drinking water on day 7.

Supplementary Figure 2 | Principal component analysis (PCA) between SuHx

and control groups.

Supplementary Figure 3 | Heatmap across all samples of the significantly

changed transcripts (FDR < 0.05) involved in fatty acid oxidation. Featured scaling

applied on normalized counts for presentation of the data. n = 5 individual animals

in each group.

Supplementary Figure 4 | Pulmonary Artery Acceleration Time (PAAT)

quantitative data (n = 5–14 animals per group). Experimental groups: Control,

SuHx, and SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s

post-hoc test. Error bars are mean ± SEM (∗P < 0.05, ∗∗P < 0.01, and ns,

non-significant).

Supplementary Figure 5 | Treatment with ACTZ does not alter left ventricular

performance and remodeling. (A) Ejection fraction. (B) Fractional shortening (FC).

(C) Cardiac output (CO). (D) Left ventricular (LV) end diastolic volume. (E)

Posterior wall thickness in diastole. (F) Anterior wall thickness in diastole.

Quantitative data from 5 to 9 animals per group. Experimental groups: Control,

SuHx, and SuHx+ACTZ. Statistical analysis by one-way ANOVA and Tukey’s

post-hoc test. Error bars are mean ± SEM.

Supplementary Figure 6 | Effects of ACTZ treatment on LV metabolism

associated markers in SuHx animals. (A) Fatty acid transport and oxidation

transcripts. (B) Glucose uptake and tricarboxylic acid cycle (TCA) enzymes. (C)

Mitochondrial transcription factors (n = 7–8 per group). Experimental groups:

Control, SuHx, and SuHx+ACTZ. Statistical analysis by one-way ANOVA and

Tukey’s post-hoc test. Error bars are mean ± SEM (∗P < 0.05 compared to

control, #P < 0.05 compared to SuHx).

Supplementary Table 1 | Primers for rat genes in quantitative real-time PCR.
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