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The present article provides a historical review of the place and response learning
plus-maze tasks with a focus on the behavioral and neurobiological findings. The
article begins by reviewing the conflict between Edward C. Tolman’s cognitive view
and Clark L. Hull’s stimulus-response (S-R) view of learning and how the place and
response learning plus-maze tasks were designed to resolve this debate. Cognitive
learning theorists predicted that place learning would be acquired faster than response
learning, indicating the dominance of cognitive learning, whereas S-R learning theorists
predicted that response learning would be acquired faster, indicating the dominance
of S-R learning. Here, the evidence is reviewed demonstrating that either place
or response learning may be dominant in a given learning situation and that the
relative dominance of place and response learning depends on various parametric
factors (i.e., amount of training, visual aspects of the learning environment, emotional
arousal, et cetera). Next, the neurobiology underlying place and response learning is
reviewed, providing strong evidence for the existence of multiple memory systems in the
mammalian brain. Research has indicated that place learning is principally mediated by
the hippocampus, whereas response learning is mediated by the dorsolateral striatum.
Other brain regions implicated in place and response learning are also discussed in
this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex.
An exhaustive review of the neurotransmitter systems underlying place and response
learning is subsequently provided, indicating important roles for glutamate, dopamine,
acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the
historical importance of the place and response learning tasks in resolving problems in
learning theory, as well as for examining the behavioral and neurobiological mechanisms
of multiple memory systems. How the place and response learning tasks may be
employed in the future for examining extinction, neural circuits of memory, and human
psychopathology is also briefly considered.

Keywords: place learning, response learning, hippocampus, dorsal striatum, memory systems, habit, spatial
memory, stimulus-response learning
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Goodman Place vs. Response Learning

INTRODUCTION

Learning theory in the first half of the 20th century was
dominated by two broad opposing views regarding the
mechanisms of animal learning and memory. According to
the stimulus-response (S-R) view, animals acquire associations
between stimuli (S) and responses (R) in the learning
environment. For instance, in a maze learning situation, in
which an animal learns to traverse a maze to retrieve food
from a consistent goal location, visual or tactile stimuli
in the learning environment may acquire the ability to
activate a series of kinesthetic turning responses guiding
behavior to the food reinforcer. In contrast, according to a
competing cognitive approach termed purposive behaviorism,
animals acquire meaningful relationships between stimuli in the
learning environment, leading to the formation of ‘‘cognitive
expectations.’’ These acquired expectations allow the animal to
make inferences about what behavioral responses need to be
made to retrieve the food reinforcer. Thus, according to the
cognitive view, animals are not S-R automatons, but rather
they make rational decisions based on expectation, reason,
and purpose.

Noteworthy figureheads of the S-R view included Thorndike
(1933), Guthrie (1935), and Spence (1936), and the investigator
to provide perhaps the most complete iteration of the S-R view
was Clark L. Hull in his profoundly popular book Principles of
Behavior (Hull, 1943). On the other hand, the cognitive view of
learning as described above was introduced by Tolman (1932)
in another influential book titled Purposive Behavior in Animals
andMan. Given the popularity of the views espoused by Hull and
Tolman, the debate between S-R and cognitive learning theories
transpired predominantly as a series of experiments comparing
the Hullian vs. Tolmanian views of learning and memory.

As a means to resolve the debate, Tolman et al. (1946a)
designed two plus-maze tasks1—a ‘‘response learning’’ task that
requires the use of S-R learning and a ‘‘place learning’’ task
that requires the use of cognitive learning. Soon after the
introduction of Tolman’s place and response learning tasks,
another laboratory designed a third version of the plus-maze,
i.e., the dual-solution task, to examine the relative use of
place and response learning (Blodgett and McCutchan, 1948).
These three plus-maze tasks were widely adopted by other
laboratories to assess the Hullian and Tolmanian approaches
to learning and memory, amounting to the decade-long
‘‘place vs. response controversy’’ (Restle, 1957). As interest in
the place vs. response controversy and the debate between
cognitive and S-R learning theories waned, the use of these
plus-maze tasks declined as well. However, this decline was
only temporary, as the place and response learning tasks have
re-emerged in recent years as important tools for investigating

1The use of the term ‘‘plus-maze’’ in the present review denotes mazes with four
arms arranged in a cross (+) orientation in addition to mazes with three arms
arranged in a ‘‘T’’ formation. Although the latter maze is usually referred to as
a T-maze, the present review opts to use the term plus-maze to refer to both types
of mazes. This is because when a T-maze is employed in studies of place and
response learning, the maze is usually rotated 180◦ throughout the learning task
and therefore serves the same function as a plus-maze.

the behavioral and neurobiological mechanisms of different
kinds of memory.

The present review provides a historical account of the place
and response learning plus-maze tasks. The review begins by
briefly describing the learning theories espoused by Tolman and
Hull, as well as some of the historical factors that motivated
their ideas. This is followed by a description of the place and
response learning plus-maze tasks. The next section highlights
the place vs. response controversy of the 1940s–1950s and how
it was resolved by recognizing that various parametric factors
determine whether a place or response learning dominates
behavior. Next, the present review discusses some alternative
methodologies for investigating place and response learning
outside the classic Tolmanian plus-maze tasks. This is followed
by an exhaustive review of the neurobiology of place and
response learning, including the major brain structures and
neurotransmitter systems that have been implicated. Finally, the
present review considers the future of the place and response
learning tasks, such as their potential use in research on
neural memory circuits, extinction learning, revisions tomemory
systems theory, and human psychopathology.

TOLMAN AT THE CHOICE-POINT

In 1932, when Edward C. Tolman (Figure 1) published his book
titled Purposive Behavior in Animals and Man, he became, at
once, the father of purposive behaviorism and the figurehead
leading the rebellion against the S-R view of learning. Not only
were Tolman’s salvos evident in his writings, but he was also wont
to criticize the theory in his less official correspondences. As one
of his former students recounts:

. . .in one lecture commenting on the limitations of S-R theory
[Tolman] pointed out that, as there are important cognitive
processes in the organism that intervene between the S and R, at
the very least, an ‘‘O’’ (for ‘‘organism’’) must be inserted. Moreover,
as it is behavioral acts that occur and not muscle-twitch responses,
the ‘‘R’’ should be changed to ‘‘B’’ for ‘‘behavior.’’ He then, with a sly
grin (and no doubt with some residual New England guilt), referred
to S-R theory as the ‘‘SOB’’ theory (McGaugh, 2003, p. 19).

This amusing anecdote from one of Tolman’s students perhaps
sheds light on the investigator’s distaste for the S-R view that in
part motivated him to write Purposive Behavior.

Although Tolman became one of the most popular and
energetic opponents of the S-R view, he did not always harbor
a negative attitude toward the theory. As a graduate student
at Harvard, Tolman took a course in comparative psychology,
which was then taught by renowned psychologist Robert Yerkes.
The textbook for the course was a seminal work by Yerkes’
friend and colleague, John B. Watson, titled Behavior: An
Introduction to Comparative Psychology. Tolman at the time
regarded Watson’s behaviorism as a ‘‘tremendous stimulus
and relief’’ from the alternative introspective approach being
employed by other psychologists around this time (Tolman,
1952, p. 326). However, Tolman also had some reservations
about Watsonian behaviorism:
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FIGURE 1 | Edward Chace Tolman (1886–1959).

I. . . did not like Watson’s over-simplified notions of stimulus and
response. Nor did I like his treatment of each single stimulus and
each single response as a quite insulated phenomenon that has
practically no relation to any other stimuli or any other responses.
That is, I was already becoming influenced by Gestalt psychology
and conceived that a rat running a maze must be learning a lay-out
or pattern and not just having connections between atom-like
stimuli and atom-like responses ‘‘stamped in’’ or ‘‘stamped out,’’
whether by exercise or by effect (Tolman, 1952, p. 329).

Thus, it may have been a lack of confidence in Watson’s
overly reductionist view of behavior that led Tolman to begin
considering the alternative Gestalt views of learning that had
been emanating from Germany and gaining popularity in the
US. It is tempting to imagine Tolman during these formative
years as a rat at the critical intersection—or choice point—of a
maze, in which he had the option to turn one way and continue
in the spirit of Watsonian behaviorism or turn the opposite way
and subscribe wholeheartedly to Gestalt psychology. However, it
would turn out that Tolman took neither of these paths. Instead,
he charted a new path toward his own view of behavior—a theory
that combined Watsonian behaviorism with select principles of
Gestalt psychology.

In Purposive Behavior, Tolman suggested that behavior is
motivated by purpose, cognition, and expectation. That is,
animals acquire meaningful relationships between stimulus
objects in the environment, to the extent that an animal
learns that interacting with one particular object a certain
way (e.g., turning right at the intersection) will lead to the
opportunity to interact with another object (e.g., turning left
at the next intersection) and so forth. Knowledge about how
stimuli in the environment are related to each other is encoded
through stimulus-stimulus (S-S) associations. All relevant stimuli

in the environment and the meaningful associations between
them are combined and encapsulated in what Tolman called
a ‘‘sign-gestalt expectation’’ or, on a larger scale, a ‘‘field
expectation.’’ Stimuli in the environment may activate the
whole sign-gestalt or field expectation, which can then be
employed by the animal to purposefully guide behavior toward
the pleasurable state of affairs (e.g., food, avoidance of threat,
et cetera). Tolman’s ideas relating to sign-gestalt and field
expectations were later expounded upon in his seminal article
on cognitive maps (Tolman, 1948). In this article, Tolman
suggested that animals (including people) acquire a variety of
cognitive maps—including not only allocentric maps of space,
but also more abstract interpersonal maps—that contribute to
behavior, thought, and (on a speculative note) psychopathology
(Tolman, 1948).

It is important to emphasize that although Tolman’s
inclination toward a cognitive view of learning was partially
motivated by a skepticism surrounding strict Watsonian
behaviorism, his cognitive views were corroborated through
extensive behavioral research, much of which was conducted
in his laboratory at Berkeley. Tolman used a variety of mazes
to show that animals can acquire cognitive maps of a learning
environment, and they could use these maps to guide running
behavior toward a palatable food reinforcer. For instance,
contrary to the S-R view of learning, animals could make
inferences about there being shortcuts in the maze and generate
a novel series of navigational responses based on those inferences
(Tolman et al., 1946b). The experiments coming from Tolman’s
laboratory promoted a shift in the field from a rather spartan
S-R view toward a more purposeful, cognitive view of behavior.
However, just as Tolman’s cognitive expectancy theory was
gaining traction in the field, another investigator took the stage
and touted an impressive rejuvenation of the S-R view that could
not be easily ignored.

A HULL IN THE MACHINE

When Clark L. Hull (Figures 2, 3) began studying psychology,
he—like Tolman—developed a fascination with Watsonian
behaviorism. However, also like Tolman, he had some
reservations about the theory. Hull disagreed with some of
Watson’s ‘‘dogmatic claims,’’ and the result of his disagreement
‘‘was a belated conversion to a kind of neo-behaviorism—a
behaviorism concerned with the determination of the
quantitative laws of behavior and their deductive systemization’’
(Hull, 1952, p. 154). Drawing from his love of mathematics
and his professional expertise in chemistry and engineering,
Hull developed an intricate series of ‘‘mathematico-deductive’’
formulas to explain and predict observable behavior (Hull
et al., 1940). These formulas were leaps and bounds above
the primitive S-R associations being proposed by classical
behaviorists (Thorndike, 1898; Watson, 1914).

Although Hull and Tolman were similar in their urge to
break away from the restrictions of Watsonian behaviorism,
Hull, unlike Tolman, refrained from incorporating in his theory
what he viewed as teleological concepts, such as purpose and
expectation. He believed that such concepts were the unfortunate
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FIGURE 2 | Clark Leonard Hull (1884–1952).

byproducts of anthropomorphic subjectivism (i.e., the tendency
to regard animals as having human thoughts and feelings).
To safeguard oneself against these pitfalls, Hull suggested that
we regard

the behaving organism as a completely self-maintaining robot,
constructed of materials as unlike ourselves as may be. In doing this
it is not necessary to attempt the solution of the detailed engineering
problems connected with the design of such a creature. It is a
wholesome and revealing exercise, however, to consider the various
problems in behavior dynamics which must be solved in the design
of a truly self-maintaining robot (Hull, 1943, p. 27).

Hull’s inclination to view organisms as automatons that
operate without purpose and free will remains evident in his
mathematico-deductive view of behavior.

According to Hull, the probability of a particular behavior
being performed (i.e., reaction potential) was a function of drive
and habit strength. Habit strength, he defined, as the degree
to which a stimulus (S) has the capacity to activate a response
(R), with the performance of R leading to drive reduction. For
instance, if a hungry rat hears a tone (S) and then presses a lever
(R) resulting in the delivery of a favorable food outcome (O),
consumption of the food will lead to drive reduction (i.e., less
hunger), and thus the S-R association between the tone and
the lever-press will be strengthened. Habit strength increases
throughout many iterations of S being paired with R. Over time,
the S can activate the R automatically, even under conditions of

FIGURE 3 | From left to right: Kurt Lewin, Edward Tolman, and Clark Hull at
the 47th Annual Meeting of the American Psychological Association in 1939.
Tolman and Hull stick their tongues out at each other as a playful expression
of their opposing views on learning (from the Geoffrey W. H. Leytham
collection, Archives of the History of American Psychology, the Drs Nicholas
and Dorothy Cummings Center for the History of Psychology, University
of Akron).

low drive. Thus, much of the learned behavior according to Hull
is a series of S-R habits.

Hull’s theory, though impressive in its completeness and
explanatory power, was harshly criticized by cognitive learning
theorists, including Tolman and his colleagues (e.g., Tolman,
1948; Gleitman et al., 1954). Soon after the publication of Hull’s
neobehaviorist manifesto titled Principles of Behavior, Tolman’s
laboratory developed a new paradigm that placed the Hullian
‘‘habit’’ and Tolmanian ‘‘cognitive’’ theories in competition with
each other. This Tolmanian paradigm was adopted by other
laboratories and served as the battleground for the debate
between S-R and cognitive views of learning formany subsequent
and contentious years.

TOLMAN VS. HULL: DEVELOPMENT OF
THE PLACE AND RESPONSE LEARNING
PLUS-MAZE TASKS

Early on, it became clear to investigators that if an animal is
placed in a maze with food consistently placed at another ‘‘goal
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end’’ of the maze, the animal will eventually learn to retrieve
the food (Small, 1901). However, exactly how animals learned
to find the food or what animals acquired that enabled them
to guide behavior to the rewarded location remained debatable.
According to Tolman and colleagues, there were three potential
explanations worth considering:

1. Such training may have produced a disposition in the rats to
run on a path that has certain specific characteristics (e.g.,
knotholes of such and such a pattern, or the like) and to
avoid running on all paths which have certain other specific
characteristics.

2. Such training may have produced a disposition to turn right
whenever they come to the choice point.

3. Finally, such training may have produced a disposition to
orient towards the place where the food is located (e.g., under
the window, to the left of the radiator, et cetera; Tolman et al.,
1946a, p. 221).

Tolman and his colleagues quickly ruled out the first
explanation based on earlier findings from Honzik (1936),
suggesting that it was difficult for rats to use intramaze cues
to guide behavior. However, they suggested that no studies as
yet had directly compared the last two explanations. Is it the
case that animals acquire a response (i.e., consistent with the
Hullian S-R view of learning), or do animals learn to go to a
place (i.e., consistent with Tolman’s cognitive view of learning)?
Tolman et al. (1946a) developed two plus-maze tasks to examine
these hypotheses.

The Place Learning Task and the Response
Learning Task
Tolman’s laboratory used a plus-maze that consisted of four arms
arranged in a cross (+) formation. Two opposite arms (e.g., North
and South) were designated as start arms from which the animals
were released during maze training, and the other two arms
(e.g., East and West) were designated as goal arms that may
contain food reward during training. The two tasks that Tolman
et al. (1946a) had run in the plus-maze were called the ‘‘place
learning’’ and ‘‘response learning’’ tasks. In the place learning
task (see Figure 4B), animals were released from the opposite
starting positions, and a palatable food reward was located in
a consistent goal arm. Thus, animals presumably needed to
learn the spatial location of the food reward to accurately guide
behavior from different starting positions to the rewarded spatial
location. In the response learning task (Figure 4A), animals
were also released from opposite starting positions, but the food
reward in this case was rotated to opposite goal arms in such a
way that for animals to quickly retrieve the food, they needed to
make a consistent body-turn response. For instance, if rats were
released from the North arm, the food reward was in the West
arm. If the animal were released from the South arm, the food
reward was in the East arm. Thus regardless of where a rat was
released from, the rat needed to learn a consistent right body-turn
to quickly retrieve the food.

Tolman et al. (1946a) wanted to determine which task animals
learned faster. It was assumed at this time that if animals

learned one task faster than the other, then the type of learning
underlying the former task is more dominant or ‘‘natural’’ to the
animals than the type of learning underlying the other, more
slowly acquired task. The findings of their study indicated that
animals learned the place learning task much faster than the
response learning task, and therefore the investigators concluded
that ‘‘both kinds of dispositions may be acquired by the rat,
but that the disposition to orient towards the goal is simpler
and more primitive than the disposition to make right turns’’
(Tolman et al., 1946a, p. 228). However, many subsequent
plus-maze experiments challenged Tolman’s conclusion.

The Dual-Solution Plus-Maze Task
Another team of investigators who were critical of Tolman’s
findings provided an alternative version of the plus-maze task
(commonly referred to as the dual-solution plus-maze) to
examine the relative use of place and response learning. Hugh C.
Blodgett, who obtained his Ph.D. under the guidance of Tolman
at Berkeley, designed this dual-solution plus-maze task in his
laboratory at the University of Texas (Blodgett and McCutchan,
1948). Over the course of maze training in the dual-solution
plus-maze task, rats were released from a consistent starting
position in the plus-maze (e.g., North), and food was placed in a
consistent goal arm (e.g., West). This maze task was conducted in
a homogenous visual environment with a single spatial cue (i.e., a
10 inch reflective disc) placed directly outside the maze. During
the initial acquisition phase of the task, animals could find the
food by acquiring either a place learning strategy (i.e., using the
disc as a spatial cue to guide behavior to the food location) or a
response learning strategy (i.e., making a consistent body-turn
response at the choice-point). In either case, behavior looked
the same during initial training. To determine which strategy
the animals employed, a probe trial was conducted in which the
reflective disc was moved to the opposite side of the room. Rats
that had been using the disc as a spatial cue to find the food
location during initial training (i.e., a place strategy) would end
up going to the opposite maze arm during this probe trial. In
contrast, rats that had learned to make a consistent body-turn
during initial training (i.e., a response strategy) would continue
to do so during the probe trial, while disregarding the change in
the extra-maze spatial environment.

A surprising result from this original dual-solution
plus-maze study from Blodgett and McCutchan (1948) was
that during the probe trial, rats predominantly made the
same turning response. These findings suggested that animals
preferentially acquired and/or expressed a response learning
strategy instead of a place learning strategy. The authors
concluded that under their experimental conditions and in
contrast to what Tolman et al. (1946a) previously suggested,
‘‘a response disposition is. . . stronger than a place disposition’’
(Blodgett and McCutchan, 1948, p. 23).

It should be noted that the dual-solution plus-maze task has
evolved since its original iteration from Blodgett andMcCutchan
(1948). One of the problems with their version of the task was
the use of a single spatial cue. Even though rats using the spatial
cue were labeled as place learners in their study, using a single
spatial cue to guide behavior in a maze situation may also be
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FIGURE 4 | Place and response learning in the plus-maze. (A) In the response learning plus-maze task, a rat is released from opposite start arms (e.g., N and S)
throughout training, and the same body-turn response at the choice point is reinforced. For example, when the rat is released from the N arm, food is located in the
W arm. When the rat is released from the S arm, food is located in the E arm. In this example, a right-body turn at the choice point is being reinforced. (B) In the
place learning plus-maze task, a rat is released from opposite start arms throughout training, while the food remains in a consistently reinforced spatial location.
(C) During initial training in the dual-solution plus-maze task, a rat is released from a consistent start arm (e.g., N) with food also located in a consistent spatial
location (e.g., W). A rat can learn to retrieve food using a place learning strategy (i.e., go to the same place) or a response learning strategy (i.e., make the same body
turn at the choice point). To determine how the rat learned to solve the task, a probe trial is conducted in which the rat is started from the opposite arm (e.g., S). If the
rat continues to make the same body-turn at the choice point, the rat is labeled a response learner. If the rat makes the opposite body-turn to return to the reinforced
spatial location, the rat is labeled a place learner. (D) A virtual version of the dual-solution plus-maze task may be employed to study place and response learning in
human subjects (images from Astur et al., 2016). (E) Place and response learning tasks have been employed to study learning and memory across a variety of
species aside from rodents and humans, including turtles, salamanders, chickens, horses, and sharks, among others (image from Salas et al., 2003 with permission
from S. Karger AG, Basel).
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viewed as a form of S-R response learning to the extent that
an animal may learn to simply run toward (R) the extra-maze
cue (S). To provide an experimental maze situation conducive
to place learning, an array of extra-maze spatial objects must be
made available, allowing the subject to build a spatial cognitive
map of the environment to guide behavior (Tolman, 1948).
To this aim, later versions of the dual-solution plus-maze task
have employed heterogeneous visual environments that contain
multiple extra-maze objects. The initial training phase of the
task has remained the same; however, the probe trial has been
modified to preclude the moving of spatial objects around the
room. Instead, during the probe trial, the rat is begun from
the arm opposite to the original start arm (e.g., Packard and
McGaugh, 1996). For example (see Figure 4C), if during initial
training the rat is consistently placed in the North arm with food
in the West arm, the rat begins the probe trial from the South
arm. During the probe trial, if the rat continues to make the same
right body-turn response at the choice point (i.e., running away
from the original food location on theWest arm), they are labeled
as a ‘‘response-learner.’’ If instead, the rat makes a left turn at the
choice point (i.e., running toward the original food location on
the West arm), they are labeled as a ‘‘place-learner.’’

THE PLACE VS. RESPONSE
CONTROVERSY

Immediately following the original plus-maze experiments
conducted by Tolman and Blodgett, other experimenters began
using the same plus-maze tasks to examine cognitive vs. S-R
views of learning. Proponents of Tolman’s cognitive view of
learning believed that place learning was more dominant or
natural to the animal than response learning, while proponents
of Hull’s S-R view believed the opposite. This conflict set the
stage for the place vs. response controversy (Restle, 1957)—that
is, the debate over whether animals in the plus-maze are naturally
place-learners or response-learners—and directly motivated the
immediate widespread use of the place and response learning
plus-maze tasks in the 1940s–1950s. However, similar to the
original studies conducted in the laboratories of Tolman and
Blodgett, these experiments yielded mixed findings. In some
cases, investigators found place learning to be dominant,
whereas in other cases response learning was dominant. The
eventual resolution to this conundrum was that either place or
response learning could be dominant in these plus-maze tasks
and that whether a particular kind of learning was dominant
depended on a host of parametric factors (for reviews, see
Restle, 1957; Packard and Goodman, 2013).

The role of parametric factors on the relative use of different
learning strategies was perhaps originally envisaged by Tolman.
In his famous article on cognitivemaps, Tolman (1948) suggested
that rats and humans alike acquire cognitive maps to guide our
thoughts and behavior and that cognitive maps vary in size
and detail. Tolman believed that large and detailed cognitive
maps allow for animals to flexibly generate new routes from
novel starting positions and to take shortcuts when shorter paths
are suddenly made available. On the other hand, a relatively
slim ‘‘strip-map’’ that is lacking in detail may allow the animal

to undertake a simple navigational response from point A to
point B, but would not allow for animals to take shortcuts
or to quickly reach the goal location from a novel starting
position. Thus, broad and comprehensive maps may allow
for place learning, whereas narrow-strip maps may allow for
response learning.

Tolman suggested that the relative smallness or bigness of
a particular cognitive map may be influenced by a variety of
factors. Tolman writes:

. . .what are the conditions which favor narrow strip-maps and
what are those which tend to favor broad comprehensive maps?
There is considerable evidence scattered throughout the literature
bearing on this question both for rats and for men. Some of this
evidence was obtained in Berkeley and some of it elsewhere. . . I can
merely summarize it by saying that narrow strip-maps rather than
broad comprehensive maps seem to be induced: (1) by a damaged
brain; (2) by an inadequate array of environmentally presented
cues; (3) by an overdose of repetitions on the original trained-on
path; and (4) by the presence of too strongly motivational or of too
strongly frustrating conditions (Tolman, 1948, p. 206–207).

While this excerpt pertains directly to the factors influencing
the relative narrowness or comprehensiveness of a cognitive
map, it also serves as an impressive list of the major factors
influencing the relative dominance of place learning or response
learning. The present section provides an overview of the
behavioral factors influencing place and response learning, many
of which were described above by Tolman, such as the amount
of training, the visual aspects of the learning environment, and
the emotional state of the organism. It should be noted that
although many of these factors were first identified during the
place vs. response controversy of the 1940s–1950s, this section
also includes modern research to provide a more comprehensive
discussion of the prominent factors influencing place and
response learning.

Factors Influencing Place and Response
Learning
Amount of Training
According to the Hullian view of learning, the strength of an S-R
habit is partially a function of the number of times that the S has
been paired with the R. Therefore, it is reasonable to predict that
after limited training an S-R association may be weak, allowing
for other learningmechanisms to guide behavior. This prediction
is consistent with the findings from studies using single-solution
versions of the place and response learning tasks. That is, as
previously mentioned, more trials are required for animals to
learn the S-R response learning version of the plus-maze relative
to the cognitive place learning version of the task (Tolman
et al., 1947). Moreover, in the dual-solution task, when animals
are given a probe trial after limited training, most animals
demonstrate a place learning strategy, whereas, after extensive
training, animals predominantly display response learning on
the probe trial (Ritchie et al., 1950; Hicks, 1964; Packard and
McGaugh, 1996; Packard, 1999). Interestingly, a more recent
study demonstrated that the shift to response learning may be
blocked if the animal is prompted to perform a concurrent
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working memory problem throughout task acquisition (Gardner
et al., 2013). Also, in contrast to the ‘‘dry’’ appetitive
dual-solution maze tasks, rats in water maze versions of the place
and response tasks do not always show an initial preference for a
place learning strategy. Research suggests that rats often display
no preference (McDonald and White, 1994) or they show an
initial preference for response learning and then shift to place
learning after further training (Asem and Holland, 2013, 2015;
Farina and Commins, 2020; Gasser et al., 2020). The initial
expression of response learning in the water plus-maze may be
partially explained by swimming stress (see ‘‘Emotional Arousal’’
section below).

Massed vs. Spaced Training
Evidence indicates that place and response learning may also
differentially benefit from massed and distributed practice.
During massed training, trials are separated by short inter-
trial intervals, whereas during distributed (or spaced) training,
trials are separated by considerably longer inter-trial intervals.
Place learning is acquired quickly when using a massed-training
protocol, in which trials are separated by 30 s, and slowly when
using a distributed protocol, in which trials are separated by
15–30 min (Thompson and Thompson, 1949; Wingard et al.,
2015). In contrast, response learning is acquired more slowly
when using the massed-training protocol and is relatively faster
when using the distributed protocol (Thompson and Thompson,
1949; Wingard et al., 2015).

Visual Aspects of the Learning Environment
Place and response learning in the plus-maze may also be
influenced by the visual learning environment. In learning
environments containing abundant extra-maze visual stimuli
(termed heterogeneous visual surrounds), place learning is
acquired faster than response learning, and a place learning
strategy is preferred over a response learning strategy in
dual-solution versions of the task (Tolman et al., 1946a,
1947; Blodgett and McCutchan, 1948; Blodgett et al., 1949;
Tolman and Gleitman, 1949; Galanter and Shaw, 1954; Waddell
et al., 1955). Visually heterogeneous learning environments
may favor place learning by allowing animals to acquire a
cognitive spatial map (Tolman, 1948). In contrast, learning
environments containing few or no extra-maze visual cues
(i.e., homogenous visual surrounds) allow for response learning
to be acquired faster than place learning and lead to the use
of response learning strategies over place learning strategies
in the dual-solution plus-maze (Blodgett and McCutchan,
1948; Ritchie et al., 1950; McCutchan et al., 1951; Hill and
Thune, 1952; Scharlock, 1955). Interestingly, the addition of
extra-maze visual cues, which makes the learning environment
more heterogeneous, impairs acquisition in a response
learning task (Chang and Gold, 2004). It is possible that
extra-maze cues stimulate the acquisition of a cognitive map
and that animals using this cognitive map of the learning
environment are more likely to go to the same place where
they found food on a previous trial. This would lead to
errors in a response learning task where the reinforcer is
shifted to different spatial locations but would allow accurate

performance in a place learning task where the reinforcer
remains in a consistent spatial location. On the other hand,
a relatively homogenous visual surround would presumably
prevent the acquisition of a spatial cognitive map, which
could: (1) lead to faster acquisition of response learning by
eliminating spatial interference; and (2) impair place learning
by preventing the animal from encoding the spatial location of
the reinforcer.

Emotional Arousal
Another factor that profoundly influences place and response
learning is stress and anxiety (for review, see Packard and
Goodman, 2012; Goodman et al., 2017a; Packard et al., 2018).
Behavioral stressors, such as restraint stress or exposure to
predator odor, enhance acquisition in the response learning
plus-maze task and lead to greater use of response learning
over place learning in the dual-solution plus-maze task
(Sadowski et al., 2009; Leong and Packard, 2014; Taylor
et al., 2014). Chronic restraint and unpredictable shock
also lead to greater response learning in other kinds of
maze tasks (Kim et al., 2001; Schwabe et al., 2008). Aside
from behavioral stressors, high levels of trait anxiety or
hypertension favor response learning in the plus-maze and in
a dual-solution version of the Morris water maze (Robertson
et al., 2008; Wells et al., 2010; Hawley et al., 2011). Finally,
conditioned emotional stimuli (e.g., a tone previously paired
with a shock) may also enhance response learning and
lead to greater use of response learning strategies over
place learning strategies in the plus-maze (Leong et al.,
2015; Goode et al., 2016). Presentation of a conditioned
emotional stimulus may similarly promote the use of a
response learning strategy in a dual-solution Morris water maze
(Hawley et al., 2013).

Systemic infusions of stress hormones (e.g., corticosterone
or epinephrine) or anxiogenic drugs (e.g., α-2 adrenoreceptor
antagonists yohimbine or RS 79948-197) appear to mimic the
effects of trait anxiety and behavioral stressors by enhancing
response learning (Packard and Wingard, 2004; Elliott and
Packard, 2008; Wingard and Packard, 2008; Packard and
Gabriele, 2009; Leong et al., 2012). The enhancing effect of
corticosterone or RS 79948-197 on response learning may be
blocked by concurrent infusion of anxiolytic drugs (Leong et al.,
2012; Goodman et al., 2015). Importantly, the enhancement
of response learning following stress/anxiety has not only
been demonstrated in rats using plus-maze tasks (Packard and
Wingard, 2004) but has also been observed using response
learning or ‘‘habit’’ memory tasks designed for human subjects
(Schwabe et al., 2007, 2008, 2010, 2013; Schwabe andWolf, 2009,
2010; Guenzel et al., 2014; Goldfarb et al., 2017; Goodman et al.,
2020; Zerbes et al., 2020).

The enhancement of response learning may be attributed
to the impairing effect of stress/anxiety on spatial memory
processing. Infusions of anxiogenic drugs impair acquisition
in a place learning version of the plus-maze, and similar
doses enhance acquisition of response learning (Wingard and
Packard, 2008; Packard and Gabriele, 2009; Sadowski et al.,
2009). Consistent with the idea that the memory systems
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mediating place and response learning compete with each
other in some learning situations (Poldrack and Packard,
2003), stress/anxiety may enhance response learning and lead
to greater use of response learning strategies indirectly by
impairing the function of the memory system mediating
place learning.

Biological Sex
The potential influence of biological sex on place and response
learning has also received some investigation. As reviewed
previously, rats typically prefer a place learning strategy in the
early stages of training in the dual-solution plus-maze and
gradually shift toward a response learning strategy following
extensive additional training; however, recent evidence indicates
that only male rats display this shift in preference, whereas the
strategy preference of female rats depends on estrogen levels
(for reviews, see Korol, 2004, 2019). Female rats at proestrus
(i.e., when estrogen levels are high) predominantly display place
learning, whereas female rats at estrus (i.e., when estrogen
levels are relatively low) predominantly display response learning
(Korol et al., 2004; see also Korol and Kolo, 2002; Zurkovsky
et al., 2006, 2007; Zurkovsky et al., 2011). In contrast, other
research has found no preference between spatial and stimulus-
response strategies in female rats even when the estrous cycle
is taken into account, relative to male rats which continue to
show either a place or response learning preference under various
conditions (Grissom et al., 2012, 2013; Hawley et al., 2012). Also,
men and women do not differ significantly from each other in
terms of strategy preference across a variety of dual-solution tasks
(e.g., Iaria et al., 2003; Schwabe et al., 2007, 2008; Andersen et al.,
2012; Schwabe and Wolf, 2012).

The End of the Place vs. Response
Controversy
The general observation that the relative dominance of place
and response learning depended on a myriad of experimental
variables provided a potential resolution to the place vs. response
controversy of the 1940–50s. In a highly cited review article
summing up the findings from this era, Frank Restle (a
prominent cognitive psychologist at the time) had this to say:

There is nothing in the nature of a rat which makes it a ‘‘place’’
learner or a ‘‘response’’ learner. A rat in a maze will use all relevant
cues, and the importance of any class of cues depends on the
amount of relevant stimulation provided as well as the sensory
capacities of the animal. . . The writer’s general conclusion is that
further ‘‘definitive’’ studies of the place-vs.-response controversy,
to prove that rats are by nature either place or response learners,
would be fruitless. . . (Restle, 1957, p. 226–227).

It is reasonable to infer that Restle’s general conclusion
that further analysis of the place vs. response question would
be ‘‘fruitless’’ was probably espoused by his contemporaries.
A comment on Restle’s review, which was published about a
decade later, noted that ‘‘since the appearance of Restle’s article,
few further studies have been published dealing with the place
vs. response issue’’ and that ‘‘it is unlikely that the issue will
ever be reopened in its earlier form’’ (Goldstein et al., 1965, p.

229). In hindsight, we can determine that this prediction was
correct—investigators were no longer concerned about which
kind of learning was more ‘‘natural’’ to the animal. However,
these authors had failed to foresee just how valuable the place and
response learning tasks would become when later investigators
began to examine the neural substrates of learning and memory.

It should be emphasized that research on the neurobiology of
place and response learning took place not only in the plus-maze
but in a variety of other maze tasks. Thus, before discussing
the neurobiology of these different kinds of learning, it will
be important to briefly review such alternative approaches to
studying place and response learning.

ALTERNATIVE PLACE AND RESPONSE
LEARNING TASKS

The plus-maze tasks originating from the laboratories of
Tolman and Blodgett—that is, the place learning task, response
learning task, and dual-solution task—attracted the attention
of numerous other investigators who later employed the tasks
to examine Hullian S-R and Tolmanian cognitive views of
learning. However, not all investigators replicated the original
designs; some continued to modify them or designed completely
new tasks to examine place and response learning (e.g., virtual
versions of the dual-solution plus-maze; Figure 4D). These novel
tasks allowed investigators to examine other aspects of place and
response learning, while also providing certain advantages over
the original designs. Below is a list of some of the alternative
methods for studying place and response learning.

Water Plus-Maze Tasks
Place and response learning tasks, including the dual-solution
task, may be readily conducted in a water plus-maze
(e.g., Schroeder et al., 2002; Packard and Wingard, 2004;
Wingard and Packard, 2008). These tasks are conducted in a
manner identical to the appetitive, food-reinforced versions
described above. However, instead of rats running to retrieve
food rewards, rats are placed in a plus-maze filled with water
and must swim to an invisible escape platform hidden in
one of the goal arms. Thus, in contrast to the appetitive
versions of the place and response learning tasks, which involve
positive reinforcement (i.e., food reward), the water plus-maze
involves negative reinforcement (i.e., mounting an invisible
platform to escape the water). The water plus-maze provides
some advantages over the original appetitively reinforced
tasks. Whereas animals trained in the appetitive versions
need to be food-restricted for several days to motivate food
foraging behavior, animals trained in the water maze do
not need any prior food deprivation. Not having to deprive
laboratory animals of food not only saves time, but it also
rules out potential confounding variables, such as the influence
of hunger and food deprivation on learning and memory.
Also, animals tend to learn the water maze versions of the
task much quicker than the appetitive versions, allowing
investigators to complete experiments faster and increase
experimental throughput. Finally, the water plus-maze tasks
appear to depend on the same neurobiological systems as the
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appetitive tasks (Schroeder et al., 2002; Compton, 2004; Asem
and Holland, 2015), suggesting that the underlying learning
mechanisms may also be the same. However, as noted earlier,
water maze tasks differ from the original appetitive ‘‘dry’’
maze tasks, in that emotional arousal induced by swimming
stress potentially modulates memory formation and strategy
preference in the water maze (see ‘‘Emotional Arousal’’
section above).

Radial Arm Maze
In the radial arm maze, place and response learning can be
assessed through ‘‘win-stay’’ and ‘‘win-shift’’ versions of the
maze. In the S-R response learning or ‘‘win-stay’’ radial maze
(Packard et al., 1989; Figure 5A), four of the eight arms in a
radial maze are reinforced and signaled with a light stimulus,
and rats may go to each of the illuminated arms twice within
a daily training session to retrieve food. In this task, animals
presumably acquire an S-R association between the light stimulus
(S) and the approach response (R), whereas entries into the
unlit arms are scored as errors. On the other hand, in the place
learning or ‘‘win-shift’’ version of the radial maze (Figure 5B),
rats may visit each of the eight arms once within a daily
training session to retrieve food reward, whereas re-entries into
previously visited arms are scored as errors. Importantly, arms
containing food are not marked with any proximal cues, and
therefore the animal must presumably rely on allocentric spatial
cues to determine which arms were already visited and which
arms still contain food. It should be noted that, while studies
using the radial maze have shown evidence for distinct roles
of the hippocampal and striatal neural systems in learning
and memory, the radial maze has also been useful in showing
how these two systems can interact in a cooperative manner
(McDonald and White, 1995).

Interestingly, these radial maze tasks, although primarily
conducted with rodents, have also been adapted to examine place
and response learning in humans. These tasks typically involve
computer-generated maze environments that the subject can
navigate using a keyboard or joystick (see Figure 5D; e.g., Bohbot
et al., 2004, 2007; Banner et al., 2011; Horga et al., 2015; Hussain
et al., 2016b; Goodman et al., 2020). However, some investigators
have examined ‘‘place and response-learning’’ using a built-to-
scale radial arm maze that human participants can traverse in
real-world space (see Figure 5D; e.g., Overman et al., 1996).

A dual-solution version of the radial arm maze may also be
used to gauge the relative use of place and response learning
strategies in human subjects (Figure 5C). In the dual-solution
radial maze (Iaria et al., 2003), participants navigate a virtual
maze and retrieve hidden reward objects by traveling to the ends
of some arms. Given that there are numerous spatial cues in
the distal virtual environment, including mountains and trees,
the participants may use the spatial cues to determine which
arms contain reward objects. However, the participant may also
use an egocentric response strategy by learning the sequence of
turns leading to the correct arms. To determine which strategy
the participants employed, a probe test can be conducted in
which walls surround the maze and prevent the subject from
using the distal spatial cues. Thus, more errors during the probe

test would suggest that the subjects had been using a place
learning strategy, whereas few errors would suggest subjects
had been using a response learning strategy. Also, as one of
the advantages of performing experiments with human subjects,
participants may also be debriefed and asked to report how
they solved the task. From these responses, investigators can
determine whether participants had used a place or response
learning strategy.

Morris Water Maze
Aside from the radial armmaze, place and response learning may
also be investigated using the Morris water maze (see Figure 6;
McDonald and White, 1994; Devan and White, 1999; Devan
et al., 1999; Lee et al., 2008, 2014). In the standard place learning
version of the Morris water maze (Figure 6B; Morris, 1984),
rats are released into a circular pool of water from different
starting positions and must rely on the allocentric spatial objects
in the maze environment to learn the spatial location of an
invisible escape platform. In the response learning or ‘‘cued’’
version (Figure 6A), the escape platform is visibly cued so that
the animal may acquire an S-R association allowing the cued
platform (S) to evoke approach behavior (R). The cued platform
also moves to different spatial locations throughout training,
making a spatial learning strategy unreliable. In a dual-solution
version (Figure 6C), a cued platform remains in the same spatial
location across training, allowing animals to acquire either a
spatial learning strategy (i.e., go to the same spatial location)
or a response learning strategy (i.e., go to the cued platform).
What learning strategy the animal employed may be assessed
using a probe trial in which the cued platform is moved to a new
spatial location. If the rat continues to swim to the original spatial
location, the rat is believed to have acquired a place learning
strategy, whereas if the rat follows the cued platform to the new
spatial location, the rat is believed to have acquired a response
learning strategy.

Barnes Maze
Place and response learning have also been investigated using
the Barnes maze (Harrison et al., 2006; Rueda-Orozco et al.,
2008; Wahlstrom et al., 2018). The Barnes maze is a large
circular platform with a series of holes lining the perimeter
where one of these holes leads to a small escape compartment
underneath the maze. In the standard place learning version,
the animal may use distal cues to acquire the spatial location
of the escape hole (Barnes, 1979). In the cued or response
learning version, the escape hole is located in different spatial
locations across training but is reliably marked by a proximal
visual cue (Reiserer et al., 2007). The relative use of place and
response learning may also be examined using a dual-solution
version of the Barnes maze, in which the escape hole is located
in a consistent spatial location and is also reliably cued using
a proximal visual stimulus (Harrison et al., 2006). During
a subsequent probe trial, all the holes are blocked, and the
proximal stimulus is relocated to a different hole. Spending
more time near the original spatial location is indicative of
a place learning strategy, whereas spending more time near
the proximal cue is indicative of a response learning strategy.
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FIGURE 5 | Place and response learning in the eight-arm radial maze. (A) In the “win-stay” radial maze task, light cues signal whether food is available at the end of
each arm. This task promotes S-R response learning to the extent that the light cues (S) become associated with approach behavior (R). (B) In the win-shift radial
maze, a rat must employ extra-maze spatial cues to locate food and avoid re-entries into arms in which food was already retrieved, thus promoting the use of place
learning. (C) A virtual 4/8 dual-solution version of the radial maze may be employed to examine the relative use of place and response learning in human subjects.
Each trial of this task is divided into two parts (Part 1 and Part 2). During Part 1, four of the eight arms are blocked with a wall, and the participant is instructed to
enter the four open arms and retrieve hidden reward objects. During Part 2, all of the arms are open, and the participant is instructed to retrieve the remaining reward
objects from the arms that were previously blocked. To avoid arm re-entries, the participants may employ a place learning strategy (i.e., refer to extra-maze spatial
cues to guide behavior to the correct arms) or a response learning strategy (i.e., memorizing a series of egocentric responses leading to the correct arms). During a
subsequent probe trial, the extra-maze spatial cues are blocked from view, preventing the use of a place strategy. Therefore, more errors during this probe trial
suggest the use of a place strategy, whereas fewer errors suggest the use of a response strategy (images from Bohbot et al., 2012). (D) A 4-year-old child searches
for rewards in a place learning version of the eight-arm radial maze (image from Overman et al., 1996).

The relative use of place and response learning may also be
observed by analyzing strategy use during the standard place
learning version of the Barnes maze (Harrison et al., 2006;
Rueda-Orozco et al., 2008). If animals run directly to the escape
hole, they are considered to be using a place learning strategy.
However, if animals run to an arbitrary hole and serially explore
each adjacent hole until finding the correct hole leading to the
escape compartment, they are considered to be using a response
learning strategy.

Outcome Devaluation
Outcome devaluation procedures can be added to place and
response learning maze tasks to test whether the rat’s maze
running behavior is goal-directed or habitual. Response learning
in the plus-maze has been traditionally regarded as a type of
learned S-R habit to the extent that the turning behavior (R)
presumably occurs automatically in response to environmental
stimuli (S). This is contrasted with place learning which requires
the animal to purposefully guide behavior toward the goal
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FIGURE 6 | Place and response learning in the water maze. (A) In the cued water maze task, the platform is either visible (i.e., made of a conspicuous opaque
material and/or is located above the water surface) or is cued with a proximal object (e.g., a white flag attached to the platform). Throughout training, the platform is
rotated to different quadrants of the maze, and the animal must learn to associate the visible stimulus (S) with swimming approach behavior (R). (B) In the uncued
spatial water maze task, the platform remains in a consistent spatial location and is visibly hidden below the water surface (the platform may consist of transparent
material or the water may be infused with an opaque dye). Therefore, the rat must use extra-maze spatial cues to learn the location of the hidden platform. (C) In the
dual-solution version of the water maze, a visibly cued platform remains in the same spatial location across initial training. During a later probe test, the cue is moved
to a different maze quadrant. If the rat continues to swim to the same spatial location, the rat is labeled a place learner. If the rat approaches the visible cue, the rat is
labeled a response learner.

using a cognitive map. In the 1980s, investigators began using
outcome devaluation as a test to determine whether a learned
behavior is habitual (Adams and Dickinson, 1981a,b; Adams,
1982; Dickinson and Nicholas, 1983; Dickinson et al., 1983).
Outcome devaluation may be achieved in different ways but
is perhaps most commonly implemented by pairing the food
reinforcement with a lithium chloride injection that causes
illness. Later, if the animal continues to perform the learned
behavior even though the reinforcer has been devalued, the
behavior is considered habitual. On the other hand, if the animal
no longer performs the behavior after devaluation, the behavior

is considered goal-directed. Although outcome devaluation was
originally employed in instrumental learning tasks (e.g., lever
pressing), this procedure may also be employed in place and
response learning tasks to determine whether the maze running
behavior in each task is habitual or goal-directed. Research has
confirmed that response learning in the plus-maze, in addition
to response learning in other maze tasks, is relatively insensitive
to outcome devaluation, suggesting that the learned behavior
is habitual (Sage and Knowlton, 2000; Lin and Liao, 2003; De
Leonibus et al., 2011; Smith et al., 2012; Smith andGraybiel, 2013;
Kosaki et al., 2018). In contrast, place learning proves sensitive to
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outcome devaluation, providing evidence that place learning is
goal-directed (Sage and Knowlton, 2000; Lin and Liao, 2003; De
Leonibus et al., 2011; Kosaki et al., 2018).

The Place and Response Learning
Plus-Maze Tasks in Other Species
Although the majority of studies employing the place and
response learning tasks have used rats—and to lesser extent mice
and humans—these tasks have been adapted for use across a wide
variety of species. The purpose of many of these experiments has
been to gauge the cognitive mapping abilities or spontaneous
use of different navigational strategies across a range of species
representing different branches on the phylogenetic tree. Taken
together, these findings across species may allow for inferences to
be made regarding the evolution of spatial navigation (see Jacobs,
2003; Salas et al., 2003).

Plus-maze versions of the place and response learning
tasks—including the dual-solution task—have been employed to
examine learning and memory in chickens (Brookshire et al.,
1961), terrestrial toads (Daneri et al., 2011), horses (Parker
et al., 2009), salamanders (Kundey et al., 2016), and turtles
(López et al., 2000; Rodríguez et al., 2002; see Figure 4E).
In addition to studies in terrestrial and amphibious animals,
water plus-maze versions of the place and response learning
tasks have been readily employed to study memory in a variety
of aquatic animals, including sharks (Fuss et al., 2014a,b),
freshwater stingrays (Schluessel and Bleckmann, 2005), cuttlefish
(Alves et al., 2007), crayfish (Tierney and Andrews, 2013), and
goldfish (Rodríguez et al., 1994, 2002; Salas et al., 1996a,b;
Romaguera and Mattioli, 2008; McAroe et al., 2016). Aside
from examining normal learning and memory abilities, some
studies have used lesion techniques to examine the neural
substrates of place learning in these animals. Lesions delivered
to certain areas of the telencephalon believed to be homologous
to the mammalian hippocampus, produce deficits in place
learning, but not response learning, in sharks (Fuss et al.,
2014a,b), goldfish (Salas et al., 1996a,b; Rodríguez et al.,
2002; Romaguera and Mattioli, 2008), and turtles (Rodríguez
et al., 2002). These findings demonstrate a similar role for
the hippocampal formation in performing place learning
functions across different species, suggesting that the ontogeny
of hippocampal spatial memory processing may have an early
evolutionary origin.

NEURAL MECHANISMS OF PLACE AND
RESPONSE LEARNING: EVIDENCE FOR
MULTIPLE MEMORY SYSTEMS

As noted above, the use of the place and response learning
plus-maze tasks began to taper off following the resolution of
the place vs. response controversy in the 1950s. However, these
maze tasks were then revived decades later when investigators
began exploring the neurobiology of learning and memory. In
particular, place and response learning tasks became quite useful
in research on multiple memory systems. The multiple memory
systems hypothesis suggests that different types of memory are
processed by different parts of the brain. This hypothesis has

by now received extensive experimental support (for historical
reviews, see Squire, 2004; White et al., 2013), and much of the
evidence has come from the use of various place and response
learning tasks. Importantly, while early research on memory
systems suggested that memory systems operate independently
and in parallel, there is also much evidence that memory systems
can interact with each other cooperatively or competitively
(Poldrack and Packard, 2003; Hartley and Burgess, 2005).

Place and response learning tasks have a major advantage
in research on memory systems because they provide an
overlapping experimental framework for examining double
dissociations. When using the place and response learning tasks,
a double dissociation may be demonstrated when damage to
brain region A impairs place learning, but not response learning,
whereas damage to brain region B impairs response learning,
but not place learning. The major benefit to using the place
and response learning tasks to demonstrate double dissociations
is that these tasks involve similar motivational, sensory, and
motoric processes, whereas the principal difference between
the tasks is the type of memory required to solve each task.
Therefore, if damage to brain region A disrupts acquisition
in the place learning task, but not the response learning task,
the effect may be attributed to an impairment in the type of
memory underlying place learning rather than to an impairment
in some non-mnemonic process. In contrast, if damage to
brain region A impaired both place and response learning, it
would be difficult to rule out the possibility that brain region
A mediates a non-mnemonic process shared across both tasks.
The present section reviews evidence that place and response
learning are mediated by anatomically distinct neural systems,
thus providing strong experimental support for the existence of
multiple memory systems in the mammalian brain.

Brain Regions
Hippocampus and DLS
The two chief brain structures that have been implicated in place
and response learning in the plus-maze are the hippocampus and
DLS. The differential mnemonic functions of the hippocampus
and DLS in mediating cognitive spatial and S-R habit memory,
respectively, were originally demonstrated using win-shift and
win-stay versions of the eight-arm radial maze, as well as
place and response learning versions of the Morris water
maze (Packard et al., 1989; Packard and McGaugh, 1992;
Packard et al., 1992; Devan and White, 1999; Devan et al., 1999;
McDonald andWhite, 2013). Later research employed the classic
Tolman and Blodgett plus-maze tasks to examine potential
differences in the mnemonic functions of the hippocampus and
DLS. In the dual-solution plus-maze task, temporary inactivation
of the hippocampus leads to the predominant use of a response
learning strategy, whereas inactivation of the DLS leads to the
use of a place learning strategy (Packard and McGaugh, 1996;
Ramos andVaquero, 2000; Ramos, 2002;Middei et al., 2004a; Yin
and Knowlton, 2004; Espina-Marchant et al., 2009; Schumacher
et al., 2011; Jacobson et al., 2012; but see also Middei et al.,
2004b). Also, intra-ventricular infusion of beta-amyloid protein,
which is associated with Alzheimer’s disease and hippocampal
memory deficits, leads to greater use of response learning
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over place learning in the dual-solution version of the task
(Ammassari-Teule et al., 2002), and similar observations have
been made in a transgenic mouse model of Alzheimer’s disease
(Middei et al., 2004a, 2006).

Also, reversible or irreversible lesion of the hippocampus
impairs acquisition in the place learning plus-maze task, but
not in the response learning plus-maze task (Oliveira et al.,
1997; Ramos, 2002; Schroeder et al., 2002; Chang and Gold,
2003a; Compton, 2004; Boucard et al., 2009; Jacobson et al.,
2012). In fact, consistent with a competitive interaction between
memory systems, sometimes inactivation of the hippocampus is
associated with enhanced acquisition in the response learning
plus-maze (Schroeder et al., 2002; Chang and Gold, 2003a;
Compton, 2004). In contrast, reversible or irreversible lesion
of the DLS impairs acquisition in the single-solution response
learning plus-maze, but not in the place learning version of the
task (Thompson et al., 1980; Chang and Gold, 2004; Compton,
2004; Asem and Holland, 2015; Gornicka-Pawlak et al., 2015).

The extensive research linking the hippocampus and DLS to
place and response learning has strengthened the general view
that these brain regions serve as the principal nodes of distinct
memory systems (Squire, 2004; White et al., 2013). According
to this view, the hippocampus is the central neural structure
of a memory system mediating cognitive spatial learning and
memory processes (O’Keefe and Nadel, 1978). In contrast, the
DLS is the central neural structure of an S-R memory system
responsible for linking sensory stimuli (S) in the learning
environment with behavioral responses (R; for reviews, see
Packard, 2009a; Goodman and Packard, 2016b).

Dorsomedial Striatum
The dorsal striatum is functionally heterogeneous. Whereas
the DLS mediates S-R habit memory, the DMS mediates
cognitive memory mechanisms akin to the hippocampus (for
review, see Devan et al., 2011). Consistent with a role in
spatial learning, DMS lesions impair acquisition in a variety of
hippocampus-dependent spatial memory tasks, including place
learning versions of the radial maze (Devan, 1997) and Morris
water maze (Devan and White, 1999; Devan et al., 1999; Lee
et al., 2014). In the dual-solution plus-maze, pre-training DMS
lesions impair the use of a place learning strategy and lead to
greater use of a response learning strategy (Yin and Knowlton,
2004). The role of the DMS in acquiring/expressing a place
learning strategy may be partially attributed to dopaminergic
mechanisms (Lex et al., 2011) and synaptic plasticity in the DMS
(Hawes et al., 2015).

The DMS has also been critically implicated in reversal
learning tasks. In a ‘‘response’’ reversal-learning task, rats are
initially trained in a response learning version of the plus-maze
to make a consistent body-turn response (e.g., turn left) and
are subsequently given reversal training in which the opposite
body turn (e.g., a right turn) is reinforced. In the ‘‘place’’
reversal task, rats are first trained in the place learning version
of the plus-maze, in which a consistent spatial location (i.e., East
arm) is reinforced, before receiving reversal training in which
the opposite spatial location (e.g., West arm) is reinforced.
Pre-training reversible or irreversible DMS lesions impair both

place and response reversal learning (Pisa and Cyr, 1990;
Ragozzino et al., 2002a; Ragozzino and Choi, 2004). Likewise,
DMS lesions disrupt switching from a response learning strategy
to a cue-guided strategy and vice versa (Ragozzino et al.,
2002b). Glutamatergic and cholinergic mechanisms in the DMS
may be required for reversal learning in these plus-maze
tasks (Ragozzino et al., 2002b; Ragozzino, 2003; Palencia and
Ragozzino, 2004, 2006; Ragozzino and Choi, 2004; Tzavos et al.,
2004; McCool et al., 2008; Watson and Stanton, 2009; Ragozzino
et al., 2009; Baker and Ragozzino, 2014).

Finally, similar to its well-established role in instrumental
lever pressing (Yin et al., 2005a,b), the DMS has also been
implicated in goal-directed responding in the dual-solution
plus-maze task. In one experiment, mice received extensive
training in the dual-solution task, so that they predominantly
expressed a response learning strategy during the probe trial.
The food reinforcer was subsequently devalued by pairing the
reinforcer with a nausea-inducing lithium chloride injection
(De Leonibus et al., 2011). Despite devaluation, the animals
continued to seek the food reward, indicating S-R/habitual
responding. However, when released from the opposite start arm,
mice that had received reinforcer devaluation decreased the use
of a response learning strategy, suggesting that devaluation may
only influence response learning when the animal is released
from a different starting position. In contrast, a response learning
strategy was preserved in animals given DMS lesions, despite
devaluation (De Leonibus et al., 2011). In sum, considering
that the DMS receives input from hippocampal and amygdala
circuitry (Groenewegen et al., 1987), the DMS is well-positioned
to integrate spatial andmotivational information to help generate
appropriate behavioral output in maze learning situations.
This may include both: (1) assisting in the development and
execution of a place learning strategy; and (2) switching between
strategies when a previously learned strategy no longer leads to a
valued outcome.

Amygdala
Another brain region implicated in place and response learning
is the basolateral complex of the amygdala (BLA). Although
the BLA is not critically needed for the acquisition of place or
response learning, this brain region may still be involved to the
extent that it mediates the emotional modulation of memory
in these tasks (for reviews, see Packard, 2009b; Packard and
Goodman, 2012; Schwabe, 2013; Goodman et al., 2017a; Packard
et al., 2018). As described above, stress/anxiety enhances the
acquisition of response learning and impairs the acquisition of
place learning. Also, stress/anxiety leads to the greater relative use
of a response learning strategy in the dual-solution plus-maze.
The BLA has been critically implicated in each of these effects.
Intra-BLA administration of anxiogenic drugs is sufficient to
enhance response learning, impair place learning, and lead to
greater use of a response learning strategy in the dual-solution
plus-maze (Packard and Wingard, 2004; Elliott and Packard,
2008; Wingard and Packard, 2008). Also, the enhancement
of response learning produced by exposure to predator odor
or systemic administration of anxiogenic drugs is blocked
by neural inactivation of the BLA (Elliott and Packard, 2008;
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Packard and Gabriele, 2009; Leong and Packard, 2014). Likewise,
enhancement of response learning produced by exposure
to a fear-conditioned stimulus (i.e., tone previously paired
with shock) is blocked following intra-BLA administration
of the β-adrenergic receptor antagonist propranolol
(Goode et al., 2016).

Medial Prefrontal Cortex
The medial prefrontal cortex has been implicated in a variety
of cognitive executive functions and in particular has a critical
role in behavioral flexibility (Ragozzino et al., 1999a,b; Block
et al., 2007; Ragozzino, 2007). Behavioral flexibility may be
defined generally as the ability to adapt one’s behavior to meet
evolving task demands. This includes strategy switching, and
indeed the medial prefrontal cortex has been implicated in
switching from a place learning strategy to a response learning
strategy, and vice versa (Ragozzino et al., 1999a,b; Rich and
Shapiro, 2009). The infralimbic region by itself is required for
the expression of response learning in the conditional T-maze
task (Smith et al., 2012; Smith and Graybiel, 2013). For instance,
optogenetic disruption of infralimbic activity disrupts retrieval
of response learning in the conditional T-maze; however, after
a new turning response has formed, inhibiting the infralimbic
region a second time disrupts expression of this new turning
response and restores expression of the old turning response
(Smith et al., 2012).

Whereas the DLS, hippocampus, amygdala, and medial
prefrontal cortex constitute the major brain regions popularly
associated with place and response learning, there is some
evidence that other brain regions are implicated in these
tasks, including additional striatal and cortical brain areas
(McDaniel et al., 1995; Cahill and Baxter, 2001; Noblejas and
Poremba, 2003; Wang et al., 2011; Machado et al., 2014). These
brain regions may cooperate within neural circuits to mediate
the cognitive or S-R habit memory mechanisms underlying
successful memory performance and strategy use in the place and
response learning tasks.

Neurotransmitter Systems
Glutamate
Glutamate serves as the major excitatory neurotransmitter in
the brain and plays profound roles in synaptic plasticity and
memory function, including the mnemonic processes underlying
place and response learning. In a dual-solution plus-maze task,
pre-training systemic administration of MK-801, an antagonist
of the glutamate-sensitive NMDA receptor, does not impair
initial acquisition but decreases the use of a place learning
strategy and increases the use of a response learning strategy
during a subsequent probe trial (Mackes and Willner, 2006).
In another study, direct post-training infusions of glutamate
into the hippocampus or DLS also influenced the relative use
of place and response learning in the dual-solution plus-maze.
As mentioned previously, control animals typically express a
place learning strategy after limited training but then shift
to the use of a response learning strategy following extensive
training in the appetitive plus-maze. However, post-training
infusion of glutamate directly into the hippocampus during

initial acquisition of the dual-solution task is associated with
the use of a place learning strategy even after extensive
training, suggesting that intra-hippocampal glutamate blocks
the shift to response learning (Packard, 1999). In contrast,
post-training intra-DLS infusion of glutamate during initial
acquisition in this task leads to greater use of a response
learning strategy during the probe test even after only limited
training, suggesting that intra-DLS glutamate accelerates the
shift to response learning (Packard, 1999). Also, pre-training or
post-training intra-DLS administration of the NMDA receptor
antagonist AP5 impairs acquisition/consolidation of memory in
the response learning version of the plus-maze (Palencia and
Ragozzino, 2005; Leong and Packard, 2013). It is also worth
highlighting that investigators have demonstrated similar roles
for the hippocampus and DLS glutamatergic systems in place and
response learning versions of the Morris water maze (Packard
and Teather, 1997, 1999; Farina and Commins, 2020).

Dopamine
Extensive evidence has indicated a selective role for dopamine
in the hippocampus and DLS in place and response learning,
respectively (e.g., Packard and White, 1991; Packard and
McGaugh, 1994; Packard et al., 1994; Packard and Teather,
1998; Legault et al., 2006). In one experiment using the response
learning version of the plus-maze, systemic administration of
either the dopamine D1 receptor antagonist SCH23390 or
the dopamine D2 receptor antagonist eticlopride impaired
acquisition of response learning (Daniel et al., 2006). In contrast,
in a dual-solution plus-maze, catecholamine depletion in the
hippocampus led to the predominant use of a response learning
strategy (Roschlau and Hauber, 2017).

Electrophysiological evidence also indicates a role for DLS
dopamine in response learning during memory performance
in the T-maze. In one study (Lemaire et al., 2012), animals
received unilateral dopamine depletion in the DLS. This
dopamine depletion was associated with increased oscillations
in local field potentials in the DLS during conditional T-maze
performance, but only following extensive training in the
task (Lemaire et al., 2012). In another study (Eddy et al.,
2013), investigators found that wheel-running exercise enhanced
acquisition in a tactile/visual version of the conditional T-maze
task, and this partially depended on dopaminergic mechanisms.
That is, intra-DLS infusion of the D1 receptor antagonist
SCH23390 enhanced acquisition in the conditional T-maze task
for the non-exercising rats but had no effect in the exercising
rats. On the other hand, intra-DLS infusion of the D2 receptor
antagonist eticlopride impaired T-maze acquisition for the
exercising rats but did not affect the non-exercising rats. Thus,
the mnemonic benefit of exercise in this task may depend on
the downregulation of D1 receptor activity and upregulation of
D2 activity in the DLS (Eddy et al., 2013).

In contrast to the DLS, the DMS as discussed above mediates
the acquisition of a place learning strategy in the dual-solution
plus-maze. Some evidence indicates that the role of the DMS in
this kind of learning may partially depend on the dopaminergic
system. That is, dopamine depletion in the DMS leads to the
preferential use of a response learning strategy over a place
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learning strategy in the dual-solution plus-maze (Lex et al., 2011).
In contrast, dopaminergic neurons in the ventral tegmental area
and substantia nigra also play a role in the relative use of
place and response learning, in that deleting NMDA receptors
from these dopaminergic neurons impairs the use of a response
learning strategy in the dual-solution plus-maze (Wang et al.,
2011). However, another study indicated that daily exposure to
atrazine for 1 year, which damages the striatonigral dopamine
system, did not influence the relative use of place and response
learning in the dual-solution task (Bardullas et al., 2013).

Acetylcholine
Several microdialysis studies have indicated that cholinergic
mechanisms may be critically involved in place and response
learning in the plus-maze. In a dual-solution plus-maze task,
acetylcholine release in the hippocampus rises early in training
(i.e., when animals typically use a place learning strategy) and
remains elevated throughout extended training (Chang and
Gold, 2003b). On the other hand, acetylcholine release in the
DLS rises steadily throughout training and only asymptotes
following extensive training when animals begin to express
response learning during the probe trials (Chang and Gold,
2003b). Also, measures of acetylcholine release both before and
during dual-solution training indicate that rats using a response
learning strategy on a subsequent probe trial had a higher ratio
of intra-DLS acetylcholine release relative to intra-hippocampal
acetylcholine (McIntyre et al., 2003). This study also observed
that acetylcholine release in the hippocampus was much higher
for animals displaying a place learning strategy relative to
animals displaying a response learning strategy (McIntyre et al.,
2003). Similar findings suggesting a role for hippocampal
and DLS acetylcholine release in place and response learning,
respectively, have also been obtained in a dual-solution version
of a Y-maze task (Pych et al., 2005a). Also, rats that were given
pyrithiamine-induced thiamine deficiency, which presumably
mimics the mnemonic impairments observed in Wernicke-
Korsakoff syndrome, display greater acetylcholine release in the
striatum and greater use of response learning in a dual-solution
plus-maze task, relative to control rats (Vetreno et al., 2008).

In addition to the dual-solution task, a role for acetylcholine
has also been observed in the single-solution place and response
learning tasks. Acetylcholine release in the striatum is higher
when animals are trained in the response learning version of the
plus-maze task relative to the place learning version of the task,
whereas hippocampal acetylcholine release increases similarly
when animals are trained in the place or response learning task
(Pych et al., 2005b). Interestingly, hippocampal acetylcholine
release decreases when the response learning task is conducted
in a homogenous visual surround, suggesting that a role for the
hippocampus in response learning may be prevented by reducing
extra-maze visual cues (Pych et al., 2005b).

A role for acetylcholine in place and response learning
has also been observed through the ablation of cholinergic
neurons in different brain areas. Selective ablation of cholinergic
neurons in the striatum impairs acquisition in a conditional
T-maze task but does not impair place learning in the Morris
water maze (Kitabatake et al., 2003), suggesting that striatal

acetylcholine may selectively support response learning. One
brain region implicated in place and response learning is the
medial septum/vertical limb of the diagonal band (MS/VDB), a
brain region that releases acetylcholine into the hippocampus.
Although lesion of the MS/VDB disrupts strategy preference
in the dual-solution plus-maze task, selective ablation of the
cholinergic neurons in this brain region fails to influence
place and response learning (Cahill and Baxter, 2001). This
suggests that the role of the MS/VDB in strategy preference
may be achieved through other neurotransmitter systems not
involving acetylcholine. However, in contrast to this study,
another experiment indicated that selective ablation of MS/VDB
cholinergic neurons enhanced the use of a place learning strategy
in the dual-solution Morris water maze (Jonasson et al., 2004).
To complicate matters even further, in direct contrast with
this study, another experiment indicated that toxic ablation of
MS/VDB cholinergic neurons impaired acquisition in a place
learning version of the Morris water maze and led to greater use
of a response learning strategy over a place learning strategy in a
dual-solution version of the task (Janis et al., 1998). The reason
for the discrepancies among these studies remains undetermined.

Regarding what receptor subtypes may be implicated in
the effects of acetylcholine on place and response learning,
evidence points to the involvement of muscarinic acetylcholine
receptors. Intra-hippocampal infusion of themuscarinic receptor
antagonist scopolamine impairs acquisition of the place learning
version of the plus-maze while sparing acquisition in the
response learning version of the plus-maze (Soares et al.,
2013). In contrast, intra-DLS infusion of scopolamine impairs
acquisition in the response learning plus-maze while preserving
acquisition in the place learning plus-maze task (Soares
et al., 2013). In another study using the dual-solution version
of the Morris water maze, a higher ratio of muscarinic
receptor binding in the hippocampus relative to the DLS
was associated with preference for a place learning strategy
over a response learning strategy (Grissom et al., 2013). In
this same study, investigators found that a higher ratio of
muscarinic receptor binding in the amygdala relative to the
hippocampus was associated with a response learning strategy
in the dual-solution Morris water maze (Grissom et al., 2013).
Finally, high levels of choline acetyltransferase—an enzyme
involved in acetylcholine synthesis—has been associated with the
preferential use of a spatial strategy over a response learning
strategy in a dual-solution version of the Morris water maze
(Hawley et al., 2015).

Cannabinoids
Accumulating evidence suggests that the endocannabinoid
system plays an important role in DLS-dependent memory
processes (for review, Goodman and Packard, 2015a). Studies
suggest that either disrupting or enhancing the function of
the endocannabinoid system may impair response learning.
Systemic or intra-DLS infusions of CB1 receptor agonists or
antagonists have been associated with impaired acquisition
in the response learning plus-maze task (Gerdeman et al.,
2006, 2007; Goodman and Packard, 2014). Also, intra-DLS
administration of the cannabinoid receptor agonist anandamide
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or antagonist AM251 impairs response learning in the Barnes
maze (Rueda-Orozco et al., 2008), and systemic or intra-DLS
injection of a cannabinoid receptor agonistWIN 55212-2 impairs
consolidation of response learning in the Morris water maze
(Goodman and Packard, 2014).

In contrast to acute administrations of cannabinoid drugs,
repeated cannabis use may be associated with enhanced response
learning. A history of cannabis use in humans leads to the
preferential use of a response learning strategy in the virtual
radial arm maze (Bohbot et al., 2013). The impairing and
enhancing effects of short-term and long-term cannabinoid
exposure on response learning have also been observed in
instrumental learning tasks in rodents (Hilário et al., 2007;
Crombag et al., 2010; Nazzaro et al., 2012; Gremel et al., 2016).
The observation that repeated cannabinoid exposure strengthens
habitual response learning is consistent with the hypothesis
that repeated drug use may shift the control of behavior from
hippocampal cognitive goal-directed learning to DLS response
learning, as a potential neural mechanism underlying cannabis
addiction (Goodman and Packard, 2015a, 2016a).

Estrogen
The mnemonic effects of estrogen in the place and response
learning tasks have attracted considerable attention. As
mentioned above, whether female rats display place learning
or response learning in the dual-solution plus-maze partially
depends on the estrous cycle (Korol et al., 2004). During
proestrus (i.e., when ovarian hormone levels are high), female
rats preferentially employ a place learning strategy, whereas
during estrous (i.e., when ovarian hormones are low) female
rats display a response learning strategy (Korol et al., 2004).
However, it has been suggested that the influence of estrogen
on learning strategy in the dual-solution plus-maze may only
occur during the early stages of acquisition. Once the task is
well learned, cycling estrogen does not influence the ability of
female rats to use a place or response learning strategy in the
dual-solution plus-maze (Schmidt et al., 2009).

Aside from simply examining the effects of endogenous
cycling estrogen, the influence of estrogen on place and
response learning may also be demonstrated through estrogen
replacement in ovariectomized female rats. Estrogen replacement
through systemic administration of estrogen or selective ERα

or ERβ agonists enhance acquisition in the place learning
version of the plus-maze and impairs acquisition in the response
learning version of the plus-maze (Korol and Kolo, 2002;
Hussain et al., 2013; Pisani et al., 2015), and similar effects of
estrogen have been observed in the place and response learning
versions of the eight-arm radial maze (Davis et al., 2005) and
open-field tower maze (Lipatova et al., 2014). Besides, estrogen
replacement through the administration of botanical compounds
containing estrogenic properties may also enhance acquisition
in the place learning plus-maze and impair acquisition in
the response learning plus-maze (Pisani et al., 2012; Neese
et al., 2014). Likewise, in a conditional T-maze task, estrogen
replacement in ovariectomized rats impairs initial acquisition,
yet enhances extra-dimensional set-shifting (Lipatova et al.,
2016). Interestingly, the enhancing effect of very low estrogen

levels on response learning in both the dual-solution and
single-solution plus-maze tasks (e.g., Korol and Kolo, 2002)
is blocked in female rats with prior reproductive experience
(Hussain et al., 2013).

The effects of estrogen in these tasks may be attributed to
estrogen activity in regions associated with place and response
learning, i.e., the hippocampus, DLS, and medial prefrontal
cortex. Direct infusion of estradiol into the hippocampus
or DLS of female ovariectomized rats selectively enhances
acquisition of place learning or response learning, respectively,
in the Y-maze (Zurkovsky et al., 2007). Also, the increased
use of a place learning strategy in the plus-maze during
proestrus may be blocked by intra-hippocampal inactivation
with muscimol (McElroy and Korol, 2005). Similar roles
for the hippocampus and DLS have also been demonstrated
using c-Fos immunohistochemistry labeling. Systemic estradiol
administration is associated with increased c-Fos expression in
the dentate gyrus, DMS, and DLS following acquisition in a
place learning version of the plus-maze (Pleil et al., 2011). In
contrast, systemic estradiol administration is associated with
decreased c-Fos expression in the dentate gyrus, DMS, and DLS
following acquisition in the response learning version of the
plus-maze (Pleil et al., 2011). Importantly, in control animals,
acquisition in the response learning task was associated with
greater c-Fos expression in the DLS, whereas this increase was
blocked by estradiol administration (Pleil et al., 2011). Estradiol-
induced decrease of c-Fos activity in the DLS may be one
factor contributing to the impairment in response learning
following estradiol administration. Aside from hippocampal
and striatal regions, evidence also indicates a role for the
medial prefrontal cortex in the effects of estrogen on place
and response learning. Infusion of estradiol into the medial
prefrontal cortex, but not the anterior cingulate cortex, biases
female rats toward the use of a place learning strategy over
a response learning strategy in the dual-solution plus-maze
(Almey et al., 2014).

Some evidence has suggested that estrogen might interact
with the dopamine system to influence place and response
learning. Estrogen replacement in ovariectomized rats augments
the impairing effect of systemic administration of D2 receptor
antagonist eticlopride, but not the impairing effect of D1 receptor
antagonist SCH 23390, on the acquisition of response learning
in the plus-maze (Daniel et al., 2006). The preference for
response learning in the dual-solution task during low levels
of estrogen may be reversed into a place learning preference
following administration of either D1 receptor antagonist SKF
83566 or D2 receptor antagonist raclopride (Quinlan et al.,
2008). Moreover, the preference for place learning produced
by high levels of estrogen may be eliminated following SKF
83566 or raclopride administration, such that these animals
subsequently show no preference for either place or response
learning (Quinlan et al., 2008). In another study conducted
in the dual-solution plus-maze, the response learning bias in
low estrogen animals was reversed into a place learning bias
following intra-DLS administration of the D1 receptor antagonist
SCH 23390, but not the D2 receptor antagonist raclopride
(Quinlan et al., 2013). Conversely, the place learning bias in
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high estrogen animals was reversed into a response learning bias
following intra-DLS SCH 23390, but not intra-DLS raclopride
administration (Quinlan et al., 2013). Although intra-DLS
raclopride did not reverse strategy preference, a moderate dose
of the drug was sufficient to eliminate strategy preference in
the high- and low-estrogen animals, producing a comparable
number of place and response learners in these groups. Also
observed in this study was that administration of SCH 23390 or
raclopride into the nucleus accumbens had no notable effects on
strategy preference in high- or low-estrogen animals. Thus, the
influence of high or low estrogen levels on strategy preference
in the dual-solution task may depend on dopamine receptor
activation selectively in the DLS (Quinlan et al., 2013). In
a similar study, systemic administration of apomorphine or
amphetamine at doses that increase D2 autoreceptor activity
reversed the place learning bias into a response learning bias
in high-estrogen animals, whereas no effects of these drugs
were observed in the low estrogen rats (Hussain et al., 2016a).
Also, amphetamine administration was associated with higher
intra-DLS dopamine release in high estrogen rats relative to
low estrogen rats, but in this study, DLS dopamine release
itself was not reliably associated with strategy preference
(Hussain et al., 2016a).

Finally, in contrast to studies using rodents in the plus-
maze, a study in human subjects using a virtual radial arm
maze (Hussain et al., 2016b) found that healthy, naturally cycling
women showed a preference for response learning both during
the early follicular phase (i.e., when estrogen levels are low)
and the ovulatory phase (i.e., when estrogen levels are high) of
the menstrual cycle. In contrast, women showed a preference
for place learning over response learning during the mid/late
luteal phase of the menstrual cycle (i.e., when estrogen levels
are decreasing and progesterone levels are high). Therefore, the
relative use of place and response learning in women similarly
depends on the menstrual cycle, but the effects differ from what
has been observed in research with rodents. Both estrogen and
progesterone may be required for the dominant use of place
learning in women.

Other Neurotransmitter Systems and Metabolic
Substrates
A variety of other neurotransmitter systems have been implicated
in place and response learning, albeit not as extensively as the
neurotransmitters described above. For instance, low doses of
testosterone lead to greater use of a response learning strategy
in the dual-solution plus-maze and Morris water maze tasks,
whereas a higher dose of testosterone leads to the predominant
use of a place learning strategy in the dual-solution Morris
water maze (Spritzer et al., 2013). Also, mice lacking delta-
opioid receptors display a delay in the acquisition of a place
learning strategy in the dual-solution plus-maze but show
enhanced acquisition in the response learning version of the
plus-maze (Le Merrer et al., 2013). In another study, mice
lacking GPR88 receptors were quicker to acquire a dual-solution
plus-maze task and also began using a response learning strategy
sooner, relative to wild-type mice (Meirsman et al., 2015). Later,
when the same group of mice was given reversal training in the

dual-solution task, the GPR88 knockout mice were quicker to
acquire the reversal and displayed a place learning strategy in a
subsequent probe test, whereas the wild-type mice displayed a
response learning strategy (Meirsman et al., 2015).

Aside from neurotransmitters, place and response learning
may also depend on metabolic substrates, such as glucose and
lactate. Increasing striatal function through injections of glucose
into the DLS impairs acquisition in a place learning version
of the Y-maze (Pych et al., 2006), which is consistent with
a competitive interaction between the hippocampus and DLS
memory systems (Poldrack and Packard, 2003). However, the
intra-DLS infusions of glucose were not sufficient to facilitate
acquisition in the response learning version of the Y-maze (Pych
et al., 2006). In another study, extracellular levels of glucose
in the hippocampus were significantly higher when rats were
trained in a place learning plus-maze task, relative to rats trained
in the response learning plus-maze task or control animals
that received no training (see Gold et al., 2013). A similar
pattern was observed for extracellular levels of lactate in the
hippocampus, whereby animals trained in the place learning
task had higher hippocampal lactate levels relative to animals
trained in the response learning task or animals that received
no training (Newman et al., 2017). Lactate level also increased
in the DLS during response learning, but not place learning;
however, this was only observed when drinking water was
used as the reinforcement, not food (Newman et al., 2017).
Metabolic substrates, such as glucose and lactate, may provide
the necessary energy for neurons in the hippocampus and
DLS to meet the demands of the place and response learning
tasks, respectively.

CONCLUSION

Summary
The 75 years that have transpired since the original conception
of the place and response learning plus-maze tasks (Tolman
et al., 1946a; Blodgett and McCutchan, 1947, 1948) have
instantiated their remarkable utility for examining behavioral
and neurobiological mechanisms of learning and memory. The
place and response learning plus-maze tasks were originally
designed to assess Hullian S-R and Tolmanian cognitive learning
theories. Proponents of the S-R view hypothesized that response
learning would be the dominant form of learning expressed
in these tasks, whereas proponents of the cognitive view
hypothesized that place learning would be dominant. The
eventual conclusion drawn from these experiments, however,
was that either place or response learning may prevail
in a given learning situation and that the dominance of
cognitive or S-R learning systems depends on a variety of
experimental variables.

The findings from these original studies anticipated the
contemporary, widely held view that there are different kinds
of memory. The place and response learning tasks have
been employed to further demonstrate that these parallel
kinds of memory are also mediated by different parts of
the brain, which is consistent with the multiple memory
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systems view of learning and memory. In particular, extensive
evidence indicates that the kind of memory underlying place
learning depends on hippocampal function, whereas the kind
of memory underlying response learning depends on DLS
function. Based on these findings, numerous investigators
have concluded that the hippocampus may constitute a
principal part of the neural system mediating Tolmanian
cognitive learning and memory, whereas the DLS may
mediate Hullian S-R learning and memory (White and
McDonald, 2002; Squire, 2004; White et al., 2013). Recently,
place and response learning tasks have also been utilized
extensively to examine the neurotransmitter systems involved
in cognitive and S-R memory processes, indicating important
roles for glutamate, dopamine, acetylcholine, cannabinoids,
and estrogen.

The Future of Place and Response
Learning
The current widespread use of the place and response
learning tasks may be extended to examine other neural
mechanisms of learning and memory, including the role
of neural circuits in multiple memory systems. Brain
regions implicated in place and response learning, such
as the medial prefrontal cortex, hippocampus, and dorsal
striatum among others, are interconnected and therefore
potentially interact both competitively and cooperatively
to influence place and response learning. Glutamatergic
projections arising from the hippocampal system and
medial prefrontal cortex innervate the medial region of
the dorsal striatum, and evidence suggests that these
cortical and subcortical projections to the DMS may be
implicated in spatial memory (e.g., Devan and White,
1999; Baker and Ragozzino, 2014). Likewise, there is
evidence that frontostriatal circuitry is implicated in S-R
response learning (Horga et al., 2015). However, the
neural circuits involved in tilting the dominance from
one memory system to another (e.g., from hippocampus-
dependent place learning to DLS-dependent response learning)
have yet to be identified, representing an open area for
future work.

Although extensive research has examined the neural systems
involved in the initial acquisition, consolidation, and retrieval
of memory, few studies have investigated the extinction of
memory in the place and response learning tasks. Some evidence
suggests that extinction of place and response learning may
involve different learning and memory processes mediated
by distinct neural systems (Goodman and Packard, 2015b,
2018; Goodman et al., 2016a,b, 2017b). Therefore, these
findings suggest that, like initial acquisition, extinction of
place and response learning may also involve the distinct

contributions of multiple memory systems (for reviews, see
Goodman and Packard, 2018, 2019).

Another future direction of memory research that may
benefit greatly from the use of place and response learning
tasks is the continued development of memory systems theory.
While there is strong evidence supporting the existence of
distinct memory systems in the brain, some inconsistencies
in the research have led investigators to propose amendments
to memory systems theory (Murray et al., 2017; Ferbinteanu,
2018). For instance, under certain training parameters, the
hippocampus may be required for response learning, and the
DLS may be required for place learning (Ferbinteanu, 2016,
2020), which is in stark contrast to the conventional view
that the hippocampus mediates place learning and the DLS
mediates response learning (White et al., 2013). To accommodate
these inconsistent findings, it has been suggested that memory
systems may operate as neural networks with the ability to adapt
to changing environmental demands (Ferbinteanu, 2018). The
ongoing use of the place and response learning tasks will likely aid
in the continued revision of memory systems theory, thus further
strengthening our understanding of howmemory is organized in
the brain.

Finally, studies using the place and response learning tasks
may also be relevant for understanding the behavioral and
neurobiological mechanisms of some human psychopathologies.
An emerging hypothesis proposed by multiple investigators
is that DLS-dependent memory processes may contribute to
the habit-like behavioral symptoms of some human psychiatric
disorders (Graybiel and Rauch, 2000; Goodman et al., 2012,
2014; Berner and Marsh, 2014; Gillan and Robbins, 2014;
Corbit and Janak, 2016; Packard et al., 2018). In particular,
the shift from recreational drug use to compulsive drug abuse
may reflect a shift in control from hippocampus-dependent
cognitive memory to DLS-dependent S-R habit memory (White,
1996; Everitt and Robbins, 2005, 2013; Schwabe et al., 2011;
Goodman and Packard, 2015a, 2016a). Thus, the transition
from cognitive place learning to habitual response learning
in the plus-maze may serve as an experimental model for
understanding the mechanisms underlying maladaptive habits
in drug addiction, as well as habit-like symptoms in other
human psychopathologies.
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