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Abstract 

Background:  Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro 
diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations 
between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have 
been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based meth-
ylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with 
cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the 
blood is associated with CHD in the Chinese population.

Methods:  In this case–control study, 180 CHD patients recruited at their first registration in our study center, and 184 
controls randomly selected from the people who participated in the annual health examination were enrolled. Meth-
ylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were 
quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic 
regression analyses adjusted for covariant.

Results:  Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associ-
ated with increased odds of being a CHD patient (OR per − 10% methylation = 1.42 after adjustment for age, gender, 
and batch effect; p = 0.032 by multiple testing corrections). No association between blood-based AHRR methylation 
and CHD was found.

Conclusions:  6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methyla-
tion and conventional risk factors might be an intermediate step towards the early detection of CHD.
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Introduction
Coronary heart disease (CHD) is a gene-environment 
interacted disease mainly caused by atherosclerosis 
which is usually asymptomatic in the early stage [1–3], 
producing immense health and economic burdens on 
a global scale [4, 5]. Hypertension, dyslipidemia, obe-
sity, diabetes, and smoking, have been well-known 
as risk factors for CHD [6, 7]. A series of biomark-
ers for cardiovascular disease have been identified, 
such as high-sensitivity C-reactive protein (hsCRP) [8], 
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lipoprotein-associated phospholipase A2 (Lp-PLA2) [9], 
myeloperoxidase (MPO) [10], B-type natriuretic peptide 
(BNP), N-terminal prohormone BNP (NT-pro BNP) [11], 
leukocyte counts [12], as well as plasma metabolomics 
and circulating micro-RNAs [13, 14]. These traditional 
biomarkers have their specific application value but can-
not fulfill the needs of risk evaluation for CHD, which is a 
complex disease affected by genetic, epigenetic, environ-
mental risk factors, and other factors. Therefore, it would 
be meaningful to identify new potential CHD-related 
markers which may improve the chance to detect CHD.

DNA methylation is the covalent methylation of cyto-
sine C5 in CpG dinucleotide involved in inherent and 
acquired transcriptional inhibition of genes, which occur 
independently of the DNA sequence [15]. As a reversible 
epigenetic modification, DNA methylation is a dynamic 
process related to environmental exposure [16]. It also 
serves as an important cellular regulatory mechanism 
that regulates gene expression associated with inflam-
mation and atherosclerosis [17, 18]. Previous researches 
have shown that aberrant DNA methylation in the leuko-
cytes is related to inflammation and the pathogenesis of 
atherosclerosis, and subsequently causes increased mor-
tality in cardiovascular diseases [17–20]. Additionally, 
aberrant methylation patterns in blood have also been 
reported in CHD by candidate gene approaches [21–23]. 
However, the clinical value of the identified biomarkers 
remains limited, and the association between the epige-
netic landscape and CHD is not completely understood.

The protein encoded by the aryl-hydrocarbon receptor 
repressor (AHRR) gene participates in the aryl hydrocar-
bon receptor (AhR) signaling cascade, which mediates 
dioxin toxicity, and is involved in the regulation of cell 
proliferation and differentiation [24, 25]. Smoking can 
trigger the production of AhR, which mediates dioxin 
toxicity and other pathological effects [26, 27]. Two epi-
genome-wide studies by Infinium Human Methylation 
Illumina 450  K BeadChip have revealed the association 
between smoking and blood-based DNA methylation 
in AHRR (cg05575921) and 6p21.33 (cg06126421) in the 
European population [28, 29]. Smoking is a major pre-
ventable risk factor for atherosclerosis and cardiovascu-
lar diseases [30, 31]. Reynolds et al. [32] further disclosed 
the association between smoking-responsive methyla-
tion of AHRR in the monocytes and subclinical athero-
sclerosis in a multi-ethnic study with 1,256 participants 
in the United States. In 2016, a prospective cohort study 
in Germany reported a strong association between car-
diovascular mortality and a score based on the meth-
ylation intensity of two CpGs (AHRR cg05575921 and 
6p21.33 cg06126421) [20]. Follow-up studies also sug-
gested AHRR methylation in blood as a biomarker for 
cardiovascular disease in the Caucasian population, 

such as myocardial infarction, ischemic heart disease, 
ischemic stroke, and heart failure, as well as a predictor 
of the risk of all-cause mortality [33–36]. So far, there is 
no report about the association between the methylation 
of 6p21.33 (cg06126421) and the risk of cardiovascular 
disease in Chinese populations.

Hereby, the associations between CHD and the meth-
ylation of 6p21.33 (cg06126421) and AHRR (cg05575921) 
were investigated by a case–control study in the Chi-
nese population. The correlations between DNA meth-
ylation and lifestyles, and historical treatments were also 
examined.

Methods
Study population
This investigation is based on a case–control study, 
details of which have been reported elsewhere [37]. 
Briefly, 180 patients with CHD and 184 controls were 
collected from the Chinese PLA General Hospital from 
2018 to 2019. All the CHD patients were recruited at 
their first registration in our study center. Their histories 
of medical treatment were also recorded. Controls were 
recruited from people who participated in the annual 
health examination. Baseline characteristics for CHD 
cases and controls were listed in Table 1.

Sample collection and processing
The peripheral whole blood from CHD cases and healthy 
controls were collected by ethylene diamine tetraacetic 
acid (EDTA) tubes, and stored at − 80  °C till DNA iso-
lation. Genomic DNA was extracted from periph-
eral whole blood by the Genomic DNA Extraction Kit 
(Zymo Research, Orange County, United States). Sub-
sequently, DNA was bisulfite converted with more than 
99% efficiency (Additional file  1: Supplementary Fig.  3) 
by the EZ-96 DNA Methylation Gold Kit according to 
the standard protocol (Zymo Research, Orange County, 
United States).

Matrix‑assisted laser desorption/ionization‑time‑of‑flight 
mass spectrometry
Agena matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) mass spectrometry described 
by Yang et al. [38, 39] was used to quantify DNA meth-
ylation within 6p21.33 and AHRR. In brief, the bisulfite-
converted DNA was amplified by bisulfite-specific 
primers (no SNPs in the primers), and two PCR ampli-
cons (6p21.33 amplicon covering 6p21.33_CpG_4/
cg06126421 and 4 adjacent measurable CpG sites; AHRR 
amplicon covering AHRR_CpG_3/cg05575921 and 13 
adjacent measurable CpG sites) were analyzed. These 
were obtained with the use of the primers 5’-aggaagaga-
gGGT​TGT​TGA​AAA​GGT​TAG​AAA​TAT​AGG-3’ (sense) 
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and 5’-cagtaatacgactcactatagggagaaggctACT​ATC​CCT​
CCC​AAC​CTT​AAA​AAA​-3’ (antisense) for the 6p21.33 
amplicon and primers 5’-aggaagagagGAG​GGG​TTT​TGT​
TAG​GAT​TAT​TTT​T-3’ (sense) and 5’-cagtaatacgactcac-
tatagggagaaggctAAA​CCA​CTC​TAC​TCC​AAC​CCT​TAC​
T-3’ (antisense) for the AHRR amplicon. Upper case let-
ters present the sequence-specific primer regions, and 
non-specific tags are shown in lower case letters. The 
Sequence of the amplicon was presented in Additional 
file 1: Supplementary Fig. 1. PCR products were treated 
according to the standard protocol of Agena EpiTyper 
Assay, and further cleaned by resin, and then dispensed 
to a 384 SpectroCHIP by a Nanodispenser. The chips 
were read by a MassARRAY system. Data were collected 
by EpiTYPER v1.2 software. For each batch of Mas-
sARRAY analysis, the same number of CHD cases and 
controls were treated and analyzed in parallel in all the 
processes.

Statistical analyses
The data were analyzed by IBM SPSS Statistics Version 
25.0. The measurement data, such as the levels of total 
cholesterol, total triglyceride, high-density lipoprotein, 
lowdensity lipoprotein, and the methylation levels of 
6p21.33 and AHRR are shown as the median (interquar-
tile range (IQR)). The differences between CHD and con-
trol subjects were assessed using non-parametric tests 
(Mann–Whitney U test and Kruskal–Wallis test). Dif-
ferences in the enumeration data, such as the frequen-
cies of gender, smoking, drinking, hypertension, and 
diabetes between CHD and control subjects were ana-
lyzed using the chi-square (χ2) test. Bivariate correlations 
between variables were examined by Spearman’s rank 
correlation coefficients. Additionally, the logistic regres-
sion results with effect ratios (odds ratio (OR) and 95% 

confidence intervals (CIs)) were adjusted for possible and 
available confounding effects. Common cardiovascu-
lar-related factors, such as TC (< 5.0 mmol/L vs. ≥ 5.0 
mmol/L), TG (< 1.7 mmol/L vs. ≥ 1.7 mmol/L), HDL (< 
1.0 mmol/L vs. ≥ 1.0 mmol/L) and LDL (< 3.0 mmol/L 
vs. ≥ 3.0 mmol/L), were divided by general used crite-
ria [40]. Receiver operating characteristic (ROC) curve 
analysis was applied to assess the discriminatory power 
of methylation levels. Bonferroni correction was used 
for the multiple comparisons. The Bonferroni correction 
was performed by the number of CPG sites in each gene 
separately. When the corrected p value was ≥ 1, it is rep-
resented by 1. All the statistical tests were two-sided with 
p values of < 0.05.

Results
Association between blood‑based 6p21.33 and AHRR 
methylation and CHD
DNA methylation levels at 5 CpG loci (covering 
cg06126421) of 6p21.33 and 14 CPG sites (covering 
cg05575921) of AHRR were quantitatively determined 
by mass spectrometry in the blood from 180 CHD 
patients and 184 controls. The CHD patients have a 
median age of 66 years old (IQR: 58–73, range from 39 
to 87 years old) with 109 males (60.6%) and 71 females 
(39.4%) (Table  1). Since the controls were recruited 
from the health examination center where most partic-
ipants were under 70 years old, our control group was 
a bit younger than the CHD cases (median of age: 63, 
IQR: 57–68, range from 41 to 88  years old) with 114 
males (62.0%) and 70 females (38.0%) (Table 1). Com-
pared with controls, CHD patients had higher preva-
lence of hypertension (72.2% vs. 45.7%, p = 2 × 10−6) 
and more smokers (40.6% vs. 28.8%, p = 0.027). CHD 
patients had lower TC level (3.81 vs. 4.26  mmol/L, 

Table 1  Comparison of baseline characteristics between CHD cases and controls

a Significant p-values are in bold. CHD coronary heart disease, HDL High density lipoprotein, IQR interquartile range, LDL Low density lipoprotein, TC total cholesterol, 
TG triglyceride

Characteristics All (N = 364) Groups p-valuea

Controls (N = 184) CHD cases (N = 180)

Age (median, IQR) 64(58–70) 63(57–68) 66(58–73) 0.008
Male (%) 223(61.3%) 114(62.0%) 109(60.6%) 0.784

Hypertension (%) 214(58.8%) 84(45.7%) 130(72.2%) 2.00E−06
Diabetes (%) 107(29.4%) 45(24.5%) 62(34.4%) 0.063

Smoking (%) 126(34.6%) 53(28.8%) 73(40.6%) 0.027
Drinking (%) 118(32.4%) 66(35.9%) 52(28.9%) 0.116

TC, mmol/L 4.01(3.38–4.8) 4.26(3.61–5.06) 3.81(3.25–4.42) 0.001
TG, mmol/L 1.35(1.00–1.95) 1.39(1.06–2.17) 1.30(0.95–1.86) 0.147

HDL, mmol/L 1.12(0.91–1.34) 1.15(0.91–1.36) 1.09(0.91–1.31) 0.290

LDL, mmol/L 2.51(1.94–3.19) 2.69(2.06–3.40) 2.28(1.82–2.87) 2.00E−04
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p = 0.001) and lower LDL level (2.28 vs. 2.69 mmol/L, 
p = 2 × 10−4) than controls (Table 1). The associations 
between 6p21.33 and AHRR methylation and the sta-
tus of CHD were investigated by two logistic regres-
sion models adjusted for different covariants (Table 2). 
Of which, age, gender, and batch effect were adjusted 
in model 1, and all the baseline characteristics that 
had significant differences between the CHD cases 
and the controls (as shown in Table 1) were adjusted in 
the logistic regression model 2. With multiple testing 
corrections, 6p21.33_CpG_4.5/cg06126421 methyla-
tion was significantly associated with CHD in model 
1 (p = 0.032 after Bonferroni correction) but not any-
more in the more stringent model 2 (Table  2). None 
of the 14 measurable CpG loci in AHRR displayed any 
association with CHD in both model 1 and model 2 
(Table  2). We also noticed that the methylation cor-
relates better among close than among more distant 
CpGs. More specific, the methylation correlates better 
among CpGs in the same amplicon than CpGs in dif-
ferent amplicons which have larger distance. In addi-
tion, all CpG sites in the AHRR amplicon are positively 
correlated with each other, while partial CpG sites in 
the 6p21.33 amplicon are positively, or negatively cor-
related with each other (Additional file 1: Supplemen-
tary Fig. 2).

Methylation difference of 6p21.33 and AHRR 
between patients with heart failure, MI, non‑MI CHD, 
and controls
Of the 180 CHD patients, 145 suffered from heart fail-
ure, 78 had experienced MI, and 102 were non-MI CHD 
cases. We further investigated the association between 
these CHD subtypes and the blood-based methylation 
of 6p21.33 and AHRR also by the two logistic regres-
sion models adjusted for different covariants (Table  3). 
Compared with the healthy controls, heart failure CHD 
patients have significantly decreased methylation at 
6p21.33_CpG_4.5/cg06126421 by both logistic regression 
model 1 and model 2 (model 1: OR per − 10% methyla-
tion (95% CI) = 1.62 (1.21–2.17), p = 0.004 after Bonfer-
roni correction; model 2: OR per − 10% methylation (95% 
CI) = 1.59 (1.17–2.16), p = 0.012 after Bonferroni correc-
tion, Panel A of Table  3). Since there are only 35 CHD 
patients without heart failure, the Mann–Whitney U test 
was applied to assess the 6p21.33 and AHRR methylation 
difference between the non-heart failure CHD cases and 
controls and found no significant differences (Additional 
file 2: Table S1).

Next, we assessed the association between the meth-
ylation of 6p21.33 and AHRR and the status of MI. The 
decreased methylation for the MI cases compared to 
the controls was also detected in the 6p21.33_CpG_4.5/
cg06126421 by both model 1 and model 2, but not 

Table 2  Methylation difference of 6p21.33 and AHRR comparing CHD cases and controls

a Model 1: Logistic regression adjusted for age, gender, and batch effect
b Model 2: Logistic regression adjusted for age, gender, smoking, hypertension, TC, LDL, and batch effect. Significant p-values are in bold

AHRR aryl-hydrocarbon receptor repressor, CI confidence interval, CpG cytidine-phosphate-guanosine, OR odds ratio. *, #Bonferroni-corrected p values. Bold values 
indicated p < 0.05

CpG sites Controls (N = 184) CHD cases 
(N = 180)

OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#

Median (IQR) Median (IQR)

6p21.33_CpG_1 1.00(0.99–1.00) 1.00(0.98–1.00) 0.96(0.59–1.54) 0.852 1.000 1.01(0.60–1.68) 0.976 1.000

6p21.33_CpG_2 0.93(0.90–0.95) 0.94(0.91–0.97) 0.59(0.36–0.94) 0.027 0.108 0.64(0.39–1.06) 0.083 0.332

6p21.33_CpG_3 0.63(0.57–0.70) 0.62(0.54–0.70) 1.11(0.94–1.31) 0.235 1.000 1.14(0.95–1.37) 0.152 0.608

6p21.33_CpG_4.5/
cg06126421

0.50(0.45–0.55) 0.48(0.42–0.52) 1.42(1.10–1.83) 0.008 0.032 1.40(1.07–1.83) 0.016 0.064

AHRR_CpG_1 0.73(0.63–0.80) 0.74(0.58–0.83) 1.01(0.90–1.14) 0.846 1.000 1.00(0.87–1.14) 0.959 1.000

AHRR_CpG_2 0.87(0.74–0.96) 0.89(0.72–1.00) 1.02(0.90–1.16) 0.720 1.000 1.15(0.82–1.60) 0.419 1.000

AHRR_CpG_3/
cg05575921

0.77(0.64–0.83) 0.75(0.59–0.85) 1.08(0.96–1.22) 0.201 1.000 1.02(0.86–1.20) 0.866 1.000

AHRR_CpG_4.5 0.77(0.68–0.84) 0.75(0.60–0.84) 1.12(0.99–1.27) 0.075 0.750 1.07(0.77–1.49) 0.696 1.000

AHRR_CpG_6 0.84(0.74–0.90) 0.82(0.65–0.91) 1.10(0.96–1.26) 0.177 1.000 1.03(0.89–1.18) 0.691 1.000

AHRR_CpG_7 0.66(0.53–0.76) 0.66(0.53–0.79) 1.01(0.89–1.16) 0.836 1.000 1.07(0.94–1.22) 0.341 1.000

AHRR_CpG_8.9 0.85(0.73–0.94) 0.87(0.76–0.94) 0.89(0.73–1.09) 0.270 1.000 1.15(1.00–1.32) 0.052 0.520

AHRR_CpG_10.11 0.92(0.89–0.95) 0.92(0.87–0.96) 1.25(0.91–1.71) 0.170 1.000 1.08(0.93–1.26) 0.315 1.000

AHRR_CpG_12 0.88(0.81–0.95) 0.88(0.78–0.98) 1.07(0.91–1.25) 0.420 1.000 0.99(0.85–1.14) 0.846 1.000

AHRR_CpG_14.15 0.94(0.91–0.95) 0.94(0.90–0.97) 1.08(0.80–1.47) 0.618 1.000 0.89(0.72–1.09) 0.260 1.000
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Table 3  Methylation difference of 6p21.33 and AHRR comparing heart failure cases, MI cases, non-MI CHD cases, and controls

CpG sites Controls (N = 184) Heart failure 
cases (N = 145)

OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#

Median (IQR) Median (IQR)

Panel (A). Heart failure 
cases vs. Controls

6p21.33_CpG_1 1.00(0.99–1.00) 1.00(0.99–1.00) 0.75(0.44–1.30) 0.308 1.000 0.78(0.44–1.38) 0.398 1.000

6p21.33_CpG_2 0.93(0.90–0.95) 0.94(0.91–0.96) 0.52(0.30–0.89) 0.017 0.068 0.56(0.31–0.98) 0.044 0.176

6p21.33_CpG_3 0.63(0.57–0.70) 0.61(0.53–0.69) 1.16(0.97–1.40) 0.113 0.452 1.19(0.98–1.45) 0.079 0.316

6p21.33_CpG_4.5/
cg06126421

0.50(0.45–0.55) 0.48(0.42–0.52) 1.62(1.21–2.17) 0.001 0.004 1.59(1.17–2.16) 0.003 0.012

AHRR_CpG_1 0.73(0.63–0.80) 0.74(0.56–0.82) 1.04(0.91–1.18) 0.607 1.000 1.02(0.89–1.18) 0.775 1.000

AHRR_CpG_2 0.87(0.74–0.96) 0.88(0.70–1.00) 1.08(0.94–1.24) 0.267 1.000 1.10(0.94–1.28) 0.246 1.000

AHRR_CpG_3/
cg05575921

0.77(0.64–0.83) 0.75(0.59–0.84) 1.09(0.96–1.24) 0.200 1.000 1.08(0.93–1.24) 0.319 1.000

AHRR_CpG_4.5 0.77(0.68–0.84) 0.74(0.59–0.84) 1.16(1.01–1.34) 0.031 0.310 1.19(1.02–1.38) 0.024 0.240

AHRR_CpG_6 0.84(0.74–0.90) 0.82(0.65–0.91) 1.12(0.96–1.30) 0.140 1.000 1.11(0.94–1.32) 0.217 1.000

AHRR_CpG_7 0.66(0.53–0.76) 0.67(0.54–0.82) 1.05(0.91–1.21) 0.529 1.000 1.02(0.87–1.18) 0.850 1.000

AHRR_CpG_8.9 0.85(0.73–0.94) 0.89(0.77–0.95) 0.95(0.77–1.18) 0.664 1.000 0.93(0.74–1.17) 0.542 1.000

AHRR_CpG_10.11 0.92(0.89–0.95) 0.92(0.88–0.95) 1.07(0.70–1.63) 0.762 1.000 0.96(0.61–1.51) 0.855 1.000

AHRR_CpG_12 0.88(0.81–0.95) 0.88(0.79–0.97) 1.03(0.85–1.24) 0.793 1.000 0.97(0.80–1.19) 0.798 1.000

AHRR_CpG_14.15 0.94(0.91–0.95) 0.94(0.90–0.97) 1.03(0.75–1.43) 0.841 1.000 1.04(0.74–1.45) 0.828 1.000

CpG sites Controls (N = 184) MI cases (N = 78) OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#
Median (IQR) Median (IQR)

Panel (B). MI cases vs. 
Controls

6p21.33_CpG_1 1.00(0.99–1.00) 1.00(0.97–1.00) 1.60(0.87–2.92) 0.128 0.512 1.54(0.83–2.87) 0.173 0.692

6p21.33_CpG_2 0.93(0.90–0.95) 0.94(0.89–0.97) 0.64(0.35–1.18) 0.156 0.624 0.64(0.34–1.21) 0.170 0.680

6p21.33_CpG_3 0.63(0.57–0.70) 0.62(0.53–0.70) 1.17(0.95–1.44) 0.150 0.600 1.17(0.94–1.45) 0.161 0.644

6p21.33_CpG_4.5/
cg06126421

0.50(0.45–0.55) 0.48(0.40–0.51) 1.45(1.04–2.02) 0.030 0.120 1.42(1.01–1.99) 0.042 0.168

AHRR_CpG_1 0.73(0.63–0.80) 0.68(0.53–0.82) 1.07(0.92–1.24) 0.411 1.000 1.05(0.89–1.23) 0.584 1.000

AHRR_CpG_2 0.87(0.74–0.96) 0.84(0.62–0.98) 1.07(0.92–1.25) 0.394 1.000 1.06(0.90–1.25) 0.505 1.000

AHRR_CpG_3/
cg05575921

0.77(0.64–0.83) 0.72(0.50–0.84) 1.10(0.96–1.27) 0.179 1.000 1.08(0.92–1.25) 0.344 1.000

AHRR_CpG_4.5 0.77(0.68–0.84) 0.74(0.54–0.83) 1.15(0.99–1.35) 0.073 0.730 1.15(0.98–1.36) 0.093 0.930

AHRR_CpG_6 0.84(0.74–0.90) 0.79(0.61–0.91) 1.15(0.97–1.35) 0.100 1.000 1.12(0.94–1.33) 0.207 1.000

AHRR_CpG_7 0.66(0.53–0.76) 0.61(0.49–0.73) 1.06(0.89–1.26) 0.526 1.000 1.03(0.86–1.23) 0.778 1.000

AHRR_CpG_8.9 0.85(0.73–0.94) 0.82(0.69–0.92) 0.99(0.77–1.29) 0.966 1.000 0.97(0.75–1.27) 0.838 1.000

AHRR_CpG_10.11 0.92(0.89–0.95) 0.92(0.85–0.96) 1.47(1.01–2.14) 0.042 0.420 1.39(0.95–2.04) 0.091 0.910

AHRR_CpG_12 0.88(0.81–0.95) 0.87(0.75–1.00) 1.12(0.92–1.37) 0.245 1.000 1.08(0.88–1.32) 0.450 1.000

AHRR_CpG_14.15 0.94(0.91–0.95) 0.94(0.87–0.97) 1.38(0.84–2.27) 0.210 1.000 1.41(0.83–2.38) 0.203 1.000

CpG sites Controls (N = 184) Non-MI CHD 
cases (N = 102)

OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#

Median (IQR) Median (IQR)

Panel (C). Non-MI CHD 
cases vs. Controls

6p21.33_CpG_1 1.00(0.99–1.00) 1.00(0.99–1.00) 0.54(0.28–1.04) 0.064 0.256 0.56(0.29–1.11) 0.095 0.380

6p21.33_CpG_2 0.93(0.90–0.95) 0.94(0.92–0.97) 0.55(0.29–1.03) 0.061 0.244 0.70(0.35–1.39) 0.302 1.000

6p21.33_CpG_3 0.63(0.57–0.70) 0.62(0.55–0.70) 1.09(0.87–1.37) 0.448 1.000 1.16(0.91–1.48) 0.220 0.880

6p21.33_CpG_4.5/
cg06126421

0.50(0.45–0.55) 0.48(0.44–0.52) 1.41(1.01–1.98) 0.047 0.188 1.39(0.97–1.99) 0.077 0.308

AHRR_CpG_1 0.73(0.63–0.80) 0.77(0.60–0.83) 0.96(0.81–1.12) 0.581 1.000 0.92(0.77–1.11) 0.400 1.000
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significant after Bonferroni correction (Panel B of 
Table 3). All the 14 AHRR CpG sites showed no associa-
tion with MI by both models (Panel B of Table 3). In addi-
tion, none of the 19 measurable CpG sites in 6p21.33 and 
AHRR showed any association with the non-MI CHD 
cases by the two logistic regression models (Panel C of 
Table 3).

Association between blood‑based 6p21.33 and AHRR 
methylation and early CHD cases
In our study, the cardiac function of 124 CHD cases 
was classified as NYHA I and NYHA II (NYHA I CHD 
cases = 46, NYHA II CHD cases = 78). Compared to the 
healthy controls, the methylation intensity of 6p21.33 at 
the 6p21.33_CpG_4.5/cg06126421 locus was also signifi-
cantly decreased in NYHA I&II CHD cases by the two 
logistic regression models (model 1: OR per − 10% meth-
ylation (95% CI) = 1.69 (1.22–2.34), p = 0.008 after Bon-
ferroni correction; model 2: OR per − 10% methylation 
(95% CI) = 1.65 (1.17–2.34), p = 0.020 after Bonferroni 
correction, Table  4). No significant association between 
the early-stage cardiovascular dysfunction cases and the 
methylation changes was observed for all the 14 CpG 
sites of AHRR (Table 4). All the five CpG sites in 6p21.33 
and half of the CpG sites in AHRR had lower methylation 
levels in the 37 NYHA III&IV CHD cases than that in 
the 124 NYHA I&II CHD cases but without significance 
probably due to the limited sample size (Additional file 1: 
Table 2). Nevertheless, these observations indicated that 
the aberrant blood-based DNA methylation might be 
enhanced along with the progress of cardiac dysfunction.

The correlation between blood‑based 6p21.33 and AHRR 
methylation and CHD‑related characteristics
Methylation intensities across various strata of the CHD 
cases and controls respectively were shown in Table  5 
for 6p21.33 cg06126421, AHRR cg05575921, and their 
adjacent measurable CpG sites. In agreement with previ-
ous reports [36, 41–43], smokers had significantly lower 
AHRR methylation than the non-smokers in both con-
trols and CHD cases (Table 5). In opposite, the smoking-
related lower 6p21.33 methylation was significant only in 
CHD cases but not in the controls (Table 5). Our results 
also suggested drinking as a causative factor for the hypo-
methylation of AHRR mostly in controls, but such asso-
ciation is much weaker than smoking (Table 5). Drinkers 
showed no significant 6p21.33 methylation changes com-
pared with non-drinkers in both controls and CHD cases. 
Compared to the women, men had lower methylation 
in 6p21.33 and AHRR in both controls and CHD cases 
(Table  5). Our results showed no or very weak 6p21.33 
and AHRR methylation difference among people with the 
variant status of hypertension and diabetes, and people 
with different levels of TC, TG, HDL, and LDL (Table 5).

Most CHD patients have a history of medication. It 
seems that the intake of aspirin could significantly reverse 
the demethylation of 6p21.33 in the blood of CHD cases, 
but had no influence on the AHRR methylation (Table 6). 
The intake of digoxin was weakly correlated with the 
hypomethylation of two AHRR CpG sites (Table 6). The 
other 10 common cardiovascular drugs showed no obvi-
ous influence on the methylation intensities of 6p21.33 
and AHRR in the blood of CHD patients (Table 6).

a Model 1: Logistic regression adjusted for age, gender, and batch effect
b Model 2: Logistic regression adjusted for age, gender, smoking, hypertension, TC, LDL, and batch effect. Significant p-values are in bold. MI myocardial infarction. 
*,#Bonferroni-corrected p values. Bold values indicated p < 0.05

Table 3  (continued)

CpG sites Controls (N = 184) Non-MI CHD 
cases (N = 102)

OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#

Median (IQR) Median (IQR)

AHRR_CpG_2 0.87(0.74–0.96) 0.91(0.76–1.00) 0.99(0.82–1.18) 0.863 1.000 0.99(0.81–1.22) 0.948 1.000

AHRR_CpG_3/
cg05575921

0.77(0.64–0.83) 0.77(0.62–0.85) 1.06(0.90–1.25) 0.456 1.000 1.09(0.90–1.31) 0.373 1.000

AHRR_CpG_4.5 0.77(0.68–0.84) 0.76(0.62–0.85) 1.14(0.96–1.34) 0.128 1.000 1.20(0.99–1.45) 0.059 0.590

AHRR_CpG_6 0.84(0.74–0.90) 0.84(0.71–0.91) 1.05(0.87–1.26) 0.641 1.000 1.03(0.83–1.29) 0.774 1.000

AHRR_CpG_7 0.66(0.53–0.76) 0.70(0.57–0.83) 0.97(0.82–1.15) 0.753 1.000 0.95(0.78–1.14) 0.567 1.000

AHRR_CpG_8.9 0.85(0.73–0.94) 0.89(0.79–0.96) 0.81(0.62–1.05) 0.115 1.000 0.80(0.60–1.06) 0.112 1.000

AHRR_CpG_10.11 0.92(0.89–0.95) 0.92(0.88–0.96) 1.10(0.69–1.76) 0.680 1.000 1.00(0.61–1.65) 0.988 1.000

AHRR_CpG_12 0.88(0.81–0.95) 0.89(0.80–0.96) 1.07(0.86–1.34) 0.550 1.000 1.04(0.81–1.33) 0.770 1.000

AHRR_CpG_14.15 0.94(0.91–0.95) 0.94(0.92–0.97) 1.01(0.70–1.44) 0.968 1.000 1.00(0.69–1.43) 0.984 1.000
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Discussion
Previous studies have demonstrated that smoking could 
result in the hypomethylation of AHRR cg05575921 and 
6p21.33 cg06126421 in the peripheral blood [28, 29]. 
The association between AHRR cg05575921 methyla-
tion and cardiovascular disease was also well addressed 
in Caucasians even in prospective studies [20, 33–36]. In 
this case–control study, we validated the strong associa-
tion between smoking and the hypomethylation of AHRR 
cg05575921 and 6p21.33 cg06126421 in the Chinese 
population. More importantly, we have disclosed the sig-
nificant hypomethylation of 6p21.33 cg06126421 in the 
blood leukocyte DNA of CHD patients, especially for 
CHD patients with heart failure. Our observation agreed 
with the report of Agha et al. [44] that the blood leuko-
cyte DNA methylation could predict the risk of future MI 
and CHD. This decreased 6p21.33 methylation could be 
detected in the blood of patients with early cardiac dys-
function (NYHA I&II CHD cases) and might become 
more aberrant in the patients with advanced cardiac dys-
function (NYHA III&IV CHD cases). Thus, we proposed 
that the altered 6p21.33 methylation in the blood leuko-
cytes may play a role not only in the occurrence of CHD 
but also in the progress.
6p21.33 cg06126421 is located at chr6:30720081 (build 

37/hg19). In the 100 kilobases flanking cg06126421 
there are seven genes that code for proteins functioned 
in the protection of cells from Fas- or tumor necrosis 

factor type alpha-induced apoptosis (IER3), the intra-
S phase, and G2/M phase cell cycle checkpoints in 
response to DNA damage (MDC1), cell cycle progression 
(DHX16), cytoskeleton regulation and membrane trans-
port (FLOT1, TUBB, PPP1R18, NRM). In particular, the 
expression of IER3 is involved in immune functions and 
the physiology of the cardiovascular system in transgenic 
and knock-out mouse models [45]. AHRR methylation 
has been associated with CHD in Caucasians, but could 
not be validated in the Chinese population. Other studies 
have shown that ethnic genetic background or lifestyle 
could play a role in epigenetic modifications [46–48]. 
Thus, DNA methylation patterns warrant validation 
when the different ethnic population is considered.

In our study, we confirmed the association between 
the behavior of smoking and the hypomethylation of 
AHRR cg05575921, 6p21.33 cg06126421, and their adja-
cent CpG sites, and supported the relationship between 
smoking and epigenetic regulation in atherosclerotic dis-
ease [30]. However, in lack of the data on the intensity of 
the smoking history (pack-years), smoking can hardly be 
fully adjusted by logistic regression in our study. Future 
studies with larger samples size and more detailed data 
on smoking history shall provide more robust evidence 
for the relationship among smoking, 6p21.33 methyla-
tion, and CHD. Our results also showed that the behavior 
of drinking was associated with the methylation inten-
sity of AHRR, but not with the 6p21.33 methylation. This 

Table 4  Methylation difference of 6p21.33 and AHRR comparing NYHA I&II CHD cases and controls

a Model 1: Logistic regression adjusted for age, gender, and batch effect\
b Model 2: Logistic regression adjusted for age, gender, smoking, hypertension, TC, LDL, and batch effect. Significant p values are in bold. NYHA New York Heart 
Association. *, #Bonferroni-corrected p values. Bold values indicated p < 0.05

CpG sites Controls (N = 184) NYHA I&II CHD 
cases (N = 124)

OR (95%CI) per-
10%methylation

p-valuea p-value* OR (95%CI) per-
10%methylation

p-valueb p-value#

Median (IQR) Median (IQR)

6p21.33_CpG_1 1.00(0.99–1.00) 1.00(1.00–1.00) 0.79(0.49–1.27) 0.328 1.000 0.78(0.48–1.27) 0.315 1.000

6p21.33_CpG_2 0.93(0.90–0.95) 0.94(0.91–0.97) 0.49(0.28–0.85) 0.011 0.044 0.54(0.30–0.97) 0.038 0.152

6p21.33_CpG_3 0.63(0.57–0.70) 0.62(0.53–0.69) 1.15(0.94–1.41) 0.164 0.656 1.21(0.98–1.50) 0.079 0.316

6p21.33_CpG_4.5/
cg06126421

0.50(0.45–0.55) 0.49(0.44–0.52) 1.69(1.22–2.34) 0.002 0.008 1.65(1.17–2.34) 0.005 0.020

AHRR_CpG_1 0.73(0.63–0.80) 0.74(0.59–0.82) 1.04(0.90–1.20) 0.592 1.000 1.03(0.88–1.21) 0.736 1.000

AHRR_CpG_2 0.87(0.74–0.96) 0.89(0.72–1.00) 1.04(0.89–1.21) 0.618 1.000 1.06(0.89–1.26) 0.508 1.000

AHRR_CpG_3/
cg05575921

0.77(0.64–0.83) 0.75(0.60–0.85) 1.10(0.95–1.26) 0.201 1.000 1.11(0.94–1.30) 0.211 1.000

AHRR_CpG_4.5 0.77(0.68–0.84) 0.76(0.61–0.84) 1.13(0.97–1.31) 0.115 1.000 1.16(0.98–1.37) 0.081 0.810

AHRR_CpG_6 0.84(0.74–0.90) 0.83(0.68–0.90) 1.11(0.94–1.31) 0.239 1.000 1.10(0.91–1.33) 0.316 1.000

AHRR_CpG_7 0.66(0.53–0.76) 0.69(0.55–0.82) 1.02(0.88–1.19) 0.772 1.000 1.01(0.85–1.19) 0.930 1.000

AHRR_CpG_8.9 0.85(0.73–0.94) 0.89(0.78–0.94) 0.92(0.74–1.16) 0.488 1.000 0.91(0.72–1.15) 0.436 1.000

AHRR_CpG_10.11 0.92(0.89–0.95) 0.92(0.88–0.95) 1.02(0.65–1.60) 0.929 1.000 0.93(0.57–1.51) 0.756 1.000

AHRR_CpG_12 0.88(0.81–0.95) 0.89(0.80–0.95) 1.05(0.86–1.29) 0.620 1.000 1.03(0.83–1.28) 0.792 1.000

AHRR_CpG_14.15 0.94(0.91–0.95) 0.94(0.91–0.96) 1.08(0.77–1.50) 0.670 1.000 1.09(0.76–1.57) 0.649 1.000
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observation was consistent with the reported alcohol-
related DNA methylation signatures in specific genes 
[49]. The incidence of CHD in all age groups is higher in 
males than in females [50–53]. In this study, the males 
had lower 6p21.33 and AHRR methylation levels than the 
females, whereas the decreased methylation of 6p21.33 
was associated with CHD according to our results, and 
the hypomethylation of 6p21.33 and AHRR were consid-
ered as predictors for the increased cardiovascular mor-
tality [20]. These results suggested that methylation may 
be one of the molecular mechanisms that lead to gen-
der differences in cardiovascular disease. It seems that 
the blood-based 6p21.33 and AHRR methylations were 
not influenced by hypertension, diabetes, levels of TC, 
TG, HDL, and LDL. Given the above, our investigation 
suggested that the methylation of 6p21.33 and AHRR in 
blood could hardly be influenced by most of the envi-
ronmental factors, especially the blood lipid index. The 
signatures of methylation could also be influenced by 
treatment [54]. Among the 12 cardiovascular drugs avail-
able, only 4 drugs showed associations with the meth-
ylation level of individual sites on 6p21.33 and AHRR. 
However, these correlations should be taken with cau-
tion due to the limited sample size. To further explore 
the relationship between medication and CHD-related 
methylation, it is meaningful to conduct the study with 
an expanded sample size and more adequate information 
about treatment.

In our study, MALDI-TOF mass spectrometry was 
used for the quantification of DNA methylation levels. 
In clinical, mass spectrometry has already been used for 
multiplex genetic analyses, including non-invasive pre-
natal tests, disease-related SNP analyses, and even for 
the detection of Covid-19 [55]. With a semi-quantitative 
setting, mass spectrometry offers a self-designable, easy-
to-use, high throughput, robustness, and cost-saving 
technique for the candidate-approached DNA meth-
ylation analyses. Recent studies have suggested multiple 
genes are involved in diseases including CHD. With the 
capacity of supporting multiplex analyses for a panel of 
genetic and epigenetic variations in a cost-efficient man-
ner, mass spectrometry would have a great potential for 
clinical utility, as well as for the CHD diagnosis. Our 
study analyzed the DNA methylation in whole blood or 
said mainly from the leukocytes. In lack of the possibil-
ity to sort the leukocytes from hospital-based samples 
freshly, we could not further explore the origination of 
such altered methylation patterns from which cell sub-
type. However, given that in most clinical and epide-
miological settings, it is more readily and convenient to 
obtain DNA from whole blood, and process it for further 
clinical practice. Meanwhile, our study was an explora-
tory investigation on the assessment of CHD risk using 

blood-based methylation biomarkers based on a lim-
ited subject with limited environmental and medication 
information, our observations need to be validated in 
multi-center and prospective studies. Collecting abun-
dant lifestyle and historical treatment materials in future 
studies with large numbers of participants would be 
appreciated.

Conclusion
In summary, 6p21.33 methylation, especially at the 
6p21.33 cg06126421 site, exhibits a significant asso-
ciation with CHD. This correlation is more susceptible 
in men and smokers, and more likely appears in CHD 
patients with heart failure and patients with early car-
diac dysfunction. In contrast to Caucasians, the blood 
DNA methylation at AHRR is barely related to the status 
of CHD in the Chinese population. The combination of 
6p21.33 methylation and conventional risk factors might 
be an intermediate step towards the risk evaluation and 
detection of CHD.
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the 6p21.33 amplicon examined by the EpiTyper assay (chr6:30,719,778-
30,720,175, build 37/hg19, defined by the UCSC Genome Browser). 
The EpiTyper assay determined the methylation levels of 5 CpGs in this 
amplicon, and yielded 4 distinguishable mass peaks. The CpG sites that 
could be measured are in bold, cg06126421 is in bold and underlined. 
(D) The sequence of the AHRR amplicon examined by the EpiTyper assay 
(chr5:373,077-373,462, build 37/hg19, defined by the UCSC Genome 
Browser). The EpiTyper assay determined the methylation levels of 14 
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