
Boron Stress Responsive MicroRNAs and Their Targets in
Barley
Esma Ozhuner1, Vahap Eldem1,2, Arif Ipek1, Sezer Okay1, Serdal Sakcali3, Baohong Zhang4, Hatice Boke1,

Turgay Unver1*

1 Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey, 2 Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey,

3 Department of Biology, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey, 4 Department of Biology, East Carolina University, Greenville, North

Carolina, United States of America

Abstract

Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have
been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs
associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed
between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to
respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a,
miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be
specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA
targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and
the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to
environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles
against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope
with boron stress.
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Introduction

MicroRNAs (miRNAs) are a class of single strand, endogenous,

non-coding small RNA molecules, which post-transcriptionally

regulate gene expression in many organisms by targeting mRNAs

for cleavage or translation suppression [1,2,3]. Increasing evidence

demonstrates that miRNAs play an important role in many

biological and metabolic processesincluding regulation of plant

growth, development and response to biotic and abiotic stresses via

interactions with their specific target mRNAs [4,5,6,7,8]. Boron

(B) is an essential element for plants, and its deficiency generally

causes growth defects mainly in young and growing parts of the

plants, while excessive levels of B are toxic to plants [9,10]. A

number of physiological processes are shown to be altered by B

exposure. Deterioration of cell wall biosynthesis, metabolic

deterioration by binding to the ribose moieties of ATP, NADH

and NADPH, and inhibition of cell division and elongation are the

most distinct symptoms of B toxicity [11,12,13]. However, plants

also evolve mechanims to cope with the presence of excessive

amounts of metal ion. Although several studies have been

performed on small RNAs and metal stressors such as mercury,

cadmium, and aluminum [14,15,16], no studies have been

reported on boron stress.

Barley (Hordeum vulgare L.) is one of the most important grain

crops grown and cultivated worldwidely [17]. Additionally, it is

a well-studied model plant for triticacea research in terms of

genetics, genomics, and breeding [18,19]. Although miRNAs in

barley were identified in previous studies [19,20,21,22], com-

pared with the number of identified miRNAs in other grain

crops such as rice and maize, the number of known miRNAs in

barley is still very insufficient. Initially, conventional approaches

were extensively used for miRNA identification and contributed

considerably to the miRNA exploration [8,23].

The purpose of this study is to identify tissue specific

expression of miRNAs and their potential targets in barley

exposed to high levels of boron. To achieve this goal, we

identified miRNAs from the entire transcriptome RNA-seq data,

which included more than 208 million reads generated from

control and B-exposed roots and leaves of B-tolerant barley

seedlings. Some of the identified barley miRNAs were validated

in leaf and root tissues by quantitative RT-PCR. Additionally,

‘degradome sequencing’ approach was also employed for

miRNA target identification in barley.
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Figure 1. The secondary stem-loop structures of several identified miRNAs in barley. Mature miRNA sequences are marked in red color.
doi:10.1371/journal.pone.0059543.g001
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Materials and Methods

Plant Materials and Boron Treatment
Barley (Hordeum vulgare L. cultivar Sahara) seeds were sterilized

and placed into Petri dishes for germination at room temperature.

Then, four-day-old seedlings were transferred into liquid culture

flasks including nutrient solutions. The treatments were repeated

at least three times with triple biological replicates. For toxicity

experimets, toxic (1000 mM) and nontoxic (50 mM) concentrations

of B were added to different flasks. Germinated seedlings were

exposed to B-toxic or B-nontoxic conditions for approximately 24

hours.

RNA Isolation, cDNA Library Construction and
Sequencing for Transcriptome Analysis

Total RNAs were extracted from barley root and leaf tissues

using the TRIZOL Reagent (Invitrogen) according to the

manufacturer’s instructions. The extractions were performed

separately for each sample with three independent biological

replicates and same amount of total RNA was subsequently pooled

based on their concentration. The quality and quantity of purified

RNAs were assessed with a Nanodrop 2000c spectrophotometer

(Nanodrop Technologies, USA) and the presence of ribosomal

RNA bands was determined by Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA). All RNA samples were stored at

280uC until further processing. The cDNA library construction

and Illumina (Solexa) based-transcriptome sequencing experi-

Table 1. Barley miRNAs and features identified by high-throughput sequencing.

miRNA name Sequence (59–39) LM LP MFEI GC% DG

hvu-mir-156 UGACAGAAGAGAGAGAGCAC 20 178 0.71 65.0 283.20

hvu-mir-157 UUGACAGAAGAGAGUGAGCAC 21 85 1.12 55.0 252.40

hvu-mir-159 UUUGGAUUGAAGGGAGCUCUG 21 178 0.93 52.0 286.30

hvu-mir-160 UGCCUGGCUCCCUGUAUGCCA 21 98 0.95 60.0 256.00

hvu-mir-164 UGGAGAAGCAGGGCACUUGCU 21 75 0.74 61.0 234.10

hvu-mir-165 CCGCGACUGCCCCAUCCUCA 20 100 0.51 62.0 231.90

hvu-mir-166 CCGGACCAGGCUUCAUUCCCA 21 61 0.34 59.0 212.50

hvu-mir-168 GAUCCCGCCUUGCACCAAGUGAAU 24 106 0.81 75.0 264.40

hvu-mir-169 AAGCCAAGGAUGAGUUGCCUG 21 83 0.80 45.0 230.10

hvu-mir-171 UGAUUGAGCCGUGCCAAUAUC 21 137 0.97 55.0 273.20

hvu-mir-172c AGGAUCUUGAUGAUGCUGCUG 21 54 0.60 41 213.40

hvu-mir-319a UUGGACUGAAGGGAGCUCCC 20 186 0.90 52.0 287.70

hvu-mir-319c UUGGAAUGAAGGGAGCUCAA 20 78 0. 55 45.0 219.60

hvu-mir-397 CCGUUGAGUGCAGCGUUGAUG 21 133 0. 98 67.0 274.90

hvu-mir-399 UGCCAAAGGAGAUUUGCCCCG 21 113 0.65 46.0 234.20

hvu-mir-408 CUGCACUGCCUCUUCCCUGGC 21 149 0.80 56.0 267.50

hvu-mir-444b UGCAGUUGCUGUCUCAAGCUU 21 121 1.01 45.0 255.20

hvu-mir-1120 ACAUUCUUAUAUUAUGGGACGGAG 24 84 1.36 36.0 241.30

hvu-mir-1121 AGUAGUGAUCUAAACGCUCUUA 22 83 1.53 36.0 245.90

hvu-mir-1122 UUUGUACAUCCGUAUGUAGU 20 120 1.28 33.0 250.70

hvu-mir-1126 UCCACUAUGGACUACAUACGGAG 23 120 1.28 33.0 250.70

hvu-mir-2004 UUUGUUUUUAUGUUAUUUUGUGAA 24 78 0.74 29.0 216.90

hvu-mir-2007 CAAGAUAUUGGGUAUUUUUGUC 22 54 1.59 30.0 225.90

hvu-mir-2014 AGCAAACAUAUCUGAGCACA 22 109 0.60 49.0 232.20

hvu-mir-2019 CGGGUCGGCGCUGCAUGCGGC 21 71 0.53 65.0 224.70

hvu-mir-2023a UUUUGCCGGUUGAACGACCUCA 22 113 0.74 55.0 246.00

hvu-mir-2024a GCAGUUGCUGUCUCAAGCUU 20 118 1.02 44.0 253.40

hvu-mir-2906 AACGGGCCGCUGCACAACUGG 21 254 0.77 63.0 2123.9

hvu-mir-2911 UAGUUGGUGGAGCGAUUUGUC 21 71 0.56 49.0 219.6

hvu-mir-2914 CAUGGUGGUGACGGGUGACGGAG 23 63 0.61 56.0 221.8

hvu-mir-5048 UAUUUGCAGGUUUUAGGUCUAA 22 354 0.88 31.0 296.90

hvu-mir-5049 UCCUAAAUACUUGUUGUUGGG 21 81 1.37 43.0 247.80

hvu-mir-5051 UUUGGCACCUUGAAACUGGGA 21 105 1.20 49.0 261.90

hvu-mir-5052 ACCGGCUGGACGGUAGGCAUA 21 175 0.89 54.0 285.00

hvu-mir-5066 AAGUGUAUAUGUGGAGUGUCU 21 80 0.33 44.0 211.70

LM: length of the mature miRNA; LP: length of the miRNA precursor sequence; MFEI: Minimal folding free energy index.
doi:10.1371/journal.pone.0059543.t001
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ments were conducted by the BGI (Beijing Genomics Institute,

Hong Kong). In brief, for each library, the polyadenylated RNA

(mRNAs) was isolated from 20 mg of each RNA pool using

oligo(dT) 25 magnetic beads (Invitrogen) according to the

manufacturer’s protocol. Following purification step, the isolated

mRNAs were fragmented into small pieces using fragmentation

buffer. These mRNA fragments resulted were used as templetes

for first strand cDNA synthesis by reverse transcriptase and

random hexamer primers. After completion of first-strand

synthesis, the second-strand cDNA was synthesized by using

DNA polymerase I, RNaseH, dNTPs and buffer. Subsequently,

newly synthesized short fragments were purified with a QIAquick

PCR extraction kit and further subjected to end reparation and

adding poly(A) using EB buffer, T4 DNA polymerase, the Klenow

fragment, and T4 polynucleotide as well as Klenow 39 to 59 exo-

polymerase and then, the sequencing adapters were connected

with those short fragments. After size selection and purification

through agarose gel electrophoresis, the selected fragments were

enriched by PCR amplification with appropriate primers and

eventually, the library sequencing experiments were performed

using Illumina HiSeqTM 2000 instrument.

De novo Assembly of Transcriptome and Data Processing
Firstly, the image data obtained from sequencing platform were

converted by base calling into sequence data which is commonly

known as raw reads and typically stored in the fastaq file format.

In order to acquire high-quality clear reads, all raw sequence reads

were filtered to remove adaptors, the reads containing unknown

nucleotides larger than 5% and low quality reads. Then,

remaining clear reads were subjected to de novo transcriptome

assembly using Trinity assembler with default settings [24]. Briefly,

Inchworm, one of software module of Trinity, assembles reads

with definite length of overlap in order to generate longer

fragments which are termed contigs. Then, the reads are are

realigned to the newly formed contig so as to construct scaffolds

which are basically derived from the contigs from the same

transcript. By using paired-end information, these reads (pair-end

clean reads) are mapped back to the resultant scaffolds to fill the

intra-scaffolds gaps. Subsequently, the sequences generated by

assembly of scaffolds are defined as unigenes which cannot be

extended on either end by further assembly process. After

obtaining non-redundant unigenes as long as possible using

sequence clustering software, some of those unigenes were termed

by singletons which are are not part of any contigs.

Identification of miRNAs and Prediction of miRNA
Precursors (Pre-miRNAs)

The RNA-seq generated more than 208 million clean reads

(Kekec et al. Unpublished data) that were used to identify

miRNAs and their targets. To identify potential miRNA

precursors (pre-miRNAs), Blastn search was perfromed with an

e-value of 1e-10 between unigene reads constructed from a total of

four libraries for whole transcriptome of H. vulgare and previously

known pre-miRNA sequences obtained from miRBase v19.0

(http://www.mirbase.org/) and plant miRNA database (PMRD,

http://bioinformatics.cau.edu.cn/PMRD/), respectively. Briefly,

we created our own blast-search database from a fasta sequence

file including all transcripts of H. vulgare to be used with Blastn

algoritm. As a query, all plant pre-miRNAs were used to search

against the database generated via Blastall-2.2.22. The output file

was manually investigated to extract the longest possible set of

matches from the batch sequences. Then, the chosen potential

pre-miRNA sequences obtained from the result of Blastall were

subjected to the Zuker folding algorithm for in silico secondary

Table 2. The normalized read counts of the pre-miRNAs in
each sample.

miRNA name
50 mM B
root reads

1000 mM B
root reads

50 mM B
leaf reads

1000 mM B
leaf reads

hvu-miR156 146 232 28 81

hvu-miR156a/
miR156b/miR156r

874 848 199 139

hvu-mir156c 22 21 0 0

hvu-mir157 46 25 87 43

hvu-miR159 746 886 196 339

hvu-miR160 211 236 4 4

hvu-miR160o 525 473 190 283

hvu-miR164a 120 177 28 20

hvu-miR165 104 221 58 78

hvu-miR166c 80 146 44 76

hvu-miR168 634 890 125 166

hvu-miR169 1711 937 192 263

hvu-miR169c 3 3 3 19

hvu-miR171 1450 1289 477 1090

hvu-miR171a 264 205 26 71

hvu-miR172 1473 699 149 651

hvu-miR319c 31 26 5 4

hvu-miR319/
miR319a

171 211 0 0

hvu-miR397 58 51 15 2

hvu-miR399 124 35 31 94

hvu-miR408 0 0 130 8

hvu-miR444a 562 926 4 21

hvu-miR444b 83 26 14 21

hvu-miR444c 236 151 36 91

hvu-miR1120 869 1261 468 797

hvu-miR1121 2237 2115 31 11

hvu-miR1122 170 277 156 113

hvu-miR2004 4 9 118 77

hvu-miR2014 26 22 5 2

hvu-miR2021 9 22 18 6

hvu-miR2023a 38 70 34 69

hvu-miR2024a 83 26 14 21

hvu-miR2906 80 85 120 106

hvu-miR5048 1019 1169 217 218

hvu-miR5049 37 43 26 7

hvu-miR5051 35 73 27 35

hvu-miR5053 277 733 126 20

hvu-miR5064 248 250 116 159

hvu-miR5066 8 16 30 4

hvu-miR5141 993 1247 1199 175

hvu-miR5052 0 0 8 0

hvu-miR5180a/
miR5180b

278 240 25 2

The mapped read counts of each pre-miRNAs were normalized in terms of the
length of pre-miRNA and total read numbers according to RPKM method (Reads
Per kb per Million reads) [61].
doi:10.1371/journal.pone.0059543.t002
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structure generation via the web-based computational software

MFOLD 3.2 [25]. The default parameters of the software were

adjusted for predicting secondary structure of the selected

sequences and the minimal folding free energy index (MFEI)

was calculated for each pre-miRNA sequence as described

previously [26]. After identification of putative pre-miRNAs, we

determined the localization of predicted mature miRNAs on the

their own pre-miRNAs by mapping these mature miRNAs to the

pre-miRNAs using BLAST search algorithm with default

parameters. To consider whether these sequences are potential

miRNA and pre-miRNA candidates, the following empirical

criteria was adopted: (i) a pre-miRNA sequence can fold into an

appropriate stem-loop hairpin secondary structure which contains

19–24 nucleotides mature miRNA in lengths, (ii) the mature

miRNAs should take place in one arm of the hairpin structure, (iii)

the minimum length of pre-miRNA sequences should be 60

nucleotides, (iv) mismatch between candidate mature miRNAs and

query mature miRNAs are allowed to be up to 3 nucleotides, (v) it

is strongly emphasized that MFEI and negative minimum folding

energy (MFE) of potential miRNA precursors are relatively higher

than those of other types of RNAs, and MFEI was considered to

be one of the most important criterion for distinguishing miRNAs

from other types of RNAs, e.g. pre-miRNA with approximately

.0.67 has been identified as more likely to be a miRNA [27], (vi)

there is no large loop or break in the miRNA:miRNA*, and (vii)

the miRNA has less than six mismatches with the opposite miRNA

sequence (miRNA*) on the opposite arm [28,29,30].

Computational Identification of miRNA Target Genes
Identification of miRNA-regulated gene targets is crucial for

understanding miRNA functions. Therefore, the putative targets

of H. vulgare miRNAs were identified by aligning the miRNAs with

the high-quality unigene set obtained from the assembled

transcripts and the singleton transcripts of barley de novo

transcriptome libraries using the web-based psRNA Target Server

(http://plantgrn.noble.org/psRNATarget/) with default parame-

ters of user-submitted option. Alignment between Hvu-miRNA

and its potential target(s) was evaluated by the parameters

described by Zhang [31]. These computationally identified

miRNA targets were further analyzed using BlastX searches with

an e-value of 1e-10 against Hordeum EST sequences at NCBI

database to identify putative gene homologs for confirmation.

Gene Ontology (GO) Analysis of Potential miRNA Targets
In order to better understand the functional roles of miRNAs in

barley, Blast2Go (B2G) software v2.3.1 was used to assign gene

Table 3. The expression level of boron -responsive miRNAsY from highly B treated and control B applied barley leaf and root
tissues.

miRNA name
L2B
expressed

L+B
expressed Fold change (Up/Down) R2B expressed

R+B
expressed Fold change (Up/Down)

miR156 28 81 q2-fold (up-regulated) 146 232 Not significantly changed

miR156d 87 43 Q2-fold (down-regulated) 46 25 Not significantly changed

miR165 58 78 Not significantly changed 104 221 q2-fold (up-regulated)

miR169c 3 19 q6-fold (up-regulated) 3 3 Not changed

miR171 477 1090 q2-fold (up-regulated) 1450 1289 Not significantly changed

miR171a 26 71 q2-fold (up-regulated) 264 205 Not significantly changed

miR172 149 651 q4-fold (up-regulated) 1473 699 Q2-fold (down-regulated)

miR397 15 2 Q7-fold (down-regulated) 58 51 Not significantly changed

miR399 31 94 q3-fold (up-regulated) 124 35 Q3-fold (down-regulated)

miR408 130 8 Q16-fold (down-regulated) Not detected in root library

miR444a 4 21 q5-fold (up-regulated) 562 926 Not significantly changed

miR444b 14 21 Not significantly changed 83 26 Q3-fold (down-regulated)

miR444c 36 91 q2-fold (up-regulated) 236 151 Not significantly changed

miR1121 31 11 Q2-fold (down-regulated) 2237 2115 Not significantly changed

miR2004 118 77 Not significantly changed 4 9 q2-fold (up-regulated)

miR2014 5 2 Q2-fold (down-regulated) 26 22 Not significantly changed

miR2021 18 6 Q3-fold (down-regulated) 9 22 q2-fold (up-regulated)

miR2023a 34 69 q2-fold (up-regulated) 38 70 Not significantly changed

miR2024a 14 21 Not significantly changed 83 26 q3-fold (up-regulated)

miR5049 26 7 Q3-fold (down-regulated) 37 43 Not significantly changed

miR5051 27 35 Not significantly changed 35 73 q2-fold (up-regulated)

miR5053 126 20 Q6-fold (down-regulated) 277 733 q2-fold (up-regulated)

miR5066 30 4 Q7-fold (down-regulated) 8 16 q2-fold (up-regulated)

miR5141 1199 175 Q6-fold (down-regulated) 993 1247 Not significantly changed

miR5180a/
miR5180b

25 2 Q12-fold (down-regulated) 278 240 Not significantly changed

L2B, B-free leaf; L+B, B-treated leaf; R2B, B-free root; R+B, B-treated root (Y miRNAs with fold change over 2).
doi:10.1371/journal.pone.0059543.t003
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ontology (GO) annotations of predicted target genes [32]. First, all

miRNA target transcripts were arranged in a text file (Fasta

format) as an input data and uploaded to the program for BlastX

searches with an e-value of 1e-06. The BLAST results included:

sequence length, gene name, e-value, similarity, Hit-length, Align-

length, GenBank and Uniprot accession number as well as Gene

Ontology IDs belonging to each target sequences. Next, the output

file (.dat file) obtained from BlastX analysis was used to retrieve

GO terms associated with each blast hit and Gene Ontology

annotations. Finally, all miRNA targets representing genes with

known function were categorized by biological process, cellular

component and molecular function according to the ontological

definitions of the GO terms.

miRNA Target Cleavage Product (Degradome) Analysis
In order to characterize the miRNA cleaved target library

(degradome) of H. vulgare, we evaluated a dataset derived from the

output generated by CleaveLand (v2.0) software (a pipeline for

using degradome data to find cleaved small RNAs). The miRNA-

directed cleavage site in the miRNA:mRNA alignment is

represented by red arrow (Table S1).

Stem-loop Reverse-transcription
Stem-loop RT primers for Hvu-MIR 156, Hvu-MIR 159, Hvu-

MIR 164, Hvu-MIR 166, Hvu-MIR 168, Hvu-MIR 171, Hvu-

MIR 395, Hvu-MIR 396, Hvu-MIR 414, Hvu-MIR 1120 and

Hvu-MIR 5048 were designed according to Varkonyi-Gasic et al.

[33] (Table S2). The miRNA stem-loop reverse transcription was

carried out using 500 ng of total RNA samples of B-nontoxic

(50 mM) and B-toxic (1000 mM) leaf and root samples (1 mL),

0.5 mL 10 mM dNTP mix, 1 mL stem-loop RT primer (1 mM) and

10.5 mL nuclease free water. Those components were also mixed

separately for the different dilutions of total RNA stem-loop RT

primer for cDNA synthesis and incubated for 5 min at 65uC, and

then put into ice for 2 min. Thereafter, 4 mL first-strand buffer

(56), 2 mL 1 M DTT, 0.1 mL RNAseOUT (40 units/mL), and

0.25 mL SuperScript III (200 units/mL) were added to each tube.

The RT reactions were fulfilled as 30 min at 16uC followed by 60

cycles of 30uC for 30 s, 42uC for 30 s and 50uC for 1 s. The

control tubes included all components without RT primer (no RT

or - RT) and RNA template (no RNA or - RNA).

Quantitative Real-time PCR
To verify some of the predicted H. vulgare miRNAs experimen-

tally, and to measure and compare the expression levels of the

miRNAs in root and leaf tissues treated with boron, qRT-PCR

was conducted using SYBR Green I Master Kit (Roche, Germany)

on a LightCyclerH 480 Real-Time PCR System (Roche,

Germany). For qRT-PCR analysis,10 mL 2X Master mix,

0.1 mL (100 pmol) forward and 0.1 mL (100 pmol) reverse primers,

7.8 mL nuclease-free water and 2 mL RT stem-loop cDNA

products were used. Forward primers were specifically designed

for each individual miRNA, but 59-GTGCAGGGTCCGAGGT-

39 was used as the universal reverse primer [33] (Table S3). The

qRT-PCR conditions were as follows: initial denaturation at 95uC
for 10 min, followed by 41 cycles at 95uC for 10 s, 55uC for 20 s,

and 72uC for 10 s. The melting curves were adjusted as 95uC for

Figure 2. Expression levels of selected miRNAs and targets in
leaf and root tissues in response to boron stress. Target plots of
miRNA targets validated by degradome analysis (cleavage site are red
letter) (B: Boron, L: Leaf, R: Root, miR: miRNA name, tar: miRNA target
gene).
doi:10.1371/journal.pone.0059543.g002
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Table 4. Barley miRNA targets identified by degradome sequencing.

miRNA name Target gene name Target gene accesssion
Target gene
number Cleavage site

hvu-miR156/
hvu-miR157

Squamosa promoter-binding-like protein (SLP) CL11026.Contig1_All 12 789

CL11193.Contig1_All 11 489

CL13226.Contig1_All 3 613

CL38155.Contig1_All 12 248

hvu-miR159/
hvu-miR159a/
hvu-miR159b

MYB transcription factor family CL32877.Contig1_All 7 161

hvu-miR160 Auxin response factor (ARF) CL7269.Contig1_All 13 232

hvu-miR164a/
hvu-miR164b

NAC transcription factor (NAC) CL1686.Contig1_All 15 800

CL3897.Contig1_All 15 801

CL6305.Contig2_All 13 967

CL8731.Contig1_All 13 1013

CL19527.Contig1_All 10 311

Unigene5170_All 15 868

Unigene29351_All 15 953

hvu-miR165/
hvu-miR166c

Class III Homeodomain-leucine zipper (HD-ZIP
III) proteins

CL153.Contig8 16 452

CL153.Contig11 17 764

hvu-miR168a(3p)/
hvu-miR168b(3p)

Argonaute protein (AGO1) CL3360.Contig1 16 720

hvu-miR169 Nuclear transcription factor Y subunit (NF-Y) CL5590.Contig1 17 943

CL3849.Contig1 15 1123

CL2801.Contig1 13 913

hvu-miR172c/
hvu-miR172d

AP-2 Transcription Factors CL27047.Contig1 10 906

Unigene3420 10 936

hvu-miR319a/
hvu-miR319c

MYB transcription factor family CL32877.Contig1 7 201

CL2226.Contig1 9 527

hvu-miR397 Laccase mRNA CL1278.Contig5 14 547

hvu-miR399 Phosphate transporter 2 (PHO2) and Putative
ubiquitin conjugating enzyme (UBC)

CL876.Contig1 18 1629

CL876.Contig4 18 813

hvu-miR408 Heterotrimeric G protein alpha subunit or
ATPase family gene 1 (AFG1)

CL30341.Contig1_All 14 undetermined

Unigene31703_All 11 undetermined

hvu-miR444/
hvu-miR444a/
hvu-miR444b/
hvu-miR444c

MADS-box transcription factor CL1260.Contig1 19 633

CL3271.Contig2 20 344

hvu-miR1120 COV1-like protein CL58.Contig8_All 16 undetermined

hvu-miR1121 Serine/threonine protein kinase CL3697.Contig1_All 13 undetermined

Unigene28145_All 14 undetermined

hvu-miR1122 Phospholipase A2 and Universal stress protein
(USP) and WIR1

CL1.Contig23_All 14 undetermined

CL2147.Contig2_All 13 undetermined

CL2301.Contig1_All 3 undetermined

hvu-miR1126 Zinc finger ccch domain-containing protein CL6067.Contig1_All 12 undetermined

CL6067.Contig2_All 10 undetermined

CL6067.Contig3_All 10 undetermined

Boron Responsive Barley miRNAs

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e59543



Table 4. Cont.

miRNA name Target gene name Target gene accesssion
Target gene
number Cleavage site

hvu-miR2004 PHD finger family protein,
AP-1 complex subunit,
Subtilase family protein,
Tetratricopeptide repeat-
containing protein and
Transcription elongation factor (TFIIS) family
protein

CL1242.Contig3_All 18 undetermined

CL6239.Contig1_All 11 undetermined

CL904.Contig1_All 14 undetermined

CL162.Contig5_All 8 undetermined

CL17869.Contig1_All 11 undetermined

hvu-miR2007 Protein phosphatase and Serine/arginine
repetitive matrix protein

CL2929.Contig1_All 12 undetermined

CL6012.Contig1_All 11 undetermined

hvu-miR2014 Phospholipid-translocating ATPase, GTP-binding
protein, Ethylene responsive factor and
Transcription factor jumonji

CL283.Contig1_All 12 undetermined

CL7041.Contig1_All 17 undetermined

CL2423.Contig1_All 8 undetermined

CL3225.Contig1_All 13 undetermined

hvu-miR2019 Tubulin-tyrosine ligase family CL326.Contig1_All 14 undetermined

hvu-miR2021 Rough sheath 2-interacting KH domain protein
(RIK), Lysophosphatidylcholine Acyltransferase,
Respiratory burst oxidase-like protein F2 and
Cytochrome P450

CL527.Contig3_All 5 undetermined

CL318.Contig4_All 15 undetermined

CL2680.Contig1_All 12 undetermined

Unigene27511_All 8 undetermined

hvu-miR2024a MADS box protein-like protein and Zinc finger
family protein

CL3271.Contig2_All 20 undetermined

CL9100.Contig1_All 12 undetermined

hvu-miR2906 (E)-beta-caryophyllene/beta-elemene synthase CL40097.Contig1_All 7 undetermined

Unigene30593_All 7 undetermined

hvu-miR2910 glycine rich protein 3, glyceraldehyde-3-phosphate
dehydrogenase, cytosoli, phosphatidylinositol-4-
phosphate 5-kinase 9 and ubiquitin-associated
protein

CL40314.Contig1_All 15 undetermined

CL386.Contig2_All 10 undetermined

CL5067.Contig2_All 12 undetermined

Unigene11586_All 16 undetermined

hvu-miR2914 Senescence-associated protein, CBL-interacting
protein kinase 21

CL8337.Contig1_All 11 undetermined

CL660.Contig7_All 11 undetermined

hvu-miR2916 Senescence-associated protein CL8337.Contig1_All 10 undetermined

hvu-miR5048 RPG1, Serine/threonine protein kinase, NAC
domain-containing protein 18 and Serine/
threonine kinase-like protein

CL26250.Contig1_All 12 undetermined

CL2067.Contig1_All 16 undetermined

CL5978.Contig2_All 14 undetermined

CL421.Contig2_All 14 undetermined

hvu-miR5049 Tubby protein-like CL9685.Contig1_All 9 undetermined

hvu-miR5052 Cyclophilin CL27515.Contig1_All 9 undetermined

hvu-miR5053 Chlorophyll a/b-binding protein and Predicted
protein

CL40448.Contig1_All 13 undetermined

CL33769.Contig1_All 1 undetermined
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5 s and 55uC for 1 min and then cooled to 40uC for 30 s. All

reactions were repeated three times [30]. For each conditions, the

qRT-PCR experiments were run as biological triplicates and

expression levels were normalized according to pervious studies

[8,19,28,29,33,34]. The relative fold change for each comparison

was calculated by 2‘-DCt after normalization [33,34]. Error bars

were derived from the three experiments in triplicate and error

bars represent standard deviation.

Validation of Barley miRNA Target mRNAs by qRT-PCR
To verify the expression levels of identified 11 barley miRNAs,

the mature miRNAs were measured via qRT-PCR. Relative

expression levels of predicted barley miRNAs were compared in

root and leaf tissues treated with excess boron. The expression

profile of these miRNA targets was also measured using qRT-PCR

and their specific PCR primers were listed in the Table S3. The

reverse transcription reaction was performed with Transcriptor

High Fidelity cDNA Synthesis Kit (Roche, Germany) according to

the manufacturer’s protocol. The qRT-PCR experiment was

carried out as reported previously [34,35]. Briefly, 2 mL cDNA

was amplified with 0.1 mL specific primers in a total volume of

18 mL using SYBR Green I Master (Roche) with LightCyclerH 480

Real-Time PCR System. 18s rRNA (GenBank ID: AF147501)

amplified with forward: GTGACGGGTGACGGAGAATT and

reverse: GACACTAATGCGCCCGGTAT primers were used as

a reference gene with triple replicates [36,37].

Results

Identification of Boron Responsive miRNAs in Barley
According to sequence similarity to known plant miRNAs, 31

known and 3 new miRNAs were identified. Previously, miR157,

miR165, and miR319 have been identified in other plant species,

but so far they have been undetermined in barley. Identified

miRNAs in barley were located on either arm of the predicted pre-

miRNA sequences. Of the 34 identified H.vulgare miRNAs, 47% of

mature sequences were located in the 59 arm of pre-miRNAs,

while 53% were situated in the 39 arm (Fig. 1; Fig. S1). The

majority of these miRNAs were 21 nt long, followed by 22 nt,

20 nt and 23 nt, respectively (Table 1), which is consistent with

miRNAs from other plant species [23,36]. In addition, our study

showed that the average of MFEI was 0.86, which is higher than

that of other types of RNA molecules such as tRNAs (0.64),

rRNAs (0.59) and mRNAs (0.62–0.66) (Table 1) [29,37,38,39].

Boron Stress Induced Aberrant Expression of miRNAs in
Barley

To identify the response of barley miRNAs to B treatment, we

compared the expression profile of miRNAs between treated and

untreated groups. The reads were normalized on the basis of

transcripts per million obtained from high-throughput sequencing

(Table 2). Several conserved miRNAs (such as miR160 and

miR171) and non-conserved miR5141 were found abundantly in

both libraries, but many others were detected with only a few in

both libraries or could not be found in either library. We also

found that some miRNAs are only expressed in either root or leaf

tissues. The miR156c and miR319a were highly expressed in root,

whereas miR408 was only detected in leaf. In addition, some

miRNAs such as miR156, miR169, miR172, and miR1121 were

highly expressed in root but miR2004 was highly expressed in leaf.

Expression of most miRNAs was significantly changed in a tissue-

specific manner under boron stress whereas the remaining

miRNAs were found to be responsive in both tissues. In root

tissue responding to boron stress, miR165, miR2004, and

miR5051 were up-regulated whereas miR444b and miR2024a

were down-regulated. miR156, miR169c, miR171, miR171a,

miR444a, miR444c, miR2023a were up-regulated while

miR156d, miR397, miR408, miR1121, miR2014, miR5049,

miR5141, miR5180, and miR5180a were down-regulated in leaf

tissue upon boron stress. In addition, some miRNAs, such as

miR172, miR399, miR2021, miR5053 and miR5066 were

expressed in both root and leaf (Table 3).

Target Identification of miRNAs in Barley Using
Degradome Analysis

A total of 934 genes targeted by miRNAs were identified in

barley by CleaveLand (v2.0) (Table 4). However, we could not

identify the cleavage signature for some of the known miRNAs.

The miRNA guided cleavage sites by degradome analysis are

shown in Fig. 2 and Table S1. According to the results of blastn

analysis of the identified miRNA targets, many of the targets were

homologous to conserved target genes existing in other plants

species; these targets included squamosa promoter-binding pro-

tein, auxin response factor (ARF), MYB transcription factor

family, AP-2 Transcription Factors, NAC transcription factor

(NAC), AGO1, and class III homeodomain-leucine zipper (HD-

ZIP III) proteins. Most of these targets were found to be

responsible for plant growth and response to environmental

changes. For example, the target transcript of miR168 was

ARGONAUTE1 protein (AGO1) family protein, which functions

in plant development and in response to stress stimulus, such as

NaCl and mannitol stress in rice. [40].

qRT-PCR Validation and Measurement of H. vulgare
miRNA Levels and their Targets

Eleven identified barley miRNAs and their targets were further

investigated using qRT-PCR. Both conserved barley miRNAs

(miR156, miR159, miR164, miR166, miR168, miR171, miR395

and miR396) and non-conserved barley miRNAs (miR1120 and

miR5048) were detected. The expression levels of barley miRNAs

and their targets were comparatively shown in Fig. 2. The

miR159, miR164, miR166, miR171, and miR414 were induced

in leaf, but were inhibited in root tissues exposed to boron stress.

Table 4. Cont.

miRNA name Target gene name Target gene accesssion
Target gene
number Cleavage site

hvu-miR5056 RNA polymerase beta subunit CL179.Contig1_All 7 undetermined

hvu-miR5066 Carbohydrate transporter/sugar porter/transporter
and Serine/threonine protein kinase

CL21592.Contig1_All 3 undetermined

CL6.Contig12_All 13 undetermined

doi:10.1371/journal.pone.0059543.t004
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Table 5. Gene Ontology analyses indicate that miRNAs and target in related to biological process, cellular component, molecular
function process.

miRNAs
GO Biological
Process GO Cellular Component

GO Molecular
Function Target Gene Target Description

hvu-miR156
hvu-miR157

– Organelle (plastid) and
cellular part (nucleus)

DNA binding CL13226.Contig1_All
CL11026.Contig1_All
CL11193.Contig1_All
CL38155.Contig1_All

Squamosa promoter-binding
protein

hvu-miR159
hvu-miR159a
hvu-miR159b

– Intracellular organelle
Nucleus

Nucleic acid (DNA)
binding

CL32877.Contig1_All MYB family transcription factor
(GAMyb transcription factor family)

hvu-miR160 Response to stimulus
Cellular process
Biological regulation
Signaling
Metabolic process

Organelle and nucleus Nucleic acid (DNA)
binding

CL7269.Contig1_All Auxin response factor (ARF)

hvu-miR164a
hvu-miR164b

– – Nucleic acid (DNA)
binding

CL6305.Contig2_All
CL1686.Contig1_All
Unigene29351_All
CL19527.Contig1_All
CL3897.Contig1_All
CL8731.Contig1_All
Unigene5170_All

NAC transcription factor (NAC)

hvu-miR165
hvu-miR166c

Biological regulation
Cellular process
Metabolic process

Intracellular organelle
Nucleus

Nucleic acid binding
Transcription factor
activity

CL153.Contig8_All
CL153.Contig11_All

Class III Homeodomain-leucine
zipper (HD-ZIP III) proteins

hvu-miR168a (3p)
hvu-miR168b (3p)

Multicellular organismal
process
Reproduction
Biological regulation
Immune system process
Response to stimulus
Metabolic process
Cellular process
Developmental process

Nucleus
Cytosol

Nucleic acid binding
Catalytic activity

CL3360.Contig1_All AGO1 (ARGONAUTE 1)

hvu-miR169 Biological regulation
Metabolic process
Cellular process

Macromolecular complex
Membrane-enclosed lumen
Membrane-bounded
organelle
Nucleoplasm part

Nucleic acid binding CL5590.Contig1_All
CL3849.Contig1_All
CL2801.Contig1_All

Nuclear transcription factor Y
subunit (NF-Y)

hvu-miR172c
hvu-miR172d

Biological regulation
Metabolic process
Cellular process

Intracellular organelle
Nucleus

Nucleic acid binding
Catalytic activity

CL27047.Contig1_All
Unigene3420_All

AP-2 Transcription Factors

hvu-miR319a
hvu-miR319c

– Nucleus
Intracellular membrane-
bounded organelle

Nucleic acid binding CL32877.Contig1_All
CL2226.Contig1_All

MYB transcription factor family

hvu-miR397 Metabolic process
Cellular process

Extracellular region
Organelle
Cytoplasmic vesicle

Nucleic acid binding
Catalytic activity

CL1278.Contig5_All Laccase mRNA

hvu-miR399 Biological regulation
Cellular process
Localization
Metabolic process
Response to stimulus

– Catalytic activity CL876.Contig1_All
CL876.Contig4_All

Phosphate transporter 2 (PHO2) or
Putative ubiquitin conjugating
enzyme (UBC)

hvu-miR408 Response to pheromone Organelle (mitochondrion)
Cytoplasmic part

Binding
Catalytic activity

CL30341.Contig1_All
Unigene31703_All

Heterotrimeric G protein alpha
subunit or ATPase family gene 1
(AFG1)

hvu-miR444
hvu-miR444a
hvu-miR444b
hvu-miR444c

Biological regulation
Cellular process
Metabolic process

Organelle and nucleus Binding
Catalytic activity

CL1260.Contig1_All
CL3271.Contig2_All

MADS-box transcription factor

hvu-miR1120 – – – CL58.Contig8_All COV1-like protein

hvu-miR1121 Cellular process
Metabolic process

Binding
Catalytic activity

CL3697.Contig1_All
Unigene28145_All

Serine/threonine protein kinase

hvu-miR1122 Response to stimulus Organelle (mitochondrion)
Membrane

– CL1.Contig23_All
CL2147.Contig2_All
CL2301.Contig1_All

Phospholipase A2 or Universal
stress protein (USP) or WIR1
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Table 5. Cont.

miRNAs
GO Biological
Process GO Cellular Component

GO Molecular
Function Target Gene Target Description

hvu-miR1126 Cellular component
Membrane

Binding
Catalytic activity

CL6067.Contig1_All
CL6067.Contig2_All
CL6067.Contig3_All

Zinc finger ccch domain-
containing protein

hvu-miR2004 Biological regulation
Cellular process
Localization
Metabolic process

Cell
Extracellular region
Macromolecular complex
Organelle

Binding
Catalytic activity
Transcription regulatory
activity

CL1242.Contig3_All
CL6239.Contig1_All
CL904.Contig1_All
CL162.Contig5_All
CL17869.Contig1_All

PHD finger family protein or AP-1
complex subunit or Subtilase
family protein or Tetratricopeptide
repeat-containing protein or
Transcription elongation factor
(TFIIS) family protein

hvu-miR2007 Cellular process
Metabolic process

Cell
Organelle (Plastid)

Binding
Catalytic activity

CL2929.Contig1_All
CL6012.Contig1_All

Protein phosphatase or Serine/
arginine repetitive matrix protein

hvu-miR2014 Biological regulation
Cellular process
Localization
Metabolic process
Response to stimulus
Signaling

Organelle (mitochondrion)
Cytoplasmic part

Binding
Catalytic activity
Molecular transducer
activity
Transporter activity

CL283.Contig1_All
CL7041.Contig1_All
CL2423.Contig1_All
CL3225.Contig1_All

Phospholipid-translocating ATPase
or GTP-binding protein or Ethylene
responsive factor or Transcription
factor jumonji

hvu-miR2019 Cellular process
Metabolic process

Cell
Organelle (Chlroplast)

Catalytic activity CL326.Contig1_All Tubulin-tyrosine ligase family

hvu-miR2021 Cellular process
Metabolic process

Cell part
Nucleus
Intracellular membrane-
bounded organelle

Antioxidant activity
Binding
Catalytic activity
Electron carrier activity

CL527.Contig3_All
Unigene27511_All
CL318.Contig4_All
CL2680.Contig1_All

Rough sheath 2-interacting KH
domain protein (RIK) or
Lysophosphatidylcholine
Acyltransferase or Respiratory
burst oxidase-like protein F2 or
Cytochrome P450

hvu-miR2024a Biological regulation
Cellular process
Metabolic process

Intracellular organelle
Membrane-bounded
organelle
Nucleus

Binding CL3271.Contig2_All
CL9100.Contig1_All

MADS box protein-like protein or
Zinc finger family protein

hvu-miR2906 – – – CL40097.Contig1_All
Unigene30593_All

(E)-beta-caryophyllene/beta-
elemene synthase

hvu-miR2910 Biological regulation
Cellular process
Developmental process
Metabolic process
Multicellular organismal
process
Reproduction

Cellular component
Cytoplasm
Intracellular part

Binding
Catalytic activity

CL40314.Contig1_All
CL386.Contig2_All
Unigene11586_All
CL5067.Contig2_All

Glycine rich protein 3 or
Glyceraldehyde-3-phosphate
dehydrogenase, cytosoli or
Phosphatidylinositol-4-phosphate
5-kinase 9 or Ubiquitin-associated
protein

hvu-miR2911 – Intracellular organelle
Membrane-bounded
organelle
Mitochondrion

Binding CL17424.Contig1_All
CL23524.Contig1_All

ASF/SF2-like pre-mRNA splicing
factor SRP32 or Hydroxyproline-
rich glycoprotein family protein

hvu-miR2914
hvu-miR2916

Biological regulation
Cellular process
Metabolic process
Response to stimulus
Signaling

Cytoplasmic part
Intracellular membrane-
bounded organelle
Plastid

Binding
Catalytic activity

CL8337.Contig1_All
CL660.Contig7_All

Senescence-associated protein or
CBL-interacting protein kinase 21

hvu-miR5048 Cellular process
Metabolic process

– Binding
Catalytic activity

CL26250.Contig1_All
CL2067.Contig1_All
CL5978.Contig2_All
CL421.Contig2_All

RPG1 or Serine/threonine protein
kinase or NAC domain-containing
protein 18 or Serine/threonine
kinase-like protein

hvu-miR5049 Biological regulation
Cellular process
Metabolic process

– Sequence-specific DNA
binding transcription
factor activity

CL9685.Contig1_All Tubby protein-like

hvu-miR5052 Cellular process
Metabolic process

– Binding
Catalytic activity
Electron carrier activity

CL27515.Contig1_All Cyclophilin

hvu-miR5053 Cellular process
Metabolic process

Chloroplast
Membrane

– CL40448.Contig1_All Chlorophyll a/b-binding protein or
Predicted protein

hvu-miR5056 – – – CL179.Contig1_All RNA polymerase beta subunit

hvu-miR5066 Cellular process
Metabolic process

Cell part
Membrane

Binding
Catalytic activity

CL21592.Contig1_All
CL6.Contig12_All

Carbohydrate transporter/sugar
porter/transporter or Serine/
threonine protein kinase

doi:10.1371/journal.pone.0059543.t005
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Although miR168 was induced, miR159, miR396, miR1120 and

miR5048 were inhibited in both root and leaf upon excess boron

exposure. The targets of miR159 and miR1120 were found to be

up-regulated in both root and leaf upon boron stress, but miR395

and miR5048 target genes were down-regulated in root but

remained at the same levels in leaf tissue upon boron stress.

Additionally, miR171 target gene was down-regulated in leaf but

up-regulated in root upon boron stress (Fig. 2).

Gene Ontology (GO) Analysis
According to the gene ontology analysis, the predicted targets

were classified into three main categories: biological processes,

cellular components, and molecular functions (Table 5). Of these,

cellular and metabolic process in biological process, cell and

organell part in cellular component, and binding and catalytic

activity in molecular function were the most established categories.

Discussion

High-throughput sequencing technology has currently been

successfully applied to identify miRNAs at whole genome scale in

several plant species, including: soybean [41,42], peanut [43,44],

barley [21,45], poplar [46], olive [47], Medicago [48], grapevine

[49], rice [50], and cucumber [23]. However, almost all of the

previous studies have been performed under normal growth

conditions, few are associated with stress conditions. Li et al. [41]

reported soybean miRNAs under three stress treatments (drought,

salinity, and alkalinity) via high-throughput sequencing. Drought

stress responsive miRNAs shows differential expression in response

to heat stress in Populus euphratica and wheat [46,51]. In this study,

we constructed RNA libraries from barley leaves and roots treated

with boron stress compared to control conditions to idnetify boron

stress-responsive miRNAs in barley using high-throughput se-

quencing.

Boron treatment affected the expression profiles of miRNAs in

barley leaf and root tissues. The most striking oneswith 16-fold and

12-fold changes were miR408 and miR5180, respectively. The

remaining changes in the expression of miRNAs ranged between

2- to 7-fold (Table 3).

Recently, miR408 was identified in barley, which targets Cu-

binding domain containing chemocyanin and blue copper protein

[19]. In this study, we found that miR408 also potenially targets

heterotrimeric G protein alpha (a) subunit and ATPase family

gene 1 (AFG1). Heterotrimeric G proteins and ATPase gene

family plays significant roles in signal transduction pathways in

plants [52,53,54]. Fujisawa et al. [55] reported that suppression of

a subunit gene expression causes abnormal morphology in rice. In

response to water deficit, miR398 and miR408 were induced in

Medicago truncatula [56]. In addition, expression of miR408 upon

drought stress in barley was found to be induced in leaves, but

unchanged in roots [19]. However, in Oryza sativa, miR408

expression was reported as 2.76-fold down-regulated 12 days after

water withholding at tillering stage upon drought stress using

microarray analysis [40]. In our study, expression of miR408 was

down-regulated significantly (16-fold) upon excess boron treatment

in barley leaves.

Previous studies reported the miRNA expression in a species-

specific or tissue-specific manner [57,58]. miR168, miR319,

miR396, and miR397 were induced by drought in Arabidopsis

thaliana but were suppressed in Oryza sativa [59]. Additionally, the

expression of miR399 was induced in shoots upon phosphate

deficiency treatment, but it was accumulated in both shoots and

roots [57]. In barley, miR166 was up-regulated in leaves, but was

down-regulated in roots; miR171 level was induced in leaves, but

it was not affected in roots [19]. In our study, miR169c, miR171,

and miR399 were up-regulated in leaves whereas miR397,

miR444b were down-regulated in roots after exposure to high B

concentration. The miR172 was down-regulated 2-fold in roots

but up-regulated 4-fold in leaves in response to boron stress. The

miR169c and miR171 was determined to be 6-fold up-regulated

and 2-fold up-regulated in leaves under boron stress, respectively.

In Medicago truncatula, miR169 and miR172 were up-regulated but

miR171 and miR390 were down-regulated upon mercury

exposure [16]. Similarly, miR171 was down-regulated but

miR172 was up-regulated by cadmium exposure in Brassica napus

[15]. However, in response to Al3+ treatment, miR171 was up-

regulated in Medicago truncatula [14].

Our study demonstrated that boron stress inhibited miR156a

expression in barley leaves. However, we did not detect its

expression in roots. In addition, the target of miR156a, SBP

protein gene, was down-regulated in stressed leaves, but was

unaltered in roots in response to boron stress (Fig. 2). This result is

similar to the prvious report [19], whereas not affected in roots

upon drought stress. Expression of miR156 has been investigated

in many studies as down-regulated in Oryza sativa, Zea mays, Populus

tremula, Populus trichocarpa in response to drought stress, salt stress,

cold stress, mechanical stress, while up-regulated in Arabidopsis

thaliana, Triticum aestivum, Nicotiana tabacum upon salt stress, heat

stress, viral infection, respectively [59]. Our study indicates that

miR156 was also boron stress responsive in leaves upon excess

boron treatment.

For better understanding of the functions of miRNAs, gene

ontology analysis for miRNA target transcripts was performed.

Sixty genes targted by 34 miRNAs were found to be involved in 77

biological processes. These major processes are as follows: biological

regulation, metabolic process, response to stimulus, cellular process,

signaling, multicellular organismal process, reproduction, immune

system process, developmental process, and localization. The most

(24 out of 34) miRNAs participated in the cellular and metabolic

processes, and the rest 12 miRNA families may be involved in other

processes. For example, miR168 and miR2910 may have a role in

plant reproduction, whereas miR160, miR2014 and miR2916

might be associated with signal transduction. Using gene ontology

analysis, Mao et al. [23] reported that abscisic acid and salicylic acid

stimulus might be regulated by miR159 and miR858 in cucumber.

Furthermore, according to gene ontology analysis, 3 miRNAs

(miR399, miR1122 and miR2014) were determined to be regulated

in response to boron stress.

In conclusion, we identifed 32 known and 4 new barley

miRNAs, as well as 934 target genes using recently developed

degradome analysis. The majority of the identified miRNAs were

significantly responsive to boron stress in barley. In particular, the

signal transduction mechanism in leaves regulated by miR408

plays an important role in boron tolerance in barley consistent

with previous reports [40,60].
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