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Summary
Recent advances in plant genomics are scaling up gene expression profiling from the individual

level to the population level, making transcriptomics a more powerful tool while deciphering the

genome function. This study developed an efficient 30RNA-seq method, Simplified Poly(A)

Anchored Sequencing (SiPAS), to perform large-scale experiments of gene expression quantifi-

cation. Aside from being cost-effective, by conducting a comprehensive performance assessment

of SiPAS in hexaploid wheat, we demonstrated that SiPAS is highly sensitive, accurate, and

reproducible while quantifying gene expression. Our method is anticipated to boost studies of

population transcriptomics in plants and improve our understanding of genome biology.

Introduction

RNA sequencing (RNA-seq) is a keystone technology for modern

biological research, shifting many genomic studies from a solely

genomic level to a multi-omic level and thus effectively

improving our understanding of genome biology (Stark et al.,

2019). Over the last few years, vast amounts of genomic data

have been generated in many plant species. For example,

hundreds to thousands of accessions were whole-genome

sequenced to construct genetic variation maps of wheat (Zhou

et al., 2020), maize (Bukowski et al., 2018), rice (Wang et al.,

2018), cassava (Ramu et al., 2017), potato (Hardigan et al.,

2017), and soybean (Liu et al., 2020), etc. Likewise, high-quality

pan-genomes were also rapidly assembled in many important

crops (Gao et al., 2019; Hufford et al., 2021; Jayakodi et al.,

2020; Lu et al., 2015; Walkowiak et al., 2020; Zhao et al.,

2018). The gigantic size of genomic data is creating a vacuum

where a large quantity of transcriptomic data needs to be filled

to help decode the function of the genome. Highly efficient

RNA-seq technologies are increasingly demanded in biological

research.

The emergence of 30RNA-seq is a giant leap of RNA-seq

technologies (Miyoshi et al., 2008). Although the 30RNA-seq is

not capable of detecting alternative splicing isoforms when

compared with conventional RNA-seq approaches, it provides

alternative benefits of being cost-effective to gene expression

quantification (Corley et al., 2019; Tandonnet and Torres,

2017). Recently, active methodological development has been

made to the 30RNA-seq technology. Major improvements

include increasing multiplexity using sample barcoding (Alpern

et al., 2019; Bush et al., 2017; Kamitani et al., 2019; Pallares

et al., 2020; Sholder et al., 2020; Tzfadia et al., 2018; Ye

et al., 2018), and reducing the cost by simplifying procedures

of library preparation (Bush et al., 2017; Kamitani et al., 2019;

Pallares et al., 2020; Sholder et al., 2020; Ye et al., 2018).

Certainly, these protocols have achieved great success; how-

ever, it is worth noting that these 30RNA-seq methods usually

use custom sequencing format and they have not been

sufficiently optimized for the standard paired-end 150/250 bp

(PE150 or PE250) sequencing. Although custom sequencing

format [e.g. shorter and uneven read length at read 1 (R1) and

read 2 (R2)] can lower sequencing cost at the benchtop scale,

one crucial, often overlooked fact is that an increasing amount

of the sequencing projects have been outsourced from

research facilities to commercial sequencing companies. At

the production scale, these companies often provide their

service using the standard sequencing format because it can

offset the overall cost dramatically. In other words, 30RNA-seq
using standard PE sequencing is more cost-effective, and

probably performs better if the approach was optimized

properly.

In this study, we developed an efficient gene expression

profiling approach, Simplified Poly(A) Anchored Sequencing

(SiPAS), by combing the advantages of reported 30RNA-seq
methods and optimizing the use of standard PE150 sequencing

format. Through testing SiPAS for its performance in bread

wheat (Triticum aestivum. ssp. aestivum, 2n = 6x = 42, genome

size = 16 Gb; Appels et al., 2018), we presented evidence

showing that SiPAS achieves a high level of sensitivity, accuracy,

and reproducibility. It is anticipated that SiPAS will boost studies

of population transcriptomics of crops as well as many other

plants.
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Results

The design of SiPAS

Illumina paired-end sequencing allows users to sequence both ends

of a template fragment and generates reads at both ends,

designated as read1 (R1, ligated to P5 adapter) and read2 (R2,

ligated to P7 adapter). Reported 30RNA-seq methods apply cus-

tomized and shortened paired-end sequencing (Read length:

R1 < R2 < 150 bp) to reduce the sequencing cost, where R1 (poly

(T) end) is used for barcoding and R2 (non-poly(T) end) is used for

read mapping (Bush et al., 2017). Given the standard PE150

sequencing format, we hypothesized that 30RNA-seq can be further

improved from three aspects. First, PE150 sequencing itself may

increase the detecting power of gene expression because longer

reads can lead to significant gains in read mapping accuracy (Smith

et al., 2008). Second, switching the sequencing adapters, specif-

ically, usingR1 (non-poly(T) end) formappingandR2 (poly(T) end) for

barcoding may be useful because R1 has a higher base quality than

R2 in Illumina sequencing, and base quality has a positive effect on

read mapping accuracy (Canzar and Salzberg, 2017). Third, unique

molecular identifiers (UMIs) have been used actively in single-cell

RNA-seq to monitor PCR amplification artefacts, which originate

from the same cDNA but are sequenced multiple times due to the

PCR amplification bias (Fu et al., 2011, 2018; Islam et al., 2014;

Kivioja et al., 2011; Smith et al., 2017); we hypothesized that UMIs

can be valuable to bulk 30RNA-seq as well.

By combining the technical advantages of the reported 30RNA-
seq methods, we established a framework workflow of SiPAS

(Figure 1a, see Methods). According to the hypotheses men-

tioned above, we conducted both simulation analysis (Figure S1)

and wet-lab protocol tests (T1, T2, T3 and T4 shown in Figure 1b)

to explore the potential improvements of 30RNA-seq with the

goal to achieve an optimal design of SiPAS.

Simulation analysis of read mapping

Both read length and base quality are key to read mapping

accuracy, which is fundamental to the performance of gene

expression profiling. To examine how read length affects read

mapping of RNA-seq, we simulated a data set of 100 000 reads

from transcript sequences derived from the wheat reference

genome (IWGSC RefSeq v1.0; Appels et al., 2018). These

simulated reads had different lengths ranging from 50 to

150 bp. By comparing the original position and the mapping

position of individual reads (Figure S1b), despite the positive

effect of read length on both precision and recall, the read

mapping precision appeared to be fairly high and consistent—the

precision values were all greater than 0.999. In contrast, the recall

values were varying substantially from 0.75 to 0.95 (Figure 2a).

Similarly, another data set of 100 000 reads was simulated with

different base quality scores (from 25 to 37) to examine the effect

of base quality on read mapping (Figure S2). The results showed

that the precision values were high and consistent as well

(>0.997), but the recall values increased with base quality in a

relatively big range spanning from 0.87 to 0.89. The simulation

analysis indicates that both read length and base quality impact

mostly on mapping sensitivity rather than mapping precision, and

read length has a larger effect on mapping sensitivity than base

quality does. These results also demonstrate that the read

mapping precision, or specificity, is high and almost unaffected

by either read length or base quality, as long as the reads are

uniquely mapped to the genome.

Read mapping of protocol tests

The simulation analysis predicts that higher base quality will

improve read mapping sensitivity and increase the number of

uniquely mapped reads (Figure 2b); accordingly, we conducted

the four protocol tests using Illumina sequencing to evaluate how

switching adapters affect the base quality and unique mapping in

real data, for which RNA-seq experiments of wheat samples were

performed. Wheat leaves sampled at 10 am were used for RNA-

seq tests with 12 technological replicates. A high proportion of

uniquely mapped reads is considered to be superior because only

those reads are used to quantify gene expression. By switching

the adapters, R1 becomes the non-poly(T) end of reads which is

used for mapping. As expected, the results showed that T2 and

T4, in which the adapters were switched, exhibited the highest

base quality score in the non-poly (T) end of reads (Figure 2c).

Read alignment (150 bp, n = 5 M) using the single-end mode

showed that T2 and T4 increased the proportion of uniquely

mapped reads by 10.37% when compared with T1 and T3

(Figure 2d).

Although switching adapters increased the base quality of non-

poly(T) end of reads for T2 and T4, it was notable that the base

quality of the poly(T) end was decreased substantially (Figure 2c),

which is likely due to the combined effect of poly(T) and the low

quality of R2. The low-quality R2 sequence of 150 bp length set a

dilemma for read mapping—according to the simulation analysis,

on the one hand, low base quality may reduce mapping

sensitivity. On the other hand, paired-end reads of 300 bp length

can increase mapping sensitivity (Figure S3). To assess the overall

effect of R2, we performed read alignment of the paired-end

mode using both ends of reads (n = 5 M). The results showed

that the proportion of uniquely mapped reads rose in all four

tests. For T2 and T4, the uniquely mapped reads increased by

2.71% and 2.34%, reaching 84.33% and 84.29%, respectively

(Figure 2d), which is consistent with that read length has a larger

effect on read mapping sensitivity than base quality does as

shown in the simulation analysis (Figure 2a,b). The slightly higher

percentage of uniquely mapped reads in T2 than T4 is probably

due to the relatively longer effective read length in the poly(T) end

(Figure S4). Given the higher proportion of uniquely mapped

reads of paired-end alignment, we use paired-end mode for read

mapping in the following analyses.

Gene expression quantification of protocol tests

Accurate and stable quantification of gene expression is crucial to

RNA-seq applications. We then investigated the effect of UMI on

correcting for PCR amplification bias in bulk 30RNA-seq. Also, we

compared the four protocol tests in respect of accuracy and

reproducibility of gene expression quantification.

UMIs were anchored to RNA molecules in T3 and T4

(Figure 1b), in which we evaluated the effectiveness of UMI by

comparing the read count and the UMI count. By examining the

12 replicates of individual protocols, the results showed that the

mean Pearson correlation coefficient (r) between the read count

and UMI count was all greater than 0.999 in T3 and T4. No

outliers were found to be responsible for the high level of

similarity (Figure 3a,b). Meanwhile, a similar number of genes can

be detected by using either read count or UMI count to quantify

gene expression (Figure S5). Both lines of evidence suggest that

UMI is optional for bulk 30RNA-seq when there is a wealth of RNA

molecules going through low PCR cycles (e.g. more than 0.5 µg
total RNA per sample and 12 PCR cycles).
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We used a set of standard RNA controls, External RNA Controls

Consortium reference (ERCC; Lemire et al., 2011; Pine et al.,

2016) as the ‘true values’ to evaluate the accuracy of gene

expression quantification. ERCC has 92 molecules with known

masses, which can be used to compare the concentration of

individual molecules before and after RNA-seq experiments. For

the purpose of comparison, we performed RNA-seq using TruSeq

(Chao et al., 2019; Palomares et al., 2019; Sarantopoulou et al.,

2019) with 3 replicates on the same leaf sample used in the

protocol tests. The results showed that TruSeq achieved the

highest accuracy—Pearson’s r between the original concentration

of ERCC molecules and their predicted expression levels was

higher than 30RNA-seq approaches across different sequencing

depth. In the four protocol tests, T2 outperformed the other three

tests and showed slightly lower performance than TruSeq. The

gap of Pearson’s r between T2 and TruSeq was 0.019 on average

(Figure 3c). In addition to the accuracy, we also evaluated the

reproducibility of the four protocol tests by calculating Pearson’s r

of the expression level of all wheat genes (n = 107 891) between

replicates of RNA-seq tests. T2 showed a slightly lower repro-

ducibility than TruSeq with a gap of 0.015 in terms of Pearson’s r,

but outperformed the other three tests (Figure 3d).

Taken together, by simply switching adapters, T2 performed

better than the rest of the protocol tests and achieved high

sensitivity, accuracy, and reproducibility. Hence, we choose T2

protocol as the optimal design of SiPAS.

Performance comparison between SiPAS and TruSeq

As Illumina TruSeq has long been considered as the gold standard

approach of gene expression profiling, we use the full-length

transcriptome profiling method TruSeq (Chao et al., 2019; Palo-

mares et al., 2019; Sarantopoulou et al., 2019) to benchmark the
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Figure 1 The design of SiPAS. (a) Framework workflow of SiPAS. For step 1, cell lysis in single tube is performed to break down the cell wall completely.

For steps of 2 and 3, lysate is transferred into 96-well plates, followed by total RNA extraction, as well as barcoding and reverse transcription of total RNA

using designed primers. For steps of 4–8, samples in one plate are pooled for second-strand synthesis, purifying cDNA, size selection, and PCR amplification

for sequencing. (b) Optimization design of SiPAS. Four protocol tests (T1, T2, T3 and T4) were designed to assess the effect of switching adapters and using

UMIs. In T1, barcodes are ligated to P5 adapter and UMIs are not used. In T2, barcodes are ligated to P7 adapter and UMIs are not used. In T3, barcodes are

ligated to P5 adapter and UMIs are used. The optimal design of SiPAS can be obtained through the comparison of the four tests. In Illumina paired-end

sequencing, R1 are reads with P5 adapter and R2 are reads with P7 adapter.
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newly developed SiPAS. Both TruSeq and SiPAS libraries were

constructed using wheat leaves sampled at 10 am and 10 pm.

Although SiPAS showed slightly lower accuracy and reproducibility

than TruSeq (Figure 3c,d), the accordance between SiPAS and

TruSeq increased with sequencing depth (Figure 4a). Pearson’s r of

gene expression level measured by the two approaches shifted from

0.84 to0.91when readnumberof individual samples increased from

1 to 12 M (Figure 4a). Given the clear diminishing returnof accuracy

and reproducibility (Figure 3c,d), we chose a sequencing depth of

5 M reads per sample in wheat to balance the benefit and cost of

SiPAS, at the sequencing depth ofwhichwe observed a high level of

agreement between TruSeq and SiPAS (Figure 4b).

Differentially expressed gene (DEG) analysis is one of the most

common applications of RNA-seq. Both TruSeq and SiPAS libraries

were constructed using wheat leaves sampled at 10 am and 10 pm

to identify DEGs. To allow a fair comparison, we used a sequencing

depth of 5 M/replicate in both TruSeq and SiPAS. Principal compo-

nent analysis (PCA) of gene expression showed that replicates from

am and pmwere clearly separated (Figure 4c). The two clusters (am

and pm) from SiPAS were highly consistent with TruSeq. It is worth

noting that the PC1, which represents the biological difference

between leaf samples of am and pm, explains 78% of the total

variance. Contrarily, the PC2, representing the technological differ-

ence between SiPAS and TruSeq, explains 18%of the total variance.

These results suggest that SiPAS iswell qualified to capture biological

differences in DEG analysis.

Identifying DEGs in leaf tissue between am and pm was then

performed based on three replicates from the two RNA-seq
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shown.
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methods. By applying the same thresholds, where the absolute

value of fold change of expression was greater than 2 and the

false discovery rate was less than 0.05, we identified similar

numbers of DEGs—a total of 6588 and 5940 DEGs were detected

by TruSeq and SiPAS, respectively. A large number of DEGs

(n = 5340) were shared between the two data sets. Pearson’s r of

the fold change of identified DEGs between SiPAS and TruSeq

was up to 0.95, indicating that SiPAS is interchangeable with

TruSeq for DEG analysis (Figure 4d).

Performance of SiPAS for degraded RNA

RNA molecules are fragile and susceptible to degradation.

Therefore, RNA-Seq methods with a high tolerance for RNA

degradation are favoured in high throughput transcriptomic

studies. The integrity of RNA molecules, which is measured by

RNA integrity number (RIN), reflects the extent of RNA degrada-

tion. To evaluate the tolerance of SiPAS to degraded RNA

molecules, we used the Mg++ cations to randomly fragment RNA

and mimic the RNA degradation process. Compared with intact

RNA (no treatment) with a RIN value of 7.4, two fragmented

samples had RIN values of 6.8 and 2.3, respectively (Figure 5a).

Gene expression quantification of fragmented samples showed

that SiPAS was fairly robust to RNA degradation—RIN had a

negligible effect on both reproducibility (Figure 5b) and accuracy

(Figure 5c) of gene expression profiling using SiPAS. The high

tolerance of RNA degradation ensures the ease of use of SiPAS

for high-throughput RNA-Seq experiments.

Discussion

An in-depth understanding of genome function is fundamental to

the precision breeding of crops. While thousands of individuals

have been whole-genome sequenced for major crops (Bukowski

et al., 2018; Wang et al., 2018; Zhou et al., 2020), the fine
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genotype-phenotype map is still far from complete. As a newly

formed research field, population transcriptomics has shown

remarkable power in addressing the genetic basis of fitness loss

(Kremling et al., 2018) and environmental adaptation (Groen

et al., 2020), as well as deciphering the regulatory machinery of

gene expression (Washburn et al., 2019). There is no doubt that

transcriptomics at the population level will have a much broader

application in plant genetics.

SiPAS, as an improved 30RNA-seq method, provides multiple

strengths to advance population transcriptomic studies in plants.

First, SiPAS is effortless and cost-effective. The workflow is

simplified by starting with total RNA instead of mRNA capture

and bypassing RNA fragmentation without using Tn5 or Mg++.

Meanwhile, SiPAS is optimized and well suited for the standard

sequencing format of Illumina (PE150). Benefiting from the

simplified and standardized library construction process, the cost

of SiPAS is substantially reduced to $2/sample (Table S2). Second,

SiPAS is highly effective in quantifying gene expression. By

switching P5 and P7 adapters, the read end used for alignment

achieves higher base quality, resulting in increased read mapping

sensitivity, and a high level of accuracy and reproducibility of gene

expression quantification. Notably, for 107 891 genes in the

wheat genome, only five million reads achieved Pearson’s r of

0.96 between the gene expression level of two technical

replicates. This suggests that SiPAS may not require technical

replicates for transcriptomic analysis when the sample size is

large. Third, SiPAS is robust to RNA degradation (Figure 5). This is

because the 30RNA is generally more stable than the rest of RNA

sequences (Sigurgeirsson et al., 2014). The high tolerance to RNA

degradation lessens the variability during sample preparation and

guarantees a fair comparison of gene expression between

samples.
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Figure 5 The performance of SiPAS on degrading RNA library. (a) RIN values obtained from Agilent 2100 Bioanalyzer System in different degrees of

degraded RNA library. (b) Correlation of gene expression levels between technical replicates of degraded RNA library. (c) Correlation of gene expression

levels before and after RNA degradation.
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We did observe a slightly lower performance of SiPAS than

TruSeq in terms of accuracy and reproducibility for gene

expression quantification (Figure 3c,d). This is likely due to the

fact that TruSeq has longer effective read length and higher base

quality, because the barcodes and poly(T) actually reduce the read

length of SiPAS; at the same time, the base quality of R2 for SiPAS

decreased by the poly(T). It is also worth noting that, compared

with the full-length RNA-Seq method, the accuracy of gene

expression quantification of 30RNA-Seq is more likely to be

affected by the quality of gene/transcript annotation of the

reference genome. However, 30RNA-Seq methods, including

SiPAS, will achieve their best performance when high-quality

transcripts annotation is available for the species being studied.

Overall, with the strengths of being cost-effective and labour-

saving, and equivalent performance with TruSeq, SiPAS promises

the ease of use of this method in large-scale population

transcriptomic studies. We anticipate that SiPAS will be used in

many species and contribute to an in-depth understanding of

plant genomes.

Methods

Material cultivation

Chinese Spring, an accession of bread wheat (Triticum aestivum),

was grown within growth pouches supplied by Hoagland’s

solution in growth chambers with 16 : 8 h of day: night length

at constant 22 °C for 14 days. At 10 am (day) and 10 pm (night)

on the 14th day, plant shoots at the three-leaf stage (Zadok stage

13) were selected for RNA extraction.

Workflow of SiPAS

Cell lysis

First, samples were immediately frozen in liquid nitrogen and

grounded into fine powder. Then, 400 lL TRIZOL reagent

(Invitrogen, # 15596018) was added into each tube and

thoroughly mixed with the sample.

Extraction of total RNA

Direct-zol-96 RNA Kits (Zymo, #R2054) were used to extract the

total RNA. This kit provided a mature process for high-quality RNA

extraction (https://www.zymoresearch.com/collections/direct-zol-

rna-kits/products/direct-zol-96-rna-kits).

Barcoding and reverse transcription

RNA was quantified using RNA Quantifluor (Qubit Fluorometer)

and diluted to a concentration of 100 ng/µL. We transferred 5 µL
of 100 ng/µL total RNA and 1 µL of 1 : 100 dilution of ERCC Ex-

Fold Spike-Ins (Invitrogen, # 4456739) to each well. And then

SiPAS reverse transcription (RT) primers were dispensed into each

well. The RT primers for the four tested protocols are as follows,

P5 adapter sequence (GTTCAGAGTTCTACAGTCCGACGATC)

plus (barcode)(T)21VN for T1, P5 adapter sequence plus (bar-

code)N10V5(T)21VN for T3, P7 adapter sequence

(GCCTTGGCACCCGAGAATTCCA) plus (barcode)(T)21VN for T2,

P7 adapter sequence plus (barcode)N10V5(T)21VN for T4. The

barcode sequence is supplemented in Table S2. To anneal the RT

primers to poly(A) tail, the plate was heated to 94 °C for 2 min

and placed immediately on ice for 5 min. RT mixture (containing

7 µL ProtoScript II Reaction Mix (29) and 1 µL ProtoScript II

Enzyme Mix (109), NEB, #E6560L) was then dispensed into each

well. The plate was cultivated on thermocycler with a programme

beginning with 25 °C for 5 min, and followed by 42 °C for 2 h

and 80 °C for 5 min to end the reaction. To remove excess

primers, 1 µL of 49 Exonuclease I and 4 µL Exonuclease I buffer

(NEB, #M0293L) were added to each well and then incubated at

25 °C for an hour. For each well, 20 µL mixture (equal volume of

1 M NaOH and 0.5 M EDTA) was added and incubated at 65 °C
for 15 min to hydrolyse RNA.

Pooling

For each plate, 10 µL of products from each well is pooled

together. Then, the pooled samples were purified with QIAGEN

MinElute kit (QIAGEN, #28004) according to the manufacturer’s

instructions and eluted with 17 µL nuclease-free water.

Second strand synthesis

For second-strand synthesis, 1 µL of 10 mM dNTP mixture (NEB,

#N0447S) and 1 µL of 100 mM second strand synthesis primer

(GCCTTGGCACCCGAGAATTCCANNNNNN for T1 and T3,

GTTCAGAGTTCTACAGTCCGACGATCNNNNNN for T2 and T4)

were added to the pooled cDNA. The mixture was then heated to

70 °C for 2 min and immediately placed on ice for 5 min. 2 µL of
NEB Buffer 2 (NEB, #B7002S) and 1 µL of Klenow large fragment

DNA polymerase (NEB, # M0210L) were added. Then, the plate

was incubated at 37 °C for 30 min. The reaction was stopped by

the addition of EDTA to a final concentration of 50 µM. AMpure

XP beads (Beckman Counter, #A63881) were added to the

reaction product at a 1 : 1 bead-to-sample ratio to perform

clean-up.

Size selection

Size selection was performed to pooling target DNA using

AMpure XP beads (insert DNA length is about 350 bp).

PCR

The double-stranded cDNA pool was amplified by PCR using

NEBNext Ultra II Q5 Master Mix (NEB, #M0544L) with 0.5 µM

Illumina RP1 primer and Illumina RPIx primer (where x is a number

indicating the Illumina index). The thermocycling protocol began

with 98 °C for 30 s followed by 12 cycles of 98 °C for 15 s,

62 °C for 15 s, and 72 °C for 60 s, and then incubated at 72 °C
for 7 min. Three replicates of Illumina TruSeq library (Illumina,

#20020594) for am or pm respectively were constructed starting

with the same total RNA and ERCC Ex-Fold Spike-Ins with SiPAS

libraries following the manufacturer’s instructions. The libraries

were sequenced using the Illumina NovoSeq platform with PE150

sequencing format.

Simulation analysis

We simulated two data set of reads to evaluate the effect of read

length and base quality on the accuracy of read mapping. Each of

the data sets consisted of 100 000 reads from transcript

sequences derived from the wheat reference genome (Appels

et al., 2018). Reads in the data sets were set to have 1%

sequence difference with the reference transcripts to mimic

natural genetic diversity. For the first data set, these simulated

reads had different read length ranging from 50 to 150 bp. For

the second data set, these reads had the same read length of

150 bp, but different mean base quality from 25 to 37. By

comparing the mapping position and known position of the

simulated reads, we were able to access how read length and

base quality affect read mapping accuracy.
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Bioinformatics of gene expression quantification

We developed a pipeline, SiPAS-Profiler, to perform fastq file

parsing, read alignment, and read counting for SiPAS (https://

github.com/PlantGeneticsLab/SiPAS-Profiler). The detailed bioin-

formatic process of SiPAS-Profiler is as follows.

Parsing fastq files

SiPAS is a highly multiplexing approach. Each sample has its

unique barcode which would be used for parsing samples. The

barcodes are at the beginning of R2. A total of 12 barcodes with

eight bases for each were applied as identifiers of samples

through experiments. We built a HashMap of barcode-and-

sample in SiPAS-Profiler to parse fastq files.

Read alignment

The splice-aware STAR (Dobin et al., 2013) aligner was used to

align reads against the wheat reference genome IWGSC 1.0

(Appels et al., 2018), allowing a read to map to at most 10

locations (–outFilterMultimapNmax 10) with at most 10%

mismatches (–outFilterMismatchNoverLmax 0.1), while filtering

out all non-canonical intron motifs (–outFilterIntronMotifs

RemoveNoncanonicalUnannotated). The minimum mapped read

length was set to 80 (--outFilterMatchNmin 80).

Counting reads

HTSeq (Anders et al., 2015) was used for read counting. Default

settings of intersection-nonempty mode from HTSeq32 v.0.11.1

were used to obtain gene-level read counts from the resulting

BAM files.

PCA

A total of 30 gene expression data sets (12 replicates of SiPAS and

three replicates of TruSeq in both am and pm conditions) were

used for the PCA. We performed PCA using the method of Sparse

PCA implemented in DESeq2. Gene expression levels of individual

genes are predictors.

DEG analysis

The gene expression data from HTSeq were directly used for

clustering using DESeq2 (Love et al., 2014). The genes with |Fold
Change| > 2 between am and pm conditions in both methods

were selected for analysis. Then, the q value < 0.05 was used to

as the threshold of significance.

Accession numbers

The raw RNA-seq data reported in this article have been

deposited in the Genome Sequence Archive (https://ngdc.c

ncb.ac.cn/gsa/) under accession numbers CRA004293.
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