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Analytic time-of-flight positron emission
tomography reconstruction: three-
dimensional case
Gengsheng L. Zeng1,2* , Ya Li3 and Qiu Huang4

Abstract

In a positron emission tomography (PET) scanner, the time-of-flight (TOF) information gives us rough event
position along the line-of-response (LOR). Using the TOF information for PET image reconstruction is able to
reduce image noise. The state-of-the-art TOF PET image reconstruction uses iterative algorithms. This study
introduces an analytic TOF PET algorithm that focuses on three-dimensional (3D) reconstruction. The proposed
algorithm is in the form of backprojection filtering, in which the backprojection is performed first by using a
time-resolution profile function, and then a 3D filter is applied to the backprojected image. For the list-mode
data, the backprojection is carried out in the event-by-event fashion, and the timing resolution determined
weighting function is used along the projection LOR. Computer simulations are carried out to verify the
feasibility of the proposed algorithm.
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Introduction
One of the advantages of using time-of-flight (TOF)
technology is its ability to reduce the image noise [1,
2], and analytic algorithms are able to reconstruct
TOF positron emission tomography (PET) images [1–
11]. The state-of-the-art TOF PET image reconstruc-
tion methodology is to use the iterative algorithms
such as TOF ordered-subset expectation-maximization
algorithms [2]. The filtered backprojection (FBP) algo-
rithm is not a preferred method nowadays, due to the
concerns of potential larger noise amplification with
the FBP algorithm than the iterative algorithms.
These concerns are not well-founded. As we demon-
strated before, the FBP algorithm should perform as
well as an iterative algorithm when the iteration num-
ber is emulated, and the projection noise is modeled
in the FBP algorithm [12]. We believe that analytical
image reconstruction algorithm can achieve the same
noise level as a linear iterative image reconstruction

algorithm, e.g., the iterative Landweber algorithm.
The same can be said to the backprojection filtering
(BPF) algorithm, which is an analytic algorithm that
performs backprojection first and then performs filter-
ing [13]. For the list-mode data, it is computationally
more efficient to use a BPF algorithm than an FBP al-
gorithm. We recommend use of a BPF algorithm so
that it is fast, robust and rebinning error free. In the
conventional BPF algorithm, the backprojected image
does not have a finite support, and this makes the
final filtering step not exact. However, for a TOF
backprojector, the backprojected image has a finite
support if the backprojection weighting function has a
finite support. The TOF BPF algorithm has a poten-
tial to have better accuracy if the TOF information is
used. We will show in the later part of this paper
that the TOF modified ‘ramp filter’ is ‘more local’
than the conventional ramp filter. Here, ‘more local’
means that the spatial-domain convolution kernel of
the filter rolls-off rate is faster. In the BPF algorithm
the ramp filter is often referred to as the ρ-filter; we
will use the term ‘ramp filter’ in this study.
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Fully three-dimensional (3D) TOF iterative recon-
struction is computationally expensive. When the
object is completely measured, rebinning methods
are available to convert the 3D measurements into
two-dimensional (2D) measurements, so that faster
2D image reconstruction can be performed [14, 15].
This study will only focus on direct 3D TOF image
reconstruction with an analytic algorithm without
using rebinning.
The objective of this study is to develop an analy-

tical image reconstruction algorithm for the TOF
PET in 3D mode. This current study develops a “first
backproject, and then filter” (BPF) algorithm for the
3D TOF PET. This algorithm is computationally effi-
cient as the conventional FBP algorithm and is able
to regulate noise as the iterative reconstruction
algorithm.
In conventional tomography, the ramp filter is not

local and the backprojected image is not zero outside
the image support. As a result, the BPF reconstruc-
tion is not as accurate as the FBP reconstruction due
to the finite size of the backprojection image array
size. On the other hand, for TOF PET, the TOF
modified ‘ramp filter’ is more ‘local’ than the conven-
tional ramp filter, and the TOF backprojection has a
finite support. It is expected that the accuracy of the
BPF image is better than the conventional BPF algo-
rithm. In the BPF algorithm the ramp filter is often
referred to as the ρ-filter; we will use the term ‘ramp
filter’ in this study.

Methods
3D TOF BPF algorithm for the ‘4π’ detectors
Let us first consider a hypothetical spherical PET de-
tector that measures LORs from all possible directions
in 3D. In this ideal hypothetical case, the sampling
geometry is referred to as ‘4π’, because the surface area
of a sphere with radius r equals 4πr2. Here, we use the
3D spherical coordinate system. Since the point spread
function (psf) and the reconstruction filter are spherical
symmetric, it is only necessary to specify their expres-
sions in the radial direction.
Without the TOF effects, the regular 3D backprojec-

tion psf is [16].

1
r2

ð1Þ

Thus, for TOF backprojection, the 3D psf can be
modified by a time-resolution induced Gaussian profile
function as

gðrÞ ¼ psf ðrÞ ¼ 1
r2

1

ð2πÞ3=2σ3
e−

r2

2σ2 ð2Þ

We now proceed to find the 3D Fourier transform
of the psf (2). Since the psf is only a function of the
radial direction r, the 3D Fourier transform of the psf
can use the spherical coordinates and be evaluated as
follows

Fig. 1 Some examples of the tomographic filters for the 3D TOF BPF algorithm with different σ values in the Ω = Ωπ/2 case. Left: Fourier domain
transfer functions (7). Right: Approximations (8)
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Since the 3D psf is spherically symmetric, its 3D
Fourier transform is also spherically symmetric.
The integration result of Formula (3) is independ-
ent of the values of θω and ϕω. Without loss of
generality, let θω = 0 and φω = 0. Thus, the 3D Fou-
rier transform of the psf can be reduced from For-
mula (3) to

GðωÞ ¼
Z 2π

φ¼0

Z π

θ¼0

Z ∞

r¼0

1

ð2πÞ3=2σ3
e−

r2

2σ2e−i2πrωcosθsinθ drdθdφ

¼ 1

ð2πÞ3=2σ3
Z ∞

r¼0
e−

r2

2σ2dr
Z π

θ¼0
e−i2πrωcosθsinθ dθ

Z 2π

φ¼0
dφ

¼ 2π

ð2πÞ3=2σ3
Z ∞

r¼0
e−

r2

2σ2
sinð2πrωÞ

πrω
dr

ð4Þ

Using the formula 3.952.6 in ref. [17],
R∞
0 e−p

2x2

sinðaxÞ
x dx ¼ π

2 erfð a2pÞ with the error function de-

fined as erfðxÞ ¼ 2ffiffiffi
π

p
R x
0 e

−t2dt , Formula (4)

becomes

GðωÞ ¼ 2

ð2πÞ3=2σ3ω

Z ∞

0
e−

r2

2σ2
sinð2πrωÞ

r
dr

¼ 2

ð2πÞ3=2σ3ω
π
2
erfð

ffiffiffi
2

p
πωσÞ

¼ 1

2
ffiffiffiffiffiffi
2π

p
ωσ3

erfð
ffiffiffi
2

p
πωσÞ

ð5Þ

The tomographic post filter in the 3D Fourier domain
is the reciprocal of Formula (5), and thus

H ωð Þ ¼ 1
G ωð Þ ¼

2
ffiffiffiffiffiffi
2π

p
ωσ3

erf
ffiffiffi
2

p
πωσ

� � ð6Þ

When σ is large, the error function approaches to
constant 1 and the filter H(ω) in Formula (6) tends to
the ramp filter. When σ is small, the error function
can be approximated as erfð ffiffiffi

2
p

πωσÞ ≈ 2ffiffiffi
π

p ð ffiffiffi
2

p
πωσÞ .

Therefore, the filter H(ω) in Formula (6) tends to a
constant, which implies that no filtering is necessary.
If we require that

GðωÞ ¼
Z 2π

φ¼0

Z π

θ¼0

Z ∞

r¼0

1
r2

1

ð2πÞ3=2σ3
e−

r2

2σ2e

−i2π

rsinθcosφ

rsinθsinφ

rcosθ

0
B@

1
CA�

ωsinθωcosφω

ωsinθωsinφω

ωcosθω

0
B@

1
CA

r2sinθdrdθdφ

¼
Z 2π

ϕ¼0

Z π

θ¼0

Z ∞

r¼0

1

ð2πÞ3=2σ3
e−

r2

2σ2 � e−i2πrωðsinθcosφsinθωcosφωþsinθsinφsinθωsinφωþcosθcosθωÞsinθdrdθdφ ð3Þ

Fig. 2 The definition of the Ωψ and the arc length γ, which is a part of a great circle
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H 0ð Þ ¼ 1

Formula (6) can be normalized as

Hnorm ωð Þ ¼ 2
ffiffiffiffiffiffi
2π

p
ωσ

erf
ffiffiffi
2

p
πωσ

� � ð7Þ

Using an approximation of erfðxÞ ≈ ex−e−x
exþe−x , a close ap-

proximation of Formula (7) is

Hnorm ωð Þ ≈ 2
ffiffiffiffiffiffi
2π

p
ωσ � e

ffiffi
2

p
πωσ þ e−

ffiffi
2

p
πωσ

e
ffiffi
2

p
πωσ−e−

ffiffi
2

p
πωσ

ð8Þ

Some examples of (7) and (8) are shown in Fig. 1 in
the first and second columns, respectively.

3D TOF BPF algorithm for ring detectors
For a more practical ring detector as shown in Fig. 2,

not every direction θ
*

of the LOR is measured. Let Ω de-

note the occupied region by the measured directions θ
*

on the unit sphere.
We use Ωπ/2 to denote the entire unit sphere,

which is also known as the ‘4π’ case. For
Ω = Ωπ/2, the 3D psf, g(r), is given in Formula (2)

and the tomographic recovery filter’s transfer
function, H(ω), is given by Formula (6). If Ω is
not the full sphere but Ω = Ωψ is a belt as shown
in Fig. 2, the psf is no longer spherically symmet-
ric. The 3D spherical coordinate system has three
coordinates: (r, θ, ϕ), and its 3D Fourier-domain
counterpart using the spherical coordinates: (ω,
θω, φω).
The psf in this case is circular symmetric (i.e., the psf

is not a function of ϕ). The psf for Ω =Ωψ is only a
function of r and θ as well [16]:

gΨðr; θÞ ¼ psf ðrÞ ¼

1

ð2πσ2Þ3=2
e−

r2

2σ2

r2
χΨðθÞ ð9Þ

where

χΨðθÞ ¼
(
1 if

π
2
−Ψ≤θ≤

π
2
þΨ

0 otherwise

In the following, we will find the 3D Fourier transform
Gψ of the psf gψ given in Formula (9). Once Gψ is found,
the reconstruction filter is obtained as

Fig. 3 Image reconstruction using proposed algorithm for the case of ψ = π/8 and σ = 1. Row 1: TOF backprojection. Row 2: Final reconstruction.
Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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HΨ ¼ 1
GΨ

It is known that the spatial domain multiplica-
tion corresponds to the Fourier domain convolu-
tion. The 3D Fourier transform of gψ(r, θ) can be
evaluated by the 3D convolution in the Fourier
domain as

GΨðω; θωÞ ¼ F3Df 1

ð2πÞ3=2σ3
e−

r2

2σ2g���F3Df χΨðθÞr2 g
ð10Þ

where

F3D
1

2πð Þ32σ3
e−

r2

2σ2

( )
¼ e−2π

2σ2ω2 ð11Þ

and [16]

F3D

χψ θð Þ
r2

� �
¼ γ θωð Þ

ω
ð12Þ

with

γ θωð Þ ¼ f 2 sin−1
sinψ

j sinθω j j θω j> ψ

π j θω j ≤ψ
ð13Þ

Therefore, we have

GΨðω; θωÞ ¼ e−2π
2σ2ω2��� γðθωÞ

ω
ð14Þ

Formula (14) is universal; it is valid for the ‘4π’ case as
well. For the ‘4π’ non-TOF case, γ(θω) = π and

Gπ=2 ωð Þ ¼ π
ω

ð15Þ

For the ‘4π’ TOF case, Gπ/2(ω) was given in Formula
(15), and we show it again here as Formula (16):

Gπ=2 ωð Þ ¼ π
ω

erf
ffiffiffi
2

p
πσω

� �
ffiffiffiffiffiffi
2π

p
σ

� �3 ð16Þ

For the ring detector TOF case, we are unable to ob-
tain a closed-form for the 3D convolution in Formula
(14). We use the relationship between Formulas (16)
and (15) to give an approximate closed-form expression
for Formula (14). If we replace ‘π’ in Formula (15) by

Fig. 4 Image reconstruction using proposed algorithm for the case of ψ = π/8 and σ = 10. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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‘ γ(θω) ’, the non-TOF case is transformed to the TOF case
(12). We now suggest that we replace ‘π’ in Formula (16)
by ‘ γ(θω) ’, and we obtain an approximate closed-form
expression for Formula (14) as

GΨðωÞ ≈ γðθωÞ
ω

erfð ffiffiffi
2

p
πσωÞ

ð ffiffiffiffiffiffi
2π

p
σÞ3

ð17Þ

The general ring-detector TOF reconstruction filter
can be expressed as

HΨðω; θωÞ ¼ 1
GΨðω; θωÞ

¼ ω
γðθωÞ �

2
ffiffiffiffiffiffi
2π

p
σ3

erfð ffiffiffi
2

p
πωσÞ ð18Þ

Filters (6) and (18) are the main results of this
study. Formula (6) is exact for the ‘4π’ detection
geometry, and Formula (18) is approximate for the
ring geometry. These two expressions are identical for
the ‘4π’ case.

Results
The main result as expressed in Formula (14), which
is the 3D tomographic filter applied to the 3D TOF
list-mode backprojection in PET. This main result
contains an error function erf, which is not an elem-
entary function. Our main result can be closely ap-
proximated without using the error function, as
shown in Formula (8). Figure 1 shows some compari-
son results between the exact expression and approxi-
mated expression with different values of time
resolution σ. It is observed from Fig. 1 that the filter
approaches to the ramp filter as the time resolution σ
is poor (e.g., σ→∞). The filter approaches to a con-
stant as the time resolution σ is perfect (e.g., σ→ 0),
and in this case, the TOF backproject itself can pro-
vide the exact reconstruct without the need of a
tomographic filter.

A 3D Shepp-Logan phantom [18] was used in
computer simulations to verify the feasibility of the
proposed algorithm. Four ring-detector sizes were
simulated: ψ = π/2, 3π/8, π/4, and π/8, respectively.
For each detector geometry, three TOF uncertainty

Fig. 5 Image reconstruction using proposed algorithm for the case of ψ = π/8 and σ = 100. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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Fig. 7 Image reconstruction using proposed algorithm for the case of ψ = π/4 and σ = 10. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 6 Image reconstruction using proposed algorithm for the case of ψ = π/4 and σ = 1. Row 1: TOF backprojection. Row 2: Final reconstruction.
Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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values were considered: σ = 1, 10, and 100, respect-
ively. As a comparison, non-TOF reconstruction
were also carried out for ψ = π/8, π/4, 3π/8, and π/
2, respectively. Computer simulation results are
shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18. All images are shown in the same
format. The first row shows 3 orthogonal central
cuts of the TOF backprojected image: y-z plane, x-z
plane, and x-y plane, where the z-axis is the PET

gantry axis. The second row shows the 3 orthogonal
central cuts of the reconstructed image by the
proposed algorithm. The third row shows the 3
orthogonal central cuts of the 3D filter H as
expressed by Formula (18). The non-TOF filter is
the reciprocal of right-hand-side of Formula (12).
The true image is shown in Fig. 19 using the same
3 orthogonal central cuts. All images are 128 ×
128 × 128.

Fig. 8 Image reconstruction using proposed algorithm for the case of ψ = π/4 and σ = 100. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 9 Image reconstruction using proposed algorithm for the case of ψ = 3π/8 and σ = 1. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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Discussion
When the time resolution σ tends to infinity, the TOF back-
projection is different from the conventional backprojection.
The difference is the normalization. In the TOF backprojec-
tion, the value being backprojected is distributed along a
straight line according a profile function. The total area
underneath this profile function is 1, similar to the situation
of a probability density function. On the other hand, in the

conventional backprojection, this profile function is a con-
stant 1 and the total area underneath this profile function is
infinity. When comparing a TOF analytical algorithm to a
non-TOF analytical algorithm, one should pay attention to
the normalization factor involved in the backprojectors,
which are different for the two types backprojectors.
Finally, we discuss how the backprojection profile

function and the Gaussian function in the

Fig. 10 Image reconstruction using proposed algorithm for the case of ψ = 3π/8 and σ = 10. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 11 Image reconstruction using proposed algorithm for the case of ψ = 3π/8 and σ = 100. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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tomography filter are determined. We can assume
that the TOF timing uncertainty can be modeled as
a Gaussian probability distribution with a standard
deviation of σ1. The parameter σ1 is determined by
the PET system we are using. The TOF backprojec-
tion profile function can also be assumed to be a
Gaussian function with a standard deviation of σ2.
The system psf as defined in Formulas (6) and (18)

is Gaussian with a standard deviation of σ3, which
must satisfy σ3 = σ1 + σ2. In Formulas (6) and (18),
the parameter σ is σ3. The parameter σ2 is only
used in the TOF backprojector’s profile function
and can be arbitrarily chosen. It is an interesting
special case that σ2 = 0, in which the TOF backpro-
jector simply backprojects an event to a single point
in the image domain. In this interesting special case,

Fig. 12 Image reconstruction using proposed algorithm for the case of ψ = π/2 and σ = 1. This is the ‘4π’ case. Row 1: TOF backprojection. Row
2: Final reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 13 Image reconstruction using proposed algorithm for the case of ψ = π/2 and σ = 10. This is the ‘4π’ case. Row 1: TOF backprojection. Row
2: Final reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row
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the backprojector is much faster than the conven-
tional non-TOF backprojector and we have σ3 = σ1.
In conventional non-TOF tomography, we have
σ1 = σ2 = σ3 =∞.

Conclusions
This study derives a 3D TOF BPF formula for the list-
mode PET data. This formula can lead to an efficient re-
construction algorithm. This new formula is an

extension to Colsher’s formula [16] that was derived for
the non-TOF PET.
The key component in the BPF algorithm is the

tomographic filter H. One way to obtain this filter is
by numeric evaluation. Since we have a closed-form
psf, g, we can numerically evaluate the 3D fast Fou-
rier transform of g to obtain G, and then numerically
calculate the tomographic filter H as 1/G. This study
aims to find a closed-form expression for the filter H.
We are able to obtain an exact pression of H for the

Fig. 14 Image reconstruction using proposed algorithm for the case of ψ = π/2 and σ = 100. This is the ‘4π’ case. Row 1: TOF backprojection.
Row 2: Final reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 15 Image reconstruction using non-TOF algorithm for the case of ψ = π/8. Row 1: TOF backprojection. Row 2: Final reconstruction. Row 3:
Tomographic filter H. Three central orthogonal cuts are shown for each row
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Fig. 16 Image reconstruction using non-TOF algorithm for the case of ψ = π/4. Row 1: TOF backprojection. Row 2: Final reconstruction. Row 3:
Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 17 Image reconstruction using non-TOF algorithm for the case of ψ = 3π/8. Row 1: TOF backprojection. Row 2: Final reconstruction. Row 3:
Tomographic filter H. Three central orthogonal cuts are shown for each row
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Fig. 18 Image reconstruction using non-TOF algorithm for the case of ψ = π/2. This is the ‘4π’ case. Row 1: TOF backprojection. Row 2: Final
reconstruction. Row 3: Tomographic filter H. Three central orthogonal cuts are shown for each row

Fig. 19 The true image of the 3D Shepp-Logan phantom. Three orthogonal central cuts are shown from left to right: the y-z plane, the x-z plane,
and the x-y plane
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‘4π’ case, and to obtain an approximate expression
for the ring detection geometry. The computer simu-
lations indicate that the approximate filter gives fairly
good reconstruction when the ring detection geome-
try’s span-angle ψ is large. The approximation tends
to exact when ψ becomes π/2.
The noise control for the BPF image reconstruction

can be achieved by the post-filtering method as devel-
oped in ref. [12]. Our future plans include performing
real PET data reconstructions.
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