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A flat sheet programmed with a planar pattern
of spontaneous shape change will morph into a
curved surface. Such metric mechanics is seen in
growing biological sheets, and may be engineered
in actuating soft matter sheets such as phase-
changing liquid crystal elastomers (LCEs), swelling
gels and inflating baromorphs. Here, we show
how to combine multiple patterns in a sheet
by stitching regions of different shape changes
together piecewise along interfaces. This approach
allows simple patterns to be used as building
blocks, and enables the design of multi-material or
active/passive sheets. We give a general condition
for an interface to be geometrically compatible, and
explore its consequences for LCE/LCE, gel/gel and
active/passive interfaces. In contraction/elongation
systems such as LCEs, we find an infinite set of
compatible interfaces between any pair of patterns
along which the metric is discontinuous, and a finite
number across which the metric is continuous. As
an example, we find all possible interfaces between
pairs of LCE logarithmic spiral patterns. By contrast,
in isotropic systems such as swelling gels, only a
finite number of continuous interfaces are available,
greatly limiting the potential of stitching. In both
continuous and discontinuous cases, we find the
stitched interfaces generically carry singular Gaussian
curvature, leading to intrinsically curved folds in the
actuated surface. We give a general expression for the
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distribution of this curvature, and a more specialized form for interfaces in LCE patterns. The
interfaces thus also have rich geometric and mechanical properties in their own right.

1. Introduction
Sheets, plates and shells are traditionally used as stiff, passive structural elements. However,
in recent years, the subject has been enlivened by the use of soft active materials to make
shape-shifting elements [1–3] that recall the exquisite dynamism of biological tissues. These
soft active materials typically undergo a large but homogeneous shape change on actuation: for
example a gel dilates isotropically on swelling [4] and a liquid crystal elastomer (LCE) contracts
uniaxially on heating or illumination [5]. However, just as biological tissues achieve complex
shape changes via differential growth and differential muscular contraction, one may achieve
a complex shape change by programming a differential patterned shape change, for example
directions of contraction into an LCE [2,6–8], or magnitudes of swelling into a gel [1,9–12].
Here, we focus on initially flat sheets encoded with a pattern that varies in plane, leading to
a new metric on actuation, and morphing the flat sheet into a curved surface. There is now
a growing literature on such metric-mechanics [13], largely focused on how to design the right
pattern of actuation to achieve a desired target surface [14–22]. In this paper, we discuss how
such patterns can be stitched together piecewise in a single sheet without inducing any geometric
incompatibility that would lead to substantial internal stress, wrinkles and perhaps even tears.
This strategy allows individual patterns to be used as building blocks for more complex shape
changes, and also enables the design of multi-material sheets with interfaces between different
types of active material, or even between active and passive materials. It also transpires that the
interfaces themselves are interesting, as they generically bear singular intrinsic curvature and
form ridges in the final surface.

As a motivating example, consider an LCE sheet with a planar nematic director n, that
encodes the direction of molecular alignment. Upon heating, alignment is disrupted by the
nematic/isotropic phase transition, and the sheet contracts by λ‖ ∼ 0.7 parallel to n, and expands
laterally by λ⊥ ∼ 1/

√
λ‖ ∼ 1.2, as seen in figure 1a. In LCEs, programming is achieved via a spatial

pattern of alignment n(x), while the magnitudes of λ‖ and λ⊥ are homogeneous. For example,
as seen in figure 1b, if a sheet is prepared with the alignment in concentric circles, heating will
produce a cone [6,23]. Importantly, Gauss’s theorema egregium tells us that the Gaussian (intrinsic)
curvature of a surface cannot be altered without changing the metric [24,25]. Here, actuation does
change the metric, and, accordingly, there is a point of singular Gaussian curvature (GC) at the tip
of the cone. It also follows that the cone’s actuation may not be blocked without an energetically
prohibitive stretch, and indeed LCE cones are powerful lifters that can lift heavy loads thousands
of their own weight as they rise [2,26,27]. Having designed the concentric-circle pattern, one may
then seek to combine two concentric-circle patterns in a single sheet, to make a sheet that actuates
to a shape with two tips. The patterns may be combined by stitching them together piecewise
along a seam, but, to avoid large internal stresses, such an interface cannot be chosen arbitrarily,
as both patterns must agree on the length of the interface after actuation. In LCEs, this condition
is satisfied if the directors on either side make equal angles with the interface [28], leading to a
pattern like figure 1c, which indeed makes a pair of cones on actuation [29,30]. Stitching patterns
is thus a delicate constrained problem, but of vital interest as it can dramatically increase the
design space.

An active sheet’s metric is a 2 × 2 symmetric matrix, and hence has three degrees of freedom.
Thus our notation using λ‖, λ⊥ and n can actually capture an arbitrary metric if all three quantities
are able to vary spatially, so it can describe any type of active sheet. However, in most engineered
soft-matter systems, one cannot pattern all three components, but rather has a restricted palette
based on the material in question. In LCEs, typically n is patterned and λ‖, λ⊥ are homogeneous,
while, at the other end of the spectrum, in isotropic gels, the actuation factors are equal (λ‖ = λ⊥)
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Figure 1. Anematic solid sheet contracts along a programmed alignment (blue lines) upon actuation. (a) A constant alignment
nmorphs a flat sheet to a flat sheet. (b) A concentric-circle alignmentmorphs a disc to a cone. (c) Two concentric-circle patterns
with an interface (red) morph to twinned cones stitched together with a curved crease (red). (Online version in colour.)

but this single magnitude can be patterned via the crosslink density giving a conformal metric:
both examples thus have a single degree of freedom for patterning. LCEs can also actuate via
swelling, giving two homogeneous actuation strains that are both elongations [31], and pneumatic
analogues of LCEs called baromorphs have also been designed, which actuate with λ‖ = 1 and
λ⊥ = 2/π on inflation [32]. Recent work has highlighted active systems with more than one
local patterning variable. For example, an LCE with patterned n can then undergo actuation
with patterned magnitude via a patterned temperature field [33], and, perhaps in the future,
a patterned crosslink density or composition, while gel nets can be created with essentially
arbitrary metric changes on swelling [34]. In all such cases, one may seek to stitch patterns
together. Moreover, one inevitably faces such stitching problems whenever one has an interface
between different active materials, or between active and passive material: themes which are
likely essential for future work on multi-functional sheets, and reconfigurable sheets.

In the first section of the paper, we thus systematically study how to stitch together patterns
of shape change in active sheets. The general condition of geometric compatibility is inherited
from the well-known rank-1 compatibility condition [35–37] used in studies of twinning and
microstructure in crystaline systems, including in LCEs [38–40]. Beyond describing the physics
of interfaces, in LCEs this metric compatibility condition has also frequently been used for
pattern design between regions of homogeneous director, where it gives rise to the basic
rules of non-isometric origami [28,29,41,42], but the consequences for combining patterns which
themselves have varying actuation are much less well studied [30]. Here, we formulate and
solve the generalized two-dimensional metric-compatibility condition, for an interface between
any two types of active sheet. Given a pair of patterns to join, we find that in systems of
contraction/elongation like LCE sheets there is generically an infinite set of compatible interfaces
available in which the director and hence the metric is discontinuous across the interface, and
may also be a small finite number of possible interfaces in which the metric is continuous across
the interface. By contrast, in systems of patterned isotropic swelling/growth/dilation, one has
only the small finite number of the latter type, along which the swelling factors are equal in both
patterns, greatly limiting the potential of stitching as a strategy. In the second part of the paper, we
thus focus on LCE actuation and find, as an illustration, all the possible interfaces between pairs of
logarithmic spiral director patterns (constant-speed +1 defects) which would actuate individually
to anti/cones. We also use simulations to visualize the resultant actuated shapes.

As seen in the double-cone pattern in figure 1c, stitched metric-compatible interfaces
generically also encode a singular GC, leading (ideally) to a sharp curved fold in the target
surface, where one of the principal curvatures diverges. As mentioned earlier, an LCE cone
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can serve as a strong lifter, as the cone tip bears singular GC, preventing the cone from being
flattened. Likewise, here, the actuated interfaces cannot be flattened, in strong contrast to the
superficially similar creases with zero GC seen in curved-fold origami [43–48]. As a starting point
towards understanding the geometric and mechanical properties of these interfaces, we derive
analytical formulae for the GC concentrated along them. These analytic results highlight that the
interfaces can form folds with positive or negative GC [49] (or even both), and give a first-order
understanding of the surface’s resultant shape, which we further illustrate with simulations.

2. Metric-compatible interfaces between patterns of active shape
change in sheets

(a) Metric compatibility between two homogeneous deformations
We first consider a flat sheet that undergoes a spontaneous deformation as seen in figure 1a,

U = λ‖n ⊗ n + λ⊥n⊥ ⊗ n⊥, (2.1)

where n is a unit vector in the plane, along which the material will stretch by a factor λ‖, and n⊥ =
R(π/2)n is perpendicular to n in the plane of the sheet (R(.) being a two-dimensional anticlockwise
rotation) along which the material will stretch by a factor λ⊥. Before actuation, an infinitesimal
vector in the plane dl has length dl given by dl2 = dl · Idl, meaning that the initial metric is simply
the identity, I. After actuation, the same vector has length dlA = |Udl|, or, in metric form

dl2A = dl · UTU dl = dl · (λ2
‖n ⊗ n + λ2

⊥n⊥ ⊗ n⊥)dl, (2.2)

from which we identify the activated metric as a = UTU = λ2
‖n ⊗ n + λ2

⊥n⊥ ⊗ n⊥.
We now consider the unactuated sheet contains two regions with spontaneous deformations

Ui (i = 1, 2) with different actuation parameters ni, λ
(i)
‖ , λ

(i)
⊥ , as shown in figure 2a. If the

interface between these regions has unit tangent t in the unactuated state, then in the actuated
configuration, the lengths of the unit tangent actuated from the two fields are |U1t| and |U2t|,
respectively. For the interface to be compatible, these actuated interfaces need to have equal
length. This metric compatibility condition reads

|U1t| = |U2t| ⇔ t · a1t = t · a2t, (2.3)

where ai = UT
i Ui as defined above. Following figure 2a, we denote the angle between n1 and n2 as

ξ , and the angle between t and n1 by θ . Inserting these into the condition above yields a quadratic
equation for tan θ which we must solve to find metric-compatible directions

a tan2 θ + b tan θ + c = 0,

where a = (λ(1)
⊥ )2 − (λ(2)

⊥ )2 −
[
(λ(2)

‖ )2 − (λ(2)
⊥ )2

]
sin2 ξ ,

b = −2
[
(λ(2)

‖ )2 − (λ(2)
⊥ )2

]
sin ξ cos ξ

and c = (λ(1)
‖ )2 − (λ(2)

⊥ )2 −
[
(λ(2)

‖ )2 − (λ(2)
⊥ )2

]
cos2 ξ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

Given values for the actuation parameters, one may simply solve this quadratic equation to
find either 0, 1, 2 or, in degenerate cases, infinitely many solutions for tan θ , which describe
the metric-compatible directions. Compatible interfaces between homogeneous deformations are
thus straight lines. One may characterize the equation algebraically, but a graphical approach
is highly instructive for understanding these different cases and constructing such stitched
interfaces between patterns. In figure 2b, the peanut-shaped blue curve shows, for each reference-
state direction d̂, the length |Ud̂| attained after actuation. The curve is aligned with n and has
radius λ‖ along n and λ⊥ orthogonally. At the interface, we have two spontaneous deformations,
giving rise to two peanut-shaped curves, each with different stretches and oriented along its
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Figure 2. (a) Metric compatibility between two homogeneous spontaneous deformations U1 (blue) and U2 (red). (b) The
actuated length of each reference-state direction d̂, plotted in the reference state bymapping d̂ to |Ud̂|d̂. (c) Twohomogeneous
deformations U1 and U2 generate two peanut-shaped curves; the intersections correspond to metric-compatible interfaces.
(d–f ) Three scenarios for metric-compatible interfaces, in which the range of spontaneous stretches of U2 encompasses (d),
overlaps with (e), and does not overlap with (f ) that of U1. In each scenario, we plot the peanut curves for specific values of
the spontaneous stretches, but a range of angles ξ between the n1 and n2, to explore when intersections arise. Below, we also
plot the same functions as linear rather than polar plots (d.2–f.2), in which case rotation becomes translation. In (d), there are
always four intersections and two compatible interfaces, in (e), there can be two or zero depending on ξ , and in (f ) there are
always zero. (Online version in colour.)

own n, as seen in figure 2c. Metric-compatible directions are given by the intersections, where
both metrics agree on actuated length; there are four such intersections in figure 2c, indicating
two compatible directions since t and −t describe the same interface. To explore the different
possibilities, we suppose, without loss of generality, that the actuation strains are ordered in each
material such that λ‖ ≤ λ⊥ (as is natural for LCEs on heating), that region two has the lower
parallel actuation factor λ

(2)
‖ ≤ λ

(1)
‖ . We may then distinguish four cases:

(i) If λ
(2)
⊥ ≥ λ

(1)
⊥ (figure 2d), the range of strains in region two fully encloses the range of

strains in region one. There are always four intersections, for any ξ , and hence two metric-
compatible interfaces. This is easily seen by considering the plot figure 2d.2, in which
changing ξ simply translates the red curve.
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(ii) If λ
(1)
‖ ≤ λ

(2)
⊥ < λ

(1)
⊥ (figure 2e), the strain ranges are partially overlapping. In this case, there

can be two, one or zero interface, depending on the angle ξ between n1 and n2. The critical
ξ corresponds to one interface and can be determined by solving b2 − 4ac = 0 in (2.4).

(iii) If λ
(2)
⊥ < λ

(1)
‖ (figure 2f ), the ranges of strains in each metric do not overlap, so there is no

metric-compatible interface for any ξ .
(iv) If U1 = U2, the two peanut-shaped curves are identical so every direction is compatible.

(b) Compatible interfaces between patterns
The above considerations allow one to find the metric-compatible directions between a pair of
specific spontaneous deformations, U1 and U2. We now consider stitching together two patterns
of actuation U1(x) and U2(x). Our approach is to overlay the patterns in the reference domain and
solve equation (2.4) at each point to find the set of compatible directions {ti(x)} at each reference
point x, where i enumerates the set of solutions at each point. We may then construct a compatible
arc-length parameterized interface x(l) between the patterns by starting at any point where a
solution exists, choosing a ti(x) then propagating the solution in this compatible direction by
solving the ODE

x′(l) = ti(x(l)). (2.5)

In general, this approach will yield a curved interface. The solution to the ODE may terminate by
reaching the boundary, forming a loop, or reaching a region where ti(x) no longer exists.

We note that while the condition of metric compatibility is a necessary condition for a stitched
metric to be embeddable in three dimensions, it is not clear whether it is a sufficient condition. It
is possible that a stitched sheet still cannot find an actuated configuration that follows the design
metric, and will instead have to undergo some stretch on actuation. However, it is also unclear
what more could be demanded of a metric-compatible interface during stitching. Furthermore, as
will be seen throughout this paper, it is our experience in simulations that stitched sheets actuate
to surfaces that are very close to the design metric, suggesting that well-behaved embeddings are
generically available. We now consider three common scenarios in active soft sheets.

(i) Interface between two gel patterns

First, we consider interfaces between two actuation patterns of swelling-gel type, with different
but isotropic actuation strains λ

(i)
‖ = λ

(i)
⊥ ≡ λ

(i). At a generic material point, the actuation strains
will be different in the two patterns, so we are in case 3, and no directions are compatible.

However, if the patterns are continuous in the reference domain, there are likely to be a finite
number of lines in the reference domain where the actuation strains are equal, λ(1) = λ(2). To see
this, consider that if one finds a reference point with λ(1) > λ(2) and another with λ(1) < λ(2), the
intermediate value theorem implies there is a point of equality on any reference path between the
two points, so the set of such points will indeed form lines. At any point along such a line, we are
in case 4, and all directions are compatible. However, we may only integrate equation (2.5) along
the line itself, as this is where the solutions exist, giving rise to a finite number of continuous-metric
interfaces.

(ii) Interface between two liquid crystal elastomers patterns

Second, we consider interfaces between two patterns of LCE actuation with homogeneous
and equal actuation strains (λ‖, λ⊥) but different directors n1(x) and n2(x). In this case, the
compatibility condition reduces to the simpler condition

|n1 · t| = |n2 · t|. (2.6)

At a generic reference point x we will be in case 1, and there are two metric-compatible directions,
which in this case are the bisector of n1 and n2 (i.e. θ = ξ/2) and the orthogonal direction
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(θ = ξ/2 + π/2), giving the tangent fields

t1 = ± (n1 + n2)
|n1 + n2|

and t2 = ± (n1 − n2)
|n1 − n2|

. (2.7)

To find an interface, we simply start at any point, choose one of the two available tangent
directions, and integrate equation (2.5) to find the interface curve. The curves are thus the integral
curves of t1 and t2, and form a full orthogonal coordinate system over the pattern domain (just
like the director and its dual [50]), with two orthogonal interfaces passing through each material
point. We call interfaces constructed along these directions twinning interfaces, as the directors are
discontinuous at the interface but symmetrically satisfy the twinning condition |n1 · t| = |n2 · t|.
Then the deformations U1,2(x) are mirrors of each other across the interface. An example is seen
in figure 1c.

There may also be reference points where the two directors are equivalent n1 = ±n2. At these
points, we are in case 4, and all directions are compatible. However, the intermediate value
theorem (this time applied to the difference in director angle) again shows that such points
generically occur as isolated lines in the reference state, and we may only integrate along the
line where solutions exist. This process yields a finite number of extra continuous-metric interfaces,
across which the patterns can be joined without any discontinuity in the resultant director.

(iii) Interface between active and passive material

Thirdly, we consider interfaces between a generic active material U1 and a passive material with
U2 = I. At a given material point, if the active actuation strains span unity, λ‖ < 1 < λ⊥, then we
will be in case 1, with two compatible directions. The compatible direction then lies along a critical
angle θ [51] which is the angle between compression and extension in the active material where
length is unchanged

tan(θ ) =
√√√√ 1 − λ2

‖
λ2

⊥ − 1
. (2.8)

This situation is generic for LCE/passive boundaries. As with twinned boundaries in LCEs, the
angle θ also has two solutions and these two directions will again generate a coordinate-system-
like set of integral curves, with two curves through each material point, although in this case,
the two sets of curves are not orthogonal. However, clearly, such interfaces are impossible for
gels, where the actuation strains are equal, except at material points where U1 = I, i.e. where the
active material is not actually strained at all. As with other continuous-metric interfaces, these will
generically occur along a finite number of lines in the pattern.

Curiously, none of these standard systems explores case 2, although this situation would arise
naturally at the interface between two LCEs with different actuation strain magnitudes.

3. Examples of metric-compatible interfaces between two liquid crystal
elastomers patterns

A key conclusion from these considerations is that stitching is a powerful tool in LCE systems,
where there are typically infinitely many twinned interfaces available, but is a very limited tool
in isotropic systems where one typically has only a finite set of possible interfaces, and possibly
even none at all. For the remainder of the paper, we thus focus on LCE systems, and demonstrate
the method by explicitly finding all the compatible interfaces between some pairs of well-studied
patterns of LCE actuation. Throughout, we complement our stitched patterns with numerical
simulations of the resultant surfaces, computed by minimizing a full shell energy (stretch plus
bend) following the approach in [52] and the electronic supplementary material, S2.
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(a) (b)
t2

xr1

c1

c1 c2

c2

r2

t1 (c) (d)

Figure 3. (a) Top: two overlaid concentric-circle patterns. At a generic point x, there are two compatible tangent directions t1,
t2. The integral curves of these tangent vectors form two compatible twinned interfaces: a hyperbola and an ellipse respectively.
Bottom: the set of all such curves forms the standard elliptic/hyperbolic coordinate system. (b,c) Examples of hyperbolic (b) and
elliptic (c) interfaces. The yellow surfaces are exact isometries constructed from the individual conical deformations, and closely
match the simulations shown below. (d) There is also one continuous-metric interface along the horizontal. In this case, the two
individual conical deformations do not fit together, but our simulation shows that the sheet can nonetheless reach an isometry
with two tips. (Online version in colour.)

(a) Interfaces between concentric-circle patterns
As a simple first example, we take a pair of concentric-circle patterns, with the centres at position
vectors in (x, y) Cartesian coordinates given by c1 = (c, 0) and c2 = (−c, 0), as shown in figure 3a.
A generic point x has vector separation from each centre r1 = x − c1 and r2 = x − c2, respectively,
which point in the radial direction of each circle pattern, orthogonal to the director. The two
twinned-interface tangent directions at x, t1 and t2 are thus the bisector of r1 and r2, and its
orthogonal dual. Using the focus-to-focus reflection property of ellipses, one can show that the
compatible twinned interfaces are the set of ellipses and hyperbolae with foci at the pattern
centres [30]. As expected, there are two such interfaces through each point, and the set of curves
forms an orthogonal coordinate system—in this case, the standard elliptic/hyperbolic coordinate
system, as shown in figure 3a bottom. The straight interface in figure 1c is a special case of a
hyperbolic interface. More generic examples of hyperbolic and elliptic interfaces are shown in
figure 3b,c.

An individual concentric-circle pattern actuates to a cone. Furthermore, one may show that the
interfaces are not just metrically compatible, but also ‘conically consistent’, meaning they would
actuate to the same shape under each individual conical deformation [30]. This means one may
construct analytic isometries of the stitched metric by combining conical surfaces: the hyperbolic
interface leads to a pair of cones with different heights, while the elliptic interface yields a cone
with its tip replaced by one from the other pattern.

In addition to these twinned interfaces, there is also a single continuous-metric interface
available along the horizontal, as seen in figure 3d. In this case, the interface is not conically
consistent so we cannot construct an analytic shape, but simulation reveals a shape with a tip
at each centre.
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Figure 4. (a) A director patternwith rotational symmetry, described by the angleα(r) between the nematic directorn and the
radial direction. (b) Illustration of the twinning interface between two directorsn1 andn2. The compatible direction t bisectsn1
and n2, and makes an angle (α1 + α2)/2 with the local hyperbola whose tangent is u. (c) A twinning interface between two
rotationally invariant director patterns with α1(r)= r3/2 and α2(r)= −r2. (d) A continuous-metric interface between two
rotationally invariant director patterns withα1(r)= r2 andα2(r)= −r. (Online version in colour.)

(b) Interfaces between patterns with rotational symmetry
In LCE programming, there has also been substantial work on patterns with rotational symmetry
[18,19,23,32,53,54]. Working in plane-polar coordinates (r, θ ), these patterns are conventionally
described by the angle α(r) between the nematic director and the radial direction, as shown
in figure 4a. Explicit forms of α(r) have been given for (anti)cones, (pseudo)spherical caps and
spindles, and even a generic surface of revolution [19]. Here, we find interfaces between two such
patterns, again centred at c1 and c2, and described by α1(r1) and α2(r2), where ri = |ri|, reusing our
earlier notation.

Inspired by the circle case, we describe the reference plane using elliptic/hyperbolic
coordinates focused on the pattern centres, by setting (x, y) = c(cosh u cos v, sinh u sin v), such that
x(u0, v) and x(u, v0) define a v-line (ellipse) and a u-line (hyperbola), respectively, as shown in
figure 4b, bottom. As in the circle case, at a generic point x, the local hyperbola bisects r1 and
r2. However, now the local directors make angles α1(r1) and α2(r2) with these radial directions,
so the two compatible directions, (the bisector t of the directors, and its orthogonal dual) make
angles (α1 + α2)/2 and (α1 + α2)/2 + π/2 with the local hyperbola (figure 4b, top). Integrating to
propagate the interface leads to a differential equation for each compatible direction:

t1 :
dv

du
= tan

(
α1(r1) + α2(r2)

2

)
and t2 :

dv

du
= cot

(
α1(r1) + α2(r2)

2

)
. (3.1)

The distances r1 and r2 in elliptic coordinates can be conveniently expressed as r1 = c(cos v +
cosh u) and r2 = c(− cos v + cosh u). Therefore, both equations (3.1) are first-order ODEs in (u, v),
which can be solved efficiently using numerical methods, for any form of α1 and α2. The circle
case is recovered by setting α1 = α2 = π/2, so the equations trace out u and v lines, respectively. A
more sophisticated example is given in figure 4c, showing that the directors are indeed twinned
at the interface between two rotationally invariant patterns.

There may also be a finite number of continuous-metric interfaces. Scrutinizing figure 4a, we
see that the director will be continuous if satisfying α1(r1) + θ1 = α2(r2) + θ2 + kπ , k ∈ Z. Taking
the tan of both sides and then substituting for θi using elliptic/hyperbolic coordinate system, we
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a = p/2 a = 0

cone flat anticone

Figure 5. The log-spiral patterns actuate to (anti)cones, varying from cone to flat to anticone as α varies from α = π/2 to
α = 0. The reference and actuated black dashed lines indicate that the actuations involve twistingwhenα �= 0,π/2. (Online
version in colour.)

obtain
(sin2 v − sinh2 u) sin[α1(r1) − α2(r2)] + 2 sin v sinh u cos[α1(r1) − α2(r2)] = 0. (3.2)

An example is given in figure 4d, showing that the directors are continuous across the interface.
However, the existence of such a curve is not guaranteed, and must be addressed case-by-case.

(c) Interfaces between logarithmic spiral patterns
A particularly well-studied set of patterns with rotational symmetry are those with constant α,
yielding surfaces that are Gauss-flat except for a singular point of the origin. For α = π/2, these
patterns are circles and actuate to make cones, while for α = 0 the patterns are radii, leading
to ruff-like anticones with a point of negative GC. For intermediate α, these patterns are log-
spirals, whose actuated shapes vary from cone to flat to anticone as α varies from α = π/2 to
α = 0. However, in contrast to the circular patterns, the conical deformations for the log-spiral
patterns (given explicitly in the electronic supplementary material, S3) involve twisting about the
cone axis, as illustrated in figure 5.

For a pair of log-spirals, we may easily integrate the ODEs in equation (3.1) analytically to
find the form of the twinned interfaces. The first, t1, which bisects n1 and n2, is simply v(u) =
u tan((α1 + α2)/2) + v0 in elliptic coordinates, and correspondingly, in Cartesian coordinates has
the form

x(u) = c cosh u cos
(

u tan
α1 + α2

2
+ v0

)

and y(u) = c sinh u sin
(

u tan
α1 + α2

2
+ v0

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.3)

The orthogonal twinning interface, which bisects −n1 and n2, can be solved similarly, and reads

x(v) = c cosh
(

−v tan
α1 + α2

2
+ u0

)
cos v

and y(v) = c sinh
(

−v tan
α1 + α2

2
+ u0

)
sin v

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.4)

In the above equations, u0 and v0 are constants that ensure the interface starts at the desired
point. As expected, these two sets of twinned interfaces are orthogonal, and one of each goes
through each reference point. Two examples between a spiral pattern with α1 = 5π/12 and a
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Examples of metric-compatible interfaces between constant-α axisymmetric patterns. (a–f ) Top left: reference
domains. Bottom left: analytical individual conical parts. Top right and bottom right: two views of the simulated configurations.
(a,b) Generic twinning interfaces for α1 = 5π/2 and α2 = π/2. (c,d) Twinning interfaces for concentric spiral patterns
(α1 = 1 and α2 = π/2) which degenerate to concentric spirals. (e,f ) The continuous-metric interface between two spiral
patterns is a circle when the spirals are different ((e), α1 = 1.173, α2 = −1.249), or the horizontal axis when the spirals are
identical ((f ),α1 = α2 = 1.173). (Online version in colour.)

circular pattern with α2 = π/2 are shown in figure 6a,b. In these cases, we see that neither
interface forms a closed loop, rather they spiral out to infinity. In figures 6c,d, we also highlight
an interesting special case, in which the pattern centres coincide, and the twinned interfaces
themselves degenerate to log-spirals from the single centre. We provide more special cases in
figure S1 of the electronic supplementary material for certain choices of α1 and α2.

Continuous-metric interfaces also exist, obeying the analytical form (3.2). By substituting
constant α1 and α2, we find that the interface is a circle of radius c/| sin(α1 − α2)| passing through
the centres when the log-spirals are different (α1 �= α2), which degenerates to a straight line when
the log-spirals are identical (α1 = α2), as shown in figure 6e,f respectively.

In all cases, the actuations of the individual regions constructed using the single-pattern
conical isometries (given in the electronic supplementary material, S3) do not give consistent
shapes for the interfaces (yellow surfaces in figure 6)—they are not conically consistent—so we
cannot construct isometries of the actuated sheets analytically. However, we present shapes from
simulations that confirm that isometries do exist, with the actuated surfaces containing tips at the
centres and a curved fold along the interface.

4. Gaussian curvature concentrated along creases
In our analytic forms for the actuated surfaces, we observe that the interfaces generically actuate
to form sharp creases that carry singular GC, and there are corresponding ridges in our numerics.
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(a) (b) (c)n1 �A �A

MA

kg1

kg2

∂MAx(l)

n2
x f2

f1

t

Figure 7. (a) The unit tangent t of the arc-length parameterized twinning interface x(l) in the reference configuration is
expressed as t= cosφini + sinφn⊥

i for i = 1, 2, where φi is the angle from the director ni to the interface. The twinning
angle ξ is the angle between n1 and n2 across t. (b) The Gauss–Bonnet loop composed of solid white lines is the boundary of
the patch MA containing the actuated interface lA. (c) To characterize the GC on the crease, we take the width of the patch to
zero. In the resulting formula equation (4.2), we evaluate the geodesic curvatures κg1 and κg2 in the sense shown by the white
arrows. (Online version in colour.)

For example, the actuated twinning interface between two circular patterns in figure 3b carries
negative GC, since the curvature of the interfacial arc is in the opposite sense to that of the
fold. As a result, the crease itself cannot be flattened into the plane without stretching, making it
dramatically different to, and potentially much stronger than, the curved folds seen in isometric
origami [55,56]. As a starting point towards understanding the geometry and mechanics of
these intrinsic creases, we first use the Gauss–Bonnet theorem to derive the expression for the
distribution of GC along such a crease based on its final state embedding, then show how the
answer can be computed in the reference state for a metric-compatible interface between LCE
patterns. Finally, we compute the distribution for two examples of stitched log-spiral patterns,
and show that the analytic form is very helpful for predicting and interpreting the simulated
shape.

(a) Quantifying Gaussian curvature on a crease
Consider the LCE director pattern with an interface x(l) in figure 7a and its actuated configuration
in figure 7b. The actuated surface contains a crease (red) that follows a curve lA through three-
dimensional space, which we may parameterize by its (activated) arc-length lA. Although the
GC on the crease, KA, is singular, the Gauss–Bonnet theorem guarantees that the total curvature
Ω ≡ ∫

KA dAA, is finite. More precisely, the Gauss–Bonnet theorem says that the total curvature
within any patch MA of the activated surface may be computed as [25]

∫∫
MA

KA dAA = 2πχ (MA) −
∮
∂MA

κg dsA − Σβi, (4.1)

where χ (MA) is the Euler characteristic of the patch (which is 2 for any patch that is topologically
a disc), κg is the geodesic curvature of the patch boundary ∂MA, and βi are the discrete turning
angles of any corners on the patch boundary. The integration measure dAA is activated area,
while the loop integral of geodesic curvature is with respect to activated arc length, and conducted
anticlockwise, as shown in figure 7b.

The geodesic curvature of a curve on a surface is computed by projecting its three-dimensional
curvature vector into the tangent plane of the surface. To interrogate the crease, we use a long
narrow patch like that shown in figure 7b. Taking the limit of the width of the patch to zero,
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the long sides degenerate to the crease curve itself, although they still encode different geodesic
curvatures, as the same three-dimensional curvature vector is projected into different tangent
planes on the two sides. We construct the ends of the loop so that the four corners are right-angles
in the actuated surface, in which case the short end caps are the shortest paths connecting the
corners, and hence have zero geodesic curvature. The corner contributions thus cancel the Euler
characteristic, and the geodesic integral reduces to the contributions from the two long sides,
which can be combined in a single line integral

Ω =
∫∫

MA

KA dAA =
∫

lA

(κg1 − κg2 ) dlA. (4.2)

Here, the sign of the κg1 has flipped from that naively expected from equation (4.1), as we now
compute it from a curve traversed in the same sense as the actuated interface lA traverses the
crease (figure 7c), whereas in the original Gauss–Bonnet loop, we traversed this side in the
opposite sense. The standard formulae for geodesic curvature assign the sign by comparison with
the tangent normal of the curve’s Darboux frame, meaning the sign flips if the curve is traversed
in the opposite sense. Here, this change is helpful as the original loop integral has degenerated to
a single line integral along the crease, so it is now intuitive to compute both geodesic curvatures
for curves traversed in this sense.

Having computed Ω(lA) above, we may now simply quantify the concentration of GC along
the crease as the total curvature per unit length, dΩ/dlA = κg1 − κg2 .

(b) Concentrated Gaussian curvature along metric-compatible interfaces between two
director patterns

In the preceding section, the Gauss–Bonnet was done in the actuated state. However, geodesic
curvature and total curvature, like GC, are actually intrinsic properties, meaning they may be
computed from the metric without knowing the actual form of the surface. For active sheets, this
means one can express the integral in equation (4.2) entirely in the reference state. Here, we derive
such a result for the case of metric-compatible interfaces between LCEs with the same actuation
magnitudes, although a similar approach could be adopted in any case.

Consider first an LCE sheet with director field n(x) in the (flat) reference state. The director
variation in this state is usefully described by its two-dimensional bend and splay vectors,

b = (∇ × n)n⊥ and s = (∇ · n)n, (4.3)

where the curl is taken in a two-dimensional scalar sense [50]. Note that these vectors, like the
metric and the nematic phase itself, are invariant under n → −n.

An arc-length parameterized curve x(l) with total length l̄ in the reference state will become a
curve on the actuated surface upon heating. The geodesic curvature of x(l) after actuation may be
computed by an application of Liouville’s formula (see p. 296 and p. 351 of [25]) and is given by
Duffy & Biggins [52]:

κg = λ‖λ⊥
(t · at)3/2

dφ

dl
+ (λ‖/λ⊥)b · t⊥ − (λ⊥/λ‖)s · t⊥√

t · at
, (4.4)

where a is the metric tensor, φ is the angle between the curve tangent t and the director n
(obtained by t = cos φn + sin φn⊥) and t⊥ = R(π/2)t is the unit vector perpendicular to t, as shown
in figure 7a.

Given this expression for geodesic curvature, we now calculate the integrated GC along a
metric-compatible interface x(l) between two director patterns. Substituting equation (4.4) into
equation (4.2), and using dlA/ dl = √

t · a1t = √
t · a2t to pass the line integral from the actuated

domain to the reference domain, we obtain the integrated GC as

(twinning case) Ω =
∫∫

MA

KA dAA =
∫ l̄

0

[
− λ‖λ⊥

t · a1t
ξ ′(l) +

(
λ‖
λ⊥

�b⊥−λ⊥
λ‖

�s⊥
)]

dl, (4.5)
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where ξ (l) is the twinning angle between n1 and n2 across the interface, as shown in figure 7a,
and �b⊥ and �s⊥ are the jumps in the perpendicular components of the bend and splay vectors
across the interface, defined as

�b⊥ = (b1 − b2) · t⊥ and �s⊥ = (s1 − s2) · t⊥. (4.6)

In equation (4.5), we have suppressed the l dependence in a1, t, �b⊥ and �s⊥ to simplify our
notation. For the continuous-metric interface along which n1 = ±n2 (such as the examples in
figures 6e,f ), the first term in (4.4) cancels between the two sides as dφ1/ dl = dφ2/ dl, leading
to the simpler result

(continuous-metric case) Ω =
∫∫

MA

KA dAA =
∫ l̄

0

(
λ‖
λ⊥

�b⊥−λ⊥
λ‖

�s⊥
)

dl. (4.7)

Interestingly, we see that both types of interfaces generically bear concentrated GC. Furthermore,
the different dependencies on λ‖ and λ⊥ in the three terms in equation (4.5) suggest that obtaining
a perfect cancellation for a Gauss-flat interface is hard to achieve, and, even if it is achieved, is
likely to hold only when actuation is complete, rather than at the intermediate actuation values
en-route. Thus stitching as a design strategy is inextricably linked with intrinsically curved folds.
We hope that in the future these results may allow the design of patterns that bear desired GC
distributions, and hence the design of target surfaces with sharp folds.

(c) Examples of computed Gaussian curvature
We conclude by demonstrating the use of our general results above, by computing the distribution
of concentrated GC along two examples of metric-compatible interfaces between log-spiral LCE
patterns, previously described in §3c. We choose one example with a twinned interface (figure 8a)
and one with a continuous-metric interface (figure 8d) to illustrate both cases. As a preliminary
to both calculations, we note that, in plane polar coordinates, the bend and splay vectors for a
log-spiral pattern are simply

b = n⊥ sin
α

r
and s = n cos

α

r
. (4.8)

For our first example, we take two spirals with α = ± arctan(1/
√

λ‖λ⊥) in our standard
configuration, with a twinned interface along the vertical y-axis, as shown in figure 8a. This value
of α was chosen as it is the critical value of α between cones and anticones, such that the spirals
would remain flat upon individual actuation (figure 5), and thus the only GC in the resultant
surface will reside on the interface. To compute the GC, we first gather the various quantities
involved in equation (4.5). Along the interface, the radial direction for the left-hand pattern is
simply r1 = (c, y) which makes an angle π/2 − arctan (y/c) with the y-axis, so we may compute
φ = ξ/2 = π/2 − α − arctan (l/c), where we now set l = y as the reference arc-length parameter of
the interface. Substituting these values into equation (4.5) along with the bend and splay reveals
that the distribution of GC is described by

dΩ

dl
= − λ‖λ⊥

λ2
⊥ sin2 φ + λ2

‖ cos2 φ

2c
c2 + l2

+ 2

(
λ‖
λ⊥

sin α cos φ√
c2 + l2

+ λ⊥
λ‖

cos α sin φ√
c2 + l2

)
. (4.9)

A plot of this distribution is shown in figure 8b. We see that the GC has a non-trivial
distribution that decays away from the origin, but is positive on one side and negative on
the other. The corresponding simulation (figure 8c) shows how a surface can accommodate
these properties: the crease has the same sense of fold-angle throughout, but changes the finite
curvature of the ridge line from positive to negative by tracing out a planar space-curve with
a maximum and a minimum. The simulations also reveal that the singular GC above is, in fact,
slightly smeared out transverse to the fold, blunting the fold and avoiding the infinite bend energy
associated with a truly sharp feature, at the cost of some local stretching energy.
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Figure 8. (a–c) The reference domain ((a), top), actuated conical shapes ((a), bottom), analytical concentrated GC (b), and
simulation (c) for the twinning interface between two spiral patterns withα1 = −α2 = 1.25. (d,e) The plots of counterparts
for the continuous-metric interface between two spiral patterns with α1 = α2 = 1.173. In our simulations, the thickness h is
approximately 1% of the sample size. (Online version in colour.)

For our second example, we take spirals with the same angle α = α1 = α2 in our standard
configuration, and joined along the continuous-metric interface along the x-axis. Recalling the
integrated GC (4.7) for the continuous-metric interface, we have

dΩ

dl
=
(

λ‖
λ⊥

− λ⊥
λ‖

)
c sin(2α)
c2 − l2

, (4.10)

which is plotted in figure 8e. In this case, the distribution is also finite near the origin and decays
at large distances, but it is negative in the middle, and positive in the extremes. Interestingly, the
distribution diverges where the interface passes through the spiral centres, leading to cone-like
tips in the actuation surface, which now fall on the interface. Quantifying the GC concentrated
at these tips would require a more careful application of Gauss–Bonnet [52] at the point, rather
than along lines as done here. Again, the simulated shape shows the same pattern of GC, leading
to a surface with a line-like saddle in the middle, joining two positive tips. As previously, the
simulated ridges are blunted, avoiding divergent bend.

Overall, these examples illustrate that both types of interface generically bear concentrated
GC, and the analytic computation of its distribution gives considerable insight into the form of
the actuated surface. In the future, these results may allow the programming of the shapes of
such intrinsically curved folds. For example, both simulations in figure 8 show that the region
with positive concentrated GC curves downward while the negative region curves upward upon
actuation. This is because the transverse principal curvature along the interface does not change
its sign, restricted by the domain’s boundary, and the longitudinal principal curvature must
therefore change sign when the concentrated GC does. This suggests that one can potentially
program the concentrated GC along metric-compatible interfaces to obtain an actuated shape
with desired directional curving properties.
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(a) (b) (c)

(d) (e) (f)

Figure 9. (a) An interface between two log-spiral patterns that individually actuate to anticones. (b) An interface between
patterns with no tips by taking the complement of (a). (c) A circular twinning interface between two concentric spirals with
opposite angles (α1 = −α2). The actuation induces programmable twists. (d,f ) Complex interfaces and topographies by
stitching together patterns with metric-compatible interfaces. (Online version in colour.)

5. Discussion
In this paper, we have presented a systematic method for combining different patterns of shape
change in a single morphing sheet by stitching them together piecewise via metric-compatible
interfaces. This approach enlarges the design space by allowing simple patterns to be used as
building blocks for more complex patterns, and also paves the way for multi-material sheets that
combine active and passive regions, or even regions with different active materials.

Our study reveals a key difference between active materials such as LCEs that undergo
anisotropic local shape changes, and those like swelling gels where the shape change is locally
isotropic. Given two patterns of LCE type, there are infinitely many interfaces available along
which the metric is discontinuous but twinned so that the interface itself is compatible. There
may also be a finite number of interfaces in which the metric is continuous across the interface.
By contrast, in gel-like systems, only the latter type of interface is available, strongly limiting the
possibilities available from stitching. This distinction is seen when combining patterns of the same
type of actuation, and also when trying to combine active and passive regions.

To illustrate how this stitching approach dramatically enlarges the design space, we have
found all the compatible interfaces between pairs of LCE log-spiral patterns, that would
individually actuate to (anti)cones. For every pair of spirals, there are infinitely many twinned
interfaces available, generating a rich set of actuated topographies. In our original presentation
(figure 6), we demonstrated examples with a single interface that ran between the spiral centres,
leading to a surface with two conical tips separated by a curved ridge along the interface.
However, the full set of surfaces enabled is much broader than this, as highlighted in figure 9.
For example, we may also obtain anti-tips by using spirals that individually make anticones
(figure 9a), or landscapes with no tips at all by taking the tip-free side (complement) of each
pattern (figure 9b). A particularly interesting case arises for concentric spirals with opposite angle,
which actuates to a simple cone in which the tip and flank twist in opposite senses (figure 9c)
opening the possibility of designing the twist of a surface, as well as its shape. Moreover, one may
also create much more complex patterns with multiple regions connected by multiple compatible
interfaces (figure 9d–f ). Intersections between interfaces generically have an angular surplus or
deficit on actuation, generating their own (anti-)tips. The resultant shapes commonly show rich
multi-stability, and such patterns may be repeated indefinitely to make switchable textures.

Our study also reveals that the metric-compatible interfaces generically bear concentrated
GC, and thus produce sharp folds in the actuated surface. Perhaps surprisingly, such creases
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are found for both twinned and continuous interfaces. Looking ahead, we expect these creases to
have interesting and rich mechanical properties, as they are intrinsically curved and cannot be
flattened without stretch. For example, ribbon-shaped actuators containing such interfaces will
curve into a folded arc on actuation, offering a mode of actuation reminiscent of a conventional
bi-layer bender, but with the stretch-based strength of metric mechanics. We reserve for future
work a detailed exploration of the mechanics and geometry of such intrinsically curved ridges,
which are fundamentally different to the familiar curved folds in isometric origami.

Finally, we note that a key premise of this work has been that stitched interfaces must be metric
compatible, otherwise the two regions disagree over the length of the interface on actuation,
leading to large internal stresses and ultimately, material failure. However, in the experimental
literature, one may find examples of both compatible [2,27,49] and incompatible [9,33,42,57]
interfaces. The compatible interfaces follow our interfacial metric mechanics framework exactly,
and one can see compatible curved interfaces in the actuated configuration. An interesting middle
ground is explored in [42], where a fundamentally compatible interface is biased to actuate up
rather than down by the inclusion of a sliver of incompatible material along the interface itself. At
the other extreme, the incompatible interfaces cannot be understood in the framework of metric
mechanics, as there is no isometry of the metric available. However, it would be very interesting
to quantify experimentally the extent to which such incompatible interfaces really are prone to
fatigue and failure under actuation, and to formulate a theoretical approach that can predict their
resultant shapes and mechanics.
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handle/1810/312168 with full permission.
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