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Abstract

When a wide polygonal dural window is created, a short dural incision length is preferred by surgeons  
because suturing a wastefully long incision line during closure is troublesome. A locator to facilitate 
making the shortest dural incision when creating a polygonal dural window would be helpful. We 
geometrically analyzed the shortest incision design for a pentagonal dural window and produced a simple  
locator for intraoperatively implementing this design. The design for a pentagonal dural window with the 
shortest incision is the same as the design for a minimum Steiner tree (MST) problem with five vertices.  
The MST consists of three interconnected Steiner points (SPs) with three equal, radiating branches. We 
produced a template of the features of the MST for a polygon (MST template) as a locator. The MST 
template consists of several uniform Steiner units (SUs), each of which has an SP at the center and three 
wings that branch off of the SP, and each SU also has three slits through which the wings of another unit 
can pass. This mechanism allows us to freely adjust the distance between the SPs of separate SUs. In 
clinical practice, we can create the shortest incision design for a quadrilateral or pentagon by arranging 
MST templates combining two or three SUs. If we open a wide dural window, the total incision lengths 
created using our method are 1–5 cm shorter than conventional incisions. The MST template accurately 
and easily reveals the shortest incision design. 
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Introduction

In a craniotomy, a polygonal window is typically 
opened in the dura mater. When a wide dural window 
is created, a short dural incision length is preferred by 
surgeons because suturing a wastefully long incision 
line during closure is troublesome. If the dura mater 
is opened in the shape of a polygon, the dura mater 
must be incised along the line of a design that connects 
each vertex. Thus, we want to identify the shortest 
set of line segments interconnecting each vertex of 
a given polygon. Identifying the shortest network to 
connect every vertex of a polygon describes a Steiner 
tree problem. Thus, the solution is called a minimum 

Steiner tree (MST). Previously, we presented the 
shortest incision design and the method to identify it 
in the case of opening a quadrilateral dural window, 
which was a MST connecting each vertices of the 
quadrilateral. The MST for a given quadrilateral is a 
network with two three-pronged intersections (TPIs) 
that have equal angles (2/3π) between any two line 
segments, called Steiner points (SPs) (Fig. 1, left).1) 

Now, there are two remaining issues to address. 
The first issue is that in some cases, a pentagonal 
dural window must be opened if a wider surgical 
opening is required, but the shortest incision design 
for a pentagonal dural window cannot be identi-
fied with the same method used for a quadrilateral 
window. We explored the shortest incision design for 
a pentagonal dural window with the other geometrical 
approach than that for a quadrilateral one.

The other issue is that using the plotting method 
of identifying the shortest design requires triangles 
to be drawn outside of the craniotomy to construct 
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the shortest incision design, even for a quadrilateral 
window.1) Ideally, these triangles should be plotted 
on the same plane as the operative field for precise 
construction, but this approach cannot be applied 
intraoperatively because the operative field is hemi-
spheric, not a plane. Plotting on an incorrect plane 
causes small error in the design. We developed a 
locator that can create the shortest incision design 
intraoperatively without requiring construction 
outside of the craniotomy. In this paper, we present 
a new template that generates the design for both 
quadrilateral and pentagonal dural windows. 

Materials and Methods

Geometrical analysis
We want to identify the shortest set of line segments 

interconnecting five vertices of a given pentagon. 

The shortest incision design is the solution for an 
MST problem that involves five vertices. In general, 
the MST problem is difficult to solve if the number 
of vertices is large, but if the number is small, the 
problem is typically solved by applying Melzak’s 
algorithm.2) We analyzed the shortest incision design 
to open a pentagonal dural window by applying 
Melzak’s algorithm.

A locator for the shortest incision design (MST 
template)

According to the geometrical analysis, the shortest 
incision design is a Steiner tree connecting all the 
vertices of a polygon. If a unit has an SP at the 
center and three equal, radiating (2/3π) branches, 
the combination of these components assembled by 
connecting each branch in a straight line creates a 
Steiner tree. If the distance between the two SPs 
of each unit is adjustable, the combination can be 
used as a Steiner tree locator for any polygon (MST 
template). We constructed such a template out of a 
polypropylene sheet. Each unit of this tool, called a 
Steiner unit (SU), has an SP at the center and three 
wings indicating its three branches; it also has three 
slits through which the wing of another SU can pass. 
The branch of an SU can connect with the wing of 
another SU by passing its wing through the slit of 
another SU; in this way, each SU can be smoothly 
repositioned to create a new combination. We can 
adjust the distance between the SPs freely using this 
mechanism (Fig. 2). In clinical practice, we created 
the shortest incision design by using MST template 
on seven cases of pentagonal cranial window. We 
compared the distance of the total incision line with 
that of conventional incision design for the same 
pentagon by simulating in the representative case.

Fig. 1  The shortest incision design for a polygonal 
dural window. Left: The thick line is an MST for four 
vertices, which is the shortest network of this quadrilat-
eral. This design has two SPs (circle) with three equally 
radiating branches. Right: The shortest incision design 
for a pentagonal dural window is shown. This design 
consists of three SPs and seven branches. Each angle 
between any two branches at the SP is 2/3π.

Fig. 2  MST template. A: An SU comprising the MST template is shown. It has three wings indicating three 
branches (small arrow) radiating from the SP at the center (large arrow) and three tabs for convenient movement 
on the counterpart of the branch (arrowhead). B: Extended image of an SU. An SU has three slits (arrow) near 
the center, through which a wing of another SU can be passed through. C: An MST template for a pentagonal 
dural window is shown. This template was assembled by combining three SUs (units 1, 2 and 3) connected to 
each other’s wings through slits.
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Results

Geometrical analysis
According to the geometrical analysis, the shortest 

incision design for a pentagon consists of three 
interconnected SPs and their seven branches  
(Fig. 1, right). 

Brief proof:  Suppose A1, A2 and P are to be 
interconnected with line segments. We can describe 
every pattern of this interconnection by placing a 
TPI (Q) interconnecting each vertex anywhere on 
the same plane (Fig. 3A). For the understanding 
auxiliary, consider two equilateral triangles, ΔA1B1A2 
and ΔA1Q’Q. If we plot ΔA1B1A2 and ΔA1Q’Q, 
as shown in Fig. 3B, the total length of the line 
segments interconnecting the three points A1, A2 
and P (the sum of line segments A1Q, A2Q and 
PQ) is equal to the path B1Q’QP because ΔA1A2Q 

and ΔA1B1Q’ are congruent. Therefore, the Q that 
results in the shortest path B1Q’QP is the location 
of the TPI interconnecting A1, A2 and P with the 
shortest total length. Path B1Q’QP is the shortest 
when Q’ and Q are on line B1P (Fig. 3C); then, the 
sum of the connecting line with A1, A2 and P is 
the shortest in the design described in Fig. 3D. In 
other words, the total length of the shortest set of 
line segments interconnecting the three given points 
A1, A2 and P is the distance between B1 and P. 
Moreover, the TPI connecting these three points is 
located at the intersection of lines B1P, B2A2 and 
B3A1 if we plot equilateral triangles ΔB2A1P and 
ΔB3PA2, and the angle between any pair of branches 
around the TPI is 2/3π. The TPI has a property of 
an SP, and the network including these branches 
is called the MST of ΔA1A2P (Fig. 3D). Hence, 
we can consider point B1 (the outer vertex of the 

Fig. 3  Proofs for the shortest network. The theory is developed in the text. A: Consider three points, A1, A2 and P, 
interconnected with a trifurcated line segment (thick line). Q indicates the TPI of the segment. B: Equilateral trian-
gles ΔB1A2A1 and ΔA1Q’Q (fine line) are given for auxiliary understanding. Small circles or small lines marked 
on line segments indicate equal lengths. Path B1Q’QP is drawn with thick line. C: Path B1Q’QP (thick line) is the 
shortest when Q’ and Q are on line segment B1P. D: The shortest design interconnecting A1, A2 and P, meaning 
the MST of ΔA1A2P, is shown (thick lines). Equilateral triangles ΔB2A1P and ΔB3PA2 (fine line) are given. Q as 
SP (surrounded by circle) is on line segments B1P, B2A2 and B3A1 (broken line). E: Construction of the MST using 
Melzak’s algorithm. The Steiner tree (thick line) of the pentagon A1A2, namely, A5 (thin line), is drawn. Equilateral 
triangles ΔB1A1A2, ΔB2B1A3, ΔB3B2A4, ΔB4A4A5, ΔB5A3Q3 and ΔB6A2Q2 (detailed broken line) are given for 
auxiliary understanding. Rough broken lines are drawn to identify the SP of the pentagon. Q1, Q2 and Q3 are the 
SPs of the Steiner tree. F, G, H, I and J: Five Steiner trees derived from a given pentagon are shown (thick line).  
SPs are surrounded by circles. The total length of each tree is indicated below the pentagon. The length of the side 
that is enclosed by start and end points of Melzak’s algorithm is indicated at the side of each pentagon.
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C D
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plotted triangle) as an alternative to points A1 
and A2 (two vertices at the bottom of the plotted 
triangle) when they have the shortest distance to 
any P. If we try to determine the shortest network 
of five vertices of a given pentagon A1A2, namely, 
A5 (Fig. 3E), constructing B1 at a vertex of triangle 
B1A1A2 allows us to consider B1 as an alternative 
point to A1 and A2 connecting the shortest with 
any point in the pentagon. In the same manner, if 
we construct B2, B3 and B4 as alternative points to 
B1 and A3, B2 and A4, A4 and A5, respectively, the 
SP of ΔB2A5A4 comprises one of the TPIs of the 
shortest network of the pentagon because we can 
consider B2 as an alternative point to A3 and B1 
(which is an alternative to A1 and A2). As mentioned 
above, the SP of ∆B2A5A4 is at the intersection of 
lines B2B4 and B3A5, named Q3. We then consider 
the shortest network of ∆Q3A3B1. We construct B5 
at a vertex of triangle ∆B5A3Q3; then, the SP of 
∆Q3A3B1 is at the intersection of line B5B1 and 
B2Q3, named Q2. Finally, we consider the shortest 
network of ∆Q2A2A1. We construct B6 at a vertex 
of triangle ∆B6A2Q2; then, the SP of ∆Q2A2A1 is 
at the intersection of lines B6A1 and B1Q2, named 
Q1. The network consists of three SPs—Q1, Q2, Q3—
and seven branches of these SPs form the shortest 
network (Steiner tree) connecting five vertices of the 
pentagon. Such a solution is called Melzak’s algorithm.2) 
If we apply this algorithm to the same pentagon 
with other starting points from A2, A3, …A5, we 
obtain four other types of Steiner tree (Figs. 3F–3J).  
We compared the lengths of these five trees, and the 
shortest is shown in Fig. 3I. Several trials conducted 
to compare the total lengths of the Steiner trees of 
several given pentagons revealed that the shortest 
tree was constructed using Melzak’s algorithm by 
starting from the end of the longest side of the 
pentagon. We could not demonstrate this result 
geometrically, but experimental trials confirmed 
its legitimacy.

Here, we solved the problem by applying Melzak’s 
algorithm; however, this algorithm cannot be applied 
for every type of pentagon. If fully applicable, the 
vertices of such pentagons have no obtuse angles 
greater than 2/3π.3) In the cases, such as the pentagon 
depicted in Fig. 4, Melzak’s algorithm cannot be 
completely applied starting from an end of the 
longest side and always has a wide-angle vertex 
greater than 2/3π. Identifying the shortest design in 
these pentagons is complicated, but such uneven 
pentagons are rarely encountered.

Usage of MST template in clinical practice
After a craniotomy is performed, all the vertices 

of a quadrilateral or pentagon to be opened must 

be marked on the exposed dural surface before 
the incision is made (Fig. 5A). To create the 
shortest incision design for a quadrilateral dural 
window, two SUs can be assembled to create an 
MST template, and the distance between their 
SPs can be adjusted to align the four radiating 
wings on the four vertices of the quadrilateral. 
Consequently, the combination of their branches 
shows us the shortest incision design. When a 
pentagonal window must be created, three SUs can 
be assembled to create an MST template (Figs. 2C  
and 5B). Using this approach, we can create five 
candidates for the shortest incision design. As 
noted above, the shortest design encloses both ends 
of the longest side of the pentagon within each 
wing of the SUs at both ends of the combination. 
Then, we can mark the selected design on the 
dura mater (Fig. 5C). Using the MST template, we 
could create the shortest design within a minute 
in all clinical cases (7 cases).

Fig. 4  A case in which the shortest network does not 
have three SPs. An MST (thick line) of the pentagon 
A1A2, namely, A5 (thin line), with a wide angle at A2 
(> 2/3π) is described. Equilateral triangles ΔB1A1A2, 
ΔB2B1A3, ΔB3B2A4, ΔB4A4A5 and ΔB5A3B4 (detailed 
broken line) are given for auxiliary understanding. 
Rough broken lines are drawn to identify the SP of 
the Steiner tree. We defined two SPs (Q1 and Q2) and 
their branches by applying Melzak’s algorithm but could 
not define Q3 as the remaining SP using the algorithm. 
We could not set the SP interior to ∆A2A1Q1 because 
≠Q1A2A1 is greater than 2/3π. The shortest pattern 
connecting A2, A1, and Q1 is path A1A2Q1. Each angle 
for the circular arcs in these drawings is equal to 2/3π.



The Shortest Dural Incision Design and a Template for It 625

Neurol Med Chir (Tokyo) 57, December, 2017

Comparison to the conventional method
The conventional dural incision used to open 

a pentagonal window involves cutting first in a 
semicircular shape and then along three auxiliary 
lines, creating a polyline along with the four sides 
of the pentagonal window or a radiation line for 
five vertices. However, the total cutting length of 
these standard designs varies and is not the shortest 
possible length. In the case of Fig. 5 (the pentagon 
has sides of 12, 10.2, 11.2, 9.4, and 10.3 cm in 
length), the shortest design requires 40.4 cm of 
dural incision (Fig. 4C), whereas the conventional 
method using a semicircle and three auxiliary lines, 
a polyline or radiation lines requires 42.9, 41.4, or 
45.4 cm, respectively (Figs. 4D–4F).

Discussion

First, we determined that the shortest incision 
design for pentagonal dural window is a Steiner 
tree composed of three interconnected SPs. Second, 
we created the MST template that simply shows us 

the shortest incision design for both quadrilateral 
and pentagonal dural windows. 

We presented the shortest incision design for a 
pentagonal dural window as a Steiner tree. Our method 
above can be adopted for pentagons to which Melzak’s 
algorithm can be applied, starting from the end of 
the longest side. Herein, we discuss the geometry 
of the shortest incision design. To our knowledge, 
this is the first study to discuss the geometric design 
of a dural incision for a pentagonal dural window. 

The MST template makes it easy to determine the 
shortest incision design for a polygonal dural window. 
The template is made of a clear polypropylene film. 
The properties of this material allow us to easily 
bend the template in a vertical direction along with  
the curve of the brain surface, but it does not bend on 
the horizontal plane intraoperatively. Accordingly, the 
template maps an accurate shortest incision design. 

This new method has a few problems in practice. One 
is that the proximity to the dural venous sinuses and 
the location of the underlying pathology might restrict 
the use of our incision design. A second problem is 

Fig. 5  Intraoperative usage of the MST template. A, B and C: The intraoperative use of an MST template is 
shown. A: First, the vertices (arrow) of a sufficiently wide polygon (pentagon here) are marked. B: Then, the 
assembled MST template is applied to the dura mater with five wings meeting on each mark. Both ends of the 
longest side of the pentagon must be enclosed by the wings of SUs of the assembled MST template. C: The MST 
of this pentagon is marked on the dura mater, creating the shortest incision design. D, E and F: Incision designs 
of a semicircle and auxiliary lines (D), a polyline (E) and radiation lines (F) are drawn using a thick line on 
the same craniotomy picture. C, D, E and F: The total incision lengths are shown in the picture.
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that surgeons may feel that it is more difficult to close 
tripartite dural incisions at the TPI of this design. We 
usually close TPI of the incision line by a simple purse 
string suture with four stitches (Fig. 6). Nonetheless, 
the approximately 1–5 cm shorter incision lengths 
created using this method will relieve neurosurgeons 
from cumbersome dural closures. In this paper, we first 
geometrically examined the shortest incision design for 
a pentagonal dural window, and we then introduced 
an MST template that allows the easy intraoperative 
creation of the shortest incision design.

Fig. 6  TPI closure. The closure of the tripartite dural 
incisions at the TPI is indicated. A purse string suture 
with four stitches is sufficiently simple for tight closures. 
The cutting line (thin curved line) and suture thread 
(thick curved line) are indicated.
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