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Abstract: Polymer composites containing nanocarbon fillers are under intensive investigation
worldwide due to their remarkable electromagnetic properties distinguished not only by components
as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein
reveals that a particular effect connected with the homogeneity of a composite manifests itself in the
terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of
nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets
and multi-walled carbon nanotubes. The THz peak of permittivity’s imaginary part predicted
by the applied model was experimentally shown for GNP-containing composites both below and
above the percolation threshold. The physical nature of the peak was explained by the impact on
filler particles excluded from the percolation network due to the peculiarities of filler distribution.
Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.

Keywords: nanocomposites; THz spectroscopy; percolation threshold

1. Introduction

Functional materials based on micro- and nanocarbon structures (single and multi-walled
nanotubes, graphene flakes, carbon dots, nanohorns, etc.) are of great interest for electromagnetic
(EM) applications alongside composites [1–7] and structures [8–12] on their basis. The simplest
way to drastically change the mechanical [13–16] and EM [17–20] properties of a dielectric material
(such as a polymer, ceramic or glass) is to fill it with conductive particles of microscopic/nanoscale
size. Possessing the highest possible aspect ratio among all nanocarbon fillers, nanotubes are the first
candidate to create a conductive network inside a composite, i.e., reach the electric percolation threshold
at the smallest possible concentration [2,21–23]. Another widely-used nanocarbon filler, namely,
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graphene nanoplatelets, usually have the percolation threshold of 3.5–10% [24–28]. That is several
orders higher than the 0.002% percolation threshold possible for composites based on single-walled
nanotubes [2,23,29].

Multi-filler composites containing different types of fillers (including non-carbon) tend to form
heterogeneous percolation networks [30–32]. This fact allows making composite materials without
expensive fillers through the introduction of low-cost ones into the hybrid percolation network [33,34],
or even enhancing the electromagnetic properties due to the synergistic effect [35–37]. Recently, bi-filler
composites containing graphene nanoplatelets and carbon nanotubes have attracted great interest
due to the possible synergistic effects in their mechanical, thermal and electric properties [38–41].
Besides the filler morphology, the percolation threshold value strongly depends on the composite
preparation technology, the filler dispersion in the dielectric phase (matrix) and the filler–polymer
interfacial interactions. In previous studies on the herein investigated nanocomposites, the electrical
percolation thresholds of 0.5% for MWCNT/PLA, 6% for GNP/PLA and 3% for the bi-filler
composite GNP/MWCNT/PLA were reported [42]. In the framework of the current research,
we speak only about the electric percolation, i.e., the interconnected conductive network formation
of filler particles, where the dielectric matrix plays a direct role only in the electron tunneling [43].
However, the characteristics of polymer and/or composite preparation technology may significantly
affect the distribution of filler particles.

The dielectric properties of composites above the percolation threshold are mainly governed by
electrical transport and Maxwell–Wagner relaxation. However, at higher frequencies, the contributions
of big percolating clusters to the Maxwell–Wagner relaxation and the electrical conductivity become
less important, so that in the terahertz frequency range it is possible to separate the contributions of
individual nanoparticles’ polarizations from the total dielectric permittivity [44]. The most commonly
used non-destructive method of composite system characterization is low-frequency impedance
spectroscopy, which allows one to easily establish percolation thresholds. However, the dispersion
of nanoparticles may be investigated by other direct methods, such as transmission and scanning
electron microscopy, and indirect methods (noise spectroscopy [45], magnetic susceptibility
measurements [46], etc.) [3,47,48].

Time-domain terahertz spectroscopy is a non-destructive diagnostic method widely applied for
the characterization of polymer-based nanocomposites’ [49–51] and thin films’ [52–54] electromagnetic
properties in the 100 GHz–3 THz frequency range without any predefined assumptions. Being in
between microwave and optical infra-red frequency regions, terahertz radiation easily transmits
through most dielectric materials, while the metals and certain dielectrics, such as water,
are non-transparent at the mentioned frequencies. Since the inhomogeneities’ dimensions are orders
less than the wavelength, spectral parameters of nanocomposites may be investigated in the framework
of effective medium theory [55,56].

It is worth noting that the percolation threshold is usually considered as a filler concentration at
which the percolation network appears. However, due to the imperfections of filler distribution, the actual
number of particles involved in the percolation network is lower than the threshold. The current
investigation is aimed at distinguishing the impacts of filler particles excluded from the percolation
network on the terahertz electromagnetic properties of a composite. Additionally, the possibilities to
tune the frequency dispersion of permittivity in THz range by variation of filler contents in composites
based on GNP, MWCNT and their mixtures are discussed.
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2. Materials

2.1. Composites Fabrication

The polymer matrix used in this study was Ingeo™ Biopolymer PLA-3D850 (Nature Works,
Minnetonka, MN, USA). The nanofillers used were: commercially available industrial graphene
nanoplates, TNIGNP (supplied by TimeNano, Chengdu, China), with 90 wt.% purity; number of
layers < 30; thickness < 30 nm; diameter/median size 5–7 µm; aspect ratio: ∼230/165; and volume
resistivity < 0.15 Ohm/cm. Industrial grade OH-functionalized carbon nanotubes (multi-walled carbon
nanotubes; MWCNTs; TimeNano, produced by CVD method) with 95 wt.% purity; 2.48 % OH− content;
size (outer D = 10–30 nm, length = 10–30 µm); aspect ratio: ∼1000; and 100 S/m electric conductivity.
A high amount of GNP impurities has an insufficient impact on the PLA composite processing due to
the slip effect between GNPs in the PLA matrix during the shear flow [57]. Impurities mostly consist of
amorphous carbon; thus their impacts on the electromagnetic properties may be neglected.

Twin-screw extruder (COLLIN Teach-Line ZK25T) was used to prepare nanocomposites at
temperatures of 170–180 ◦C and screw speed 40 rpm in two runs. The mono- and bi-filler
nanocomposite hybrids were processed using the melt extrusion method, which includes the
preparation of master batches, and further dilution. It was previously shown that both GNP
and MWCNT addition significantly suppress the thermal degradation and the aging of polymer
nanocomposites (accelerated by humidity uptake, UV light, etc.), compared to the neat PLA, due to
the nucleation and the barrier effects of nanofillers [58].

The mono-filler composites (PLA/MWCNT and PLA/GNP) with 1.5 wt.%, 3 wt.% and 6 wt.%
filler contents, and the bi-filler composites (PLA/MWCNT/GNP) with 3 wt.% and 6 wt.% total
filler content (combining GNP and MWCNT in different proportions) were prepared. Thin films
of nanocomposites were obtained by hot pressing at 180 ◦C and pressure of 1 bar. Before pressing
the test samples, composite pellets were dried in a vacuum oven at 80 ◦C for 4 hours in order to
minimize the humidity uptake. The applied temperature range was significantly lower than the PLA
thermal degradation onset (230 ◦C). The physicochemical characteristics of the PLA-based carbon
nanocomposites under investigation are given in Table 1. Composites’ crystallinity was 30%.

Table 1. Physicochemical characteristics of polymer composites after hot pressing [43,58].

Parameter Value

Glass transition temperature Tg, ◦C 65
Cold crystallization temperature Tcc, ◦C 87–92
Melting temperature Tm , ◦C 175
Melt crystallization temperature Tg, ◦C 105
Crystallinity, % 30

2.2. Sample Characterization

According to the low-frequency measurements described before (see Figure 4 in [40]),
the percolation threshold for MWCNTs lies between 1.5 and 3 wt.%, while GNP-based composite
experiences percolation between 3 and 6 wt.%. Therefore, the set of samples under investigation
contains both pre- and post-percolated composites.

The quality of nanoparticles and their distribution in the polymer matrix were examined by
means of a Raman spectrometer combined with the confocal microscope (Nanofinder High End,
Tokyo Instruments, Belarus-Japan). Raman spectra were obtained using 100X objective with NA = 0.95
and the spot size on the sample surface was 0.75 µm. The excitation source was a 473 nm laser.

It is known that the typical Raman spectra of carbon nanomaterials, including MWCNTs, GNP,
graphene, etc., are dominated by three characteristic peaks centered at ∼1360 cm−1, ∼1580–1600 cm−1

and ∼2600–2700 cm−1 (usually referred to as D, G and 2D modes, respectively) [59–61]. On the other
hand, the strongest features of pure PLA are located in the vicinity of 3000 cm−1. Comparing the
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Raman spectra collected from different points on the surface of the composite containing 1.5% GNP
allows one to figure out GNP particles, points 1 and 2 in Figure 1b, correspond to the filler-free area and
GNP, respectively. The contrast difference between GNP particles and pure polymer Figure 1a indicates
the particle distribution in the polymer matrix. It is worth noting that pure PLA is optically transparent;
hence, it is possible to observe GNP particles under the sample surface. However, the addition of a
small MWCNT amount makes the PLA matrix non-transparent. As a result, in the bi-filler composites,
GNP particles can be identified by optical microscope (Figure 1c) only on the sample surface. As can be
seen from the Raman spectra (Figure 1d), in the bi-filler composites nanotubes are uniformly distributed
in the polymer matrix. However, at different points in the sample, the proportions of MWCNTs and
PLA impacted the Raman spectrum differently (see points 1 and 3 in Figure 1d). Raman spectroscopy
allows distinguishing even a small number of MWCNTs which are present on the surfaces of GNP
particles (the observed D mode indicates CNTs at point 2).
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Figure 1. Optical microscopy image (a) and Raman spectra (b) of PLA composite containing 1.5%
GNP. Due to the neat PLA transparency, it is possible to see GNPs under the surface of a composite.
Optical microscopy image (c) and Raman spectra (d) of PLA composite containing the mixture of 3%
GNP and 3% MWCNT. Raman spectrum collected at point 2 combines the characteristic peaks of PLA,
GNPs, and MWCNTs.

Bright-field transmission electron microscopy (TEM) analysis was performed using a FEI TECNAI
G12 Spirit-Twin (LaB6 source) instrument equipped with an FEI Eagle-4k CCD camera operating with
an acceleration voltage of 120 kV. The analysis was performed on sections obtained at room temperature
by using a Leica EM UC6/FC6 ultramicrotome. The sections were placed on 400 mesh copper grids.
According to the transmission electron microscopy (TEM) of obtained composites, the method applied
allows obtaining a mostly uniform distribution of both filler particle types. Figure 2a–c proves that
GNPs kept their dimensions after the melt extrusion processing.
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The TEM images of MWCNTs in mono- (Figure 2d,e) and bi-filler (Figure 2f) composites show
that in both cases, the nanotubes are well-distributed. Due to the significantly higher aspect ratio,
they tend to form percolation networks, even at the smallest investigated concentration (compare the
number of percolating clusters in Figure 2d,e). However, independently of concentrations and the
percolation existence, all prepared composites contain a certain number of insulated filler particles.
Summarizing the above, both nanocarbon fillers possess good dispersion in the PLA matrix.

a b c

d e f

Figure 2. TEM images of insulated filler particles in PLA composites with 1.5 (a), 3 (b), and 6 wt.%
(c) GNP; insulated particles and percolating clusters (enclosed in ovals) in composites containing
1.5 (d) and 3 wt.% (e) MWCNT; the mixture of 3% GNP and 3% MWCNT (f). A graphene nanoplatelet
involved in percolation contact with nanotubes is enclosed in an oval.

3. Experimental: Time-Domain THz Transmission Measurements

In order to perform the THz measurements, the thicknesses of samples were reduced to
200–300 µm by precise hand polishing with a diamond paste which was removed with isopropanol and
water. During the processing, composites were kept near room temperature to prevent heat-induced
variation of their structure. All films were studied by transmission microscopy, which requires very
thin samples. The terahertz–subterahertz spectra (5–60 cm−1) of the films were measured by means
of commercially available pulsed time-domain spectrometer (TDS) TERA K15 (Menlo Systems). In a
TDS spectrometer, the sample is exposed to a picosecond pulse that contains frequency components
in a wide range up to several terahertz. The position and amplitude of the pulse are detected when
the measurement channel is empty and blocked by the sample. The difference in time between the
two peaks is a measure of the radiation delay caused by the sample, and a peak’s amplitude gives the
measure of radiation absorption in the sample. The transition from the time domain to the frequency
domain was implemented using the Fourier transformation, and resulted in the spectra of transmission
coefficient amplitude and phase. This data were sufficient to determine the real and imaginary parts of
the complex conductivity and dielectric permittivity of the investigated sample. The latter, written as
ε = ε′ − iε′′, consists of two parts. The real part of permittivity, ε′, corresponds to the energy storage
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capacity of a material, and the imaginary part (or sometimes, the loss factor), ε′′, is a measure of all
dissipation effects in a material (see Sections 1.2.2.1 and 1.3.1 in [62] for further reference).

Experimental values of complex permittivity are shown in Figure 3. The imaginary part of
permittivity (further referred to as ε′′) demonstrates a peak for most of the investigated samples
containing GNP filler. On the contrary, the MWCNT-based monofiller composites and the bi-filler
composites with 1.5% GNP and 4.5% MWCNT demonstrated a monotonous decrease with frequency
growth, which is typical for percolated systems. Finally, the non-percolated composite containing
1.5 wt.% MWCNT did not demonstrate the ε′′ peak in the investigated frequency range.
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Figure 3. Complex permittivity of composites containing 3 (top) and 6 (bottom) wt.% nanocarbon
fillers. MWCNT concentrations are above the percolation threshold.

Another feature of the electromagnetic response is very close values of the real part of permittivity
for all three bi-filler composites containing 6 wt.% nanocarbon, accompanied by significant variation in
the imaginary part. In Section 5 we will try to clarify the physics origin of these peculiarities inherent for
two different kinds of complex permittivity behavior, characteristic for percolated and non-percolated
composites, and whether the filler particles’ distribution in the polymer could play a significant role.
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4. Modeling: MG Effective Medium Theory

One of the well-known approaches to describe the electromagnetic properties of a micro-
or nanocomposite material is to apply the effective medium theory. In the case when the filler
concentration is lower than the percolation threshold, i.e., filler particles are not interacting, the Maxwell
Garnett (MG) effective medium theory is applied [26,63]. This approach assumes the filler particles as
ellipsoids with semiaxes a, b, c, and the following polarizability:

αi(ν, σ) =
4πabc

3

εm(1− iσ
2πνε0

− εm)

εm + Ni(1− iσ
2πνε0

− εm)
, (1)

where σ is the ellipsoid conductivity. ε0 is vacuum permittivity; Ni is the depolarization factor in
direction i = a, b, c which is given as:

Ni =
1

abc

∫ ∞

0

ds
(s + i2)

√
(s + a2)(s + b2)(s + c2)

. (2)

Considering the above, the effective dielectric permittivity is:

εe f f = εm +
1/3 ∑i=a,b,c nαi/V

1− 1/3 ∑i=a,b,c
Ninαi/V

εm

, (3)

where εm is the dielectric matrix permittivity; n is the volume concentration of filler.
It is possible to show (see the example in Figure 4) that the imaginary part of polarizability

calculated by Equation (1) experiences a maximum at the critical frequency (Equation (4)). Therefore,
the imaginary part of permittivity will experience the same peak.

νc =
Niσ

2πε0(εm − Niεm + Ni)
. (4)
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Figure 4. Frequency dispersion of the longitudinal polarizability calculated for oblate ellipsoid with a
= b = 5 µm, c = 25 nm (i.e., AR = 200), σ = 10, 000 S/m and εm = 2.5− 0.1i.
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5. Results and Discussion

5.1. MG Approximation of GNP-Based Composites Permittivity

Typical values for the percolation threshold for GNPs in polymer composites are usually not
lower than 3.5% and strongly depend on the GNP aspect ratio, the polymer type and the quality of
particles’ distribution [25,27]. When the wavelength is orders larger than GNPs lateral dimensions,
it is possible to apply the Maxwell Garnett effective medium theory [44]. Let us assume that the GNP
particles are uniform ellipsoids with a = b� c semiaxes and consider their density equal to graphite
(2.2 g/cm3). The typical aspect ratio (AR) for graphene nanoplatelets lies in the range of 100–1000.
An acceptable fitting of dielectric permittivity of composites containing 1.5 and 3% GNP (Figure 5) was
acquired with σ = 20,000 S/m and AR ∼ 200, which is in good agreement with the aspect ratio of used
GNP particles given in Section 2.1. While the approximation parameters for composites with 1.5 and
3% GNP concentration are similar, the sample containing 6 % filler requires another set of parameters
to be used for approximation. While the conductivity of ellipsoids remains unchanged, the aspect ratio
has to be increased up to nearly 300.
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Figure 5. (a) Complex permittivity of composites containing 1.5, 3 and 6 wt.% GNP; (b) Maxwell
Garnett approximation of the experiment with the following fitting parameters: σ = 20,000 S/m,
and AR ∼ 197, 208 and 291, respectively; (c) conductivity values of GNP-based composites having
similar slopes.

The fact that the Maxwell Garnett approximation is still applicable for 6 % GNP may indicate
that in spite of the concentration being higher than previously reported percolation thresholds for
GNPs [40], the impact of insulated filler particles still prevails. In the next subsection, we will try to
explain the low-frequency shift of ε′′ maximum.

5.2. Imaginary Permittivity Peak in Percolated Mixed-Filler Composites

In the previous section, it was shown that the composites with GNP concentrations below
the percolation threshold demonstrate the imaginary permittivity maximum predicted in Section 4.
However, the experimental data for composites containing a mixture of fillers show a similar behavior,
even with the existence of percolation (Figure 3).

In a perfect case, every particle of both fillers is expected to be involved in a heterogeneous
percolation network, making the Maxwell Garnett approach inapplicable. However, the real composite
system always contains a certain amount of filler particles excluded from the percolation network
formation. At low frequencies, the response of such insulated particles is hidden by the percolation
network impact, but as in the terahertz region, it is possible to distinguish their impact due to
electromagnetic coupling.
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In Figure 6a the complex permittivities of composites containing 1.5% GNP, 1.5% MWCNT and
their mixture are depicted. Both parts of this mixture have concentrations below the percolation
threshold. It can be seen that despite the imaginary part of MWCNT-based composite, the permittivity
has no peculiarities, such as peaks in the investigated range; the imaginary part of the GNP-MWCNT
bi-filler composite’s permittivity shifts towards lower frequencies in comparison with peak inherent
for the GNP-based filler.
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Figure 6. Complex permittivities of composites containing (a) 1.5% GNP, 1.5% MWCNT and their
mixture; (b) 3% GNP, 3% MWCNT and their mixture. Peak values of ε′′ for GNP and GNP + MWCNT
composites are indicated by vertical lines.

A similar situation was observed for a mixture of 3% MWCNT and 3 wt.% GNP composites
(Figure 6b), a set of mixtures with 6 wt.% nanocarbon (Figure 3) in which the nanotube content is
above the percolation threshold. In both cases, it is possible to conceive the dispersion of bi-filler
composite’s ε as a superposition of MWCNT (monotonous decrease of both real and imaginary parts of
permittivity) and GNP (peak of ε′′) curves. Considering Equations (1)–(3), the ε′′ shift can be explained
by the growth of the average aspect ratio and/or the conductivity decrease (see Figure 2 in [44]). Due to
the higher aspect ratio (∼1000), non-percolated nanotubes will give a ε′′ peak at lower frequencies in
comparison with GNPs. That means the GNPs and MWCNTs may be both involved in the percolation
network and excluded from it.

As soon as the Maxwell Garnett approach does not require the dielectric nature of the matrix, it is
possible to substitute the εm in Equation (3) with the permittivity of a perfect percolated composite
(every particle of which is involved in percolation network). Then, the effective permittivity of the
mixed-filler composite may be introduced as following:

εe f f mix = εMWCNT + ∆εcp + ∆εnp (5)

where the εMWCNT term is the permittivity of MWCNT-based composite, ∆εcp is a “synergistic” impact
of cross-MWCNT-GNP percolation and ∆εnp is an impact on the dielectric permittivity made by
non-percolated GNP particles. The expression for ∆εnp is similar to the second term on the right side
of Equation (3).

Results of rough ∆εcp evaluation (considering ∆εnp = εGNP − εPLA) for mixed-filler composites
containing 1.5 % MWCNT + 1.5% GNP and 3 % MWCNT + 3 % GNP are presented in the Figure 7.
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It can be seen that the ∆εcp frequency dispersion is typical for composites whose filler particles
are mostly involved in the percolation network. However, the non-percolated nanotubes’ impact
value remains hidden in the total εMWCNT. The ε′′ shift characteristic to the bi-filler composite
(Figure 6) may be considered as indirect proof that a certain number of MWCNTs are excluded from the
percolation network.
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 3 %
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Figure 7. Impacts (∆εcp) of cross-filler percolation to the dielectric permittivity of composites containing
1.5% MWCNT + 1.5 % GNP and 3% MWCNT + 3% GNP (referred to as 1.5% and 3%, respectively).
Both real and imaginary parts behave typically for a percolated composite.

6. Conclusions

The impact of nanofiller particles excluded from the percolation network was demonstrated
by means of transmission time-domain terahertz spectroscopy. The theoretically predicted peak
of imaginary permittivity was observed on PLA-based nanocomposites filled with GNP, MWCNT
and their mixtures both below and above the percolation threshold. Terahertz spectroscopy was
demonstrated as a sensitive tool for the estimation of filler distribution character. For instance,
the agreement between the experimental value of complex permittivity obtained for mono-filler
GNP-based composites and Maxwell Garnett effective medium theory approximation indicates the
mostly uniform distribution of insulated graphene nanoplatelets inside the polymer matrix.

The strong variation of the imaginary part of the permittivity dispersion followed by the relatively
weak impact to its real part was experimentally shown for the set of bi-filler composites containing
6 wt.% of nanocarbon fillers in total. The variation of GNP fraction in the ternary composite resulted in
a change of imaginary permittivity peak frequency, and the real part of permittivity remained mostly
unchanged, giving the possibility of electromagnetic property tuning. A simple variation of fillers
proportion during the production of the composites by co-extrusion method allows one to precisely
control the position of the ε′′ peak.

Finally, the combination of different nanocarbon fillers allows precise modification of the EM
properties of a composite filled with relatively cheap GNPs by addition of CNTs, thereby obtaining a
material with high THz performance.
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