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Abstract

In clinical trials and observational studies, the effect of an intervention or exposure can be

reported as an absolute or relative comparative measure such as risk difference, odds ratio

or risk ratio, or at the group level with the estimated risk of disease in each group. For meta-

analysis of results with covariate adjustment, the log of the odds ratio (log odds ratio), with

its standard error, is a commonly used measure of effect. However, extracting the adjusted

log odds ratio from the reported estimates of disease risk in each group is not straightfor-

ward. Here, we propose a method to transform the adjusted probability of the event in each

group to the log of the odds ratio and obtain the appropriate (approximate) standard error,

which can then be used in a meta-analysis. We also use example data to compare our

method with two other methods and show that our method is superior in calculating the stan-

dard error of the log odds ratio.

Background

Many randomized controlled trials (RCT) are conducted in livestock production facilities. In

these studies, although the animals are individually randomized to treatment group, the treat-

ments groups are housed together in units. These housing units can be referred to variably as

pens, houses, barns, rooms, pastures, villages, etc. and differ in name based on the species and

country. Regardless of the name, housing is associated with a commonality of ration and envi-

ronment that very often impacts important outcomes such as mortality, morbidity and growth.

In these livestock populations, the housing unit is therefore considered a source of dependency

in the outcome. To account for this dependency, it is often recommended that a random effect

for the housing unit be incorporated into the model estimating the intervention effect size.

Similarly, in observational studies, dependency in the outcome of animals housed together is

commonly adjusted for by inclusion of a random effect for housing (pen, barn, house, etc.) [1–

4]. This dependency in the outcome is sometimes also called clustering and readers interested

in a more detail explanation of dependency of outcomes in livestock populations are directed

to other publications [2].
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The need to adjust for housing effects has implications for the reporting of study effects.

For example, the REFLECT statement, which is a guideline for reporting clinical trials in live-

stock production, suggests that authors report “For each primary and secondary outcome, a
summary of results for each group, accounting for each relevant level of the organizational struc-
ture, and the estimated effect size and its precision (e.g. 95% confidence interval)”. The rationale

for requesting group-level risk information, in additional to relative estimates, is that risk is

easier to interpret for end users, compared to adjusted relative estimates, which are more use-

ful to meta-analysis. Group-level estimates of disease risk can be obtained using standard sta-

tistical analysis software. For example, in the GLIMMIX procedure from SAS (version 14.1),

the group-level estimates of disease risk are obtained by applying the inverse link function to

the least-squares means estimates reported in the outcome [5]. For studies that use random

effects models, the effect sizes should all be adjusted estimates.

Interestingly, in a recent review of veterinary clinical trials we noted that several authors of

clinical trials in livestock production chose to report only the adjusted group-level estimates of

disease risk and corresponding 95% confidence intervals [6, 7], not a relative effect size (odds

ratio or risk ratio). To illustrate, Schunicht et al. (2002) in a clinical trial of antibiotics to con-

trol undifferentiated fever in feedlot cattle reported using the following approach to analysis

“The animal health variables were compared between the experimental groups by using linear
logistic regression modeling techniques controlling for within-pen clustering of disease by using
the method previously described (24) and reviewed (25,26)” [6]. The authors then reported the

initial undifferentiated fever risk as 23.17% for the oxytetrcycline group and 18.32% for the til-

micosin group with a common standard error of 1.59%. The authors also reported the p-value

of 0.046 for the treatment effect, however the odds ratio was not explicitly reported [6].

For meta-analysis of adjusted effect sizes the log odds ratio is often used. When authors

only report the adjusted disease risk per group it is necessary to convert the group-level risk

back to a log of the odds ratio (also called the log odds ratio). However, we were unable to find

guidance for converting the risk estimates to the log odds ratios in standard meta-analysis

texts [8–10]. In personal communications with researchers who work on similar topics and

have encountered the same issue, it appears that at least two approaches have been used. We

call these naive approaches because they do not appear to be based on any proposed published

methods. Here, we propose an approach to obtaining estimates of effect size (log odds ratio)

and its standard error (SE) using only the point estimate of the risk of disease in each treatment

group and the significance test results (p-value) of the treatment effect size. We compare our

proposed method to two naive approaches described to us by other review teams.

Methods

In the following section, we first describe the random effects model on which we based our fur-

ther analysis. We then propose a novel method to transform the adjusted group-level risk back

to the log odds ratio averaged across random effects and present a method to approximate its

standard error. The adjusted group-level risk is on a probability scale between 0 and 1; if a per-

centage is reported it can be converted to the probability scale first before apply our proposed

method for transformation.

The adjusted group-level risk obtained from a generalized linear mixed

model(GLMM) for binomial outcome data

We consider a random effects model with two treatment groups, both shared with J blocks. Let

nij be the number of experimental units that received treatment i(i = 1, 2) in block j(j = 1, . . .,

J) and rij be the number of events. To compare the performance of these treatments and
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account for dependence, one can model the probability of treatment effect, πij, by using the

generalized linear mixed model with a logit link function. The model is:

log
pij

1 � pij

 !

¼ b0 þ b1Iði¼2Þ þ gj

rijjgj � Binomialðnij; pijÞ

gj �
i:i:d Nð0; s2

g
Þ;

where γj denotes the random block effects of block j and s2
g

is the variance of the random

block effects. I is the indicator function.

Different estimation methods have been proposed to maximize the likelihood function of

the GLMM. In the lme4, Zelig and glmmML packages from R (version 3.5.2), the estima-

tion methods that can be selected are the Laplace approximation developed by Daniels (1954)

[11], the Barndorff-Nielsen and Cox approach (1979) [12], and the Gauss-Hermite quadrature

approach. Monte Carlo likelihood approximation is used in the glmm package to find the

Monte Carlo maximum likelihood estimates for the fixed effects and the variance components

[13]. For testing the significance of any fixed treatment effects, the test statistic under the null

hypothesis in these R packages approximates a normal distribution. In SAS 14.1, the default

method of parameter estimation for models with random effects in GLIMMIX is the restricted

pseudo-likelihood method as demonstrated by Wolfinger and O’Connell (1993) [14]. How-

ever, comparing these estimation methods is not the aim of this paper. Our goal is to docu-

ment an approach to converting the adjusted group-level risk of the outcome to the adjusted

log odds ratio averaged across the random effects estimate regardless of the estimation method

used. For authors who use SAS for analyses, the adjusted group-level risk is often called the

least squares means on the probability scale (LSMEANS statement) in the default SAS outputs

format. It is:

Êðpijjgj ¼ 0Þ ¼
1

1þ e� ðb̂0þb̂1Iði¼2ÞÞ
:

Converting the adjusted disease risk back to a log odds ratio

For conducting meta-analysis, we need to transform the estimated group-level risk, written

here on the probability scale (0-1) Êðpijjgj ¼ 0Þ back to a log odds ratio estimate b̂1 and its

standard error. Suppose Êðp1jjgj ¼ 0Þ and Êðp2jjgj ¼ 0Þ were reported, then the point estimate

of β1 is given by the standard formula:

b̂1 ¼ ðb̂1 þ b̂0Þ � b̂0

¼ logit ðÊðp2jjgj ¼ 0ÞÞ � logit ðÊðp1jjgj ¼ 0ÞÞ:

To obtain the standard error (SE) of b̂1, we use the p-value (p) for testing the significance of

the fixed effect, b̂1 and assume the normality of the test statistic of β1. Then we have:

SEðb̂1Þ ¼
jb̂1 j

z1� p=2

;

where z1−p/2 is the 100 × (1 − p/2)% quantile of the standard normal distribution. Note that for

testing the significance of the fixed treatment effect in some software packages (GLIMMIX in
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SAS, hglm in R), the test statistic under the null hypothesis approximates a t-distribution.

Although there are several methods available of determining the degree of freedom for the

approximate t-distribution, containment is the default method in GLIMMIX if the model con-

tains random effects. If degrees of freedom are reported in the original studies, then we can

use t-distribution as the reference distribution.

For the case where there are J blocks within each treatment group i, the model is:

log
pij

1 � pij

 !

¼ b0 þ b1Iði¼2Þ þ gij

rijjgij � Binomialðnij; pijÞ

gij �
i:i:d Nð0; s2

g
Þ;

where γij is the random block effects of block j within treatment i. The method proposed above

also applies here.

Two naive methods

As discussed, we were unable to find guidance as to how to transform the group-level adjusted

risk, and therefore we evaluated the three possible approaches we have identified. The two

naive ways are the relatively simple approaches suggested based on personal communications

with other review authors. We present these for comparison’s sake; however, readers should

be aware that we could find no citations recommending these approaches, hence we label

them as naive. Suppose we have an RCT with two treatments t1 and t2. Let n1 and n2 denote

the total number of enrolled animals in the two treatment groups. p1 and p2 denote the

adjusted group-level disease risk calculated using equation 1, while l1 and l2 are the lower 95%

confidence limits, and u1 and u2 are the upper 95% confidence limits. One suggestion was to

transform the adjusted disease risk and the confidence intervals directly. Let b̂1 be the point

estimate of the log odds ratio, which is obtained as follows:

b̂1 ¼ logitðp2Þ � logitðp1Þ;

Then, the estimates of lower limits and upper limits of b̂1 are obtained as follows

l̂ ¼ logitðl2Þ � logitðl1Þ;

û ¼ logitðu2Þ � logitðu1Þ:

Then we can calculate the standard error of b̂1 by dividing the range of the confidence interval

by the 97.5% quantile of the standard normal distribution as follows:

SEðb̂1Þ ¼
û � l̂
2z0:975

:

Another proposed method was to convert probabilities to raw frequency data based on the

number of study units and then calculate log odds ratio and standard error using those fre-

quency data. This method ignores the random block effects and the formula for the standard
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error is obtained by using delta method. The estimates are:

b̂1 ¼ log
ðp2n2Þðn1 � p1n1Þ

ðp1n1Þðn2 � p2n2Þ

� �

;

SEðb̂1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p1n1

þ
1

n1 � p1n1

þ
1

p2n2

þ
1

n2 � p2n2

r

:

Simulations

In this section, we conducted simulations to evaluate the performance of the proposed back-

calculation method and the two naive methods. The simulation settings varied in the sample

size, number of blocks, magnitude of the variance of the random effects and the value of true

log odds ratios. With the combination of the above factors, there were 16 different settings.

For each setting, we generated 10,000 data sets to compute the standard error (SE) of the esti-

mated log odds ratio. The mean absolute error (MAE) of the SE is the average, across 10,000

simulations, of the absolute difference between the SE back calculated by our proposed method

and the true estimate of SE.

In this simulation, we fixed β0 = −1.5 and the mean standard errors were obtained by taking

the average of the standard errors of the estimated log odds ratio across 10,000 simulated data

sets. The simulation results, shown in Table 1, indicate that our proposed methods performed

better than the other two approaches in all the scenarios above. The magnitude of the MAE of

proposed method is smaller than other two methods in most of the cases. The magnitudes of

the MAEs of the two naive methods are not negligible compared to the mean standard error.

Examples

Here, we provide examples of three possible conversion approaches using two data sets. The

first data came from a 2-arm RCT conducted in swine population at the Department of Veteri-

nary Diagnostic and Production Animal Medicine in Iowa State University. This data can be

Table 1. Mean absolute error of the standard error of the estimated log odds ratio calculated from the proposed method and two naive methods.

Log Odds Ratio (β1) s2
g

Number of Blocks Sample Size Mean SE MAE of Proposed Method MAE of Naive Method 1 MAE of Naive Method 2

0.5 0.2 40 10 0.1725 0.0005 0.0216 0.0312

0.5 0.2 20 10 0.1725 0.0007 0.0216 0.0312

0.5 0.2 40 20 0.1217 <0.0001 0.0161 0.0216

0.5 0.2 20 20 0.1723 0.0007 0.0229 0.0314

1 0.2 40 10 0.1667 0.0006 0.0187 0.0652

1 0.2 20 10 0.2366 <0.0001 0.0268 0.0960

1 0.2 40 20 0.1175 0.0072 0.0142 0.0454

1 0.2 20 20 0.1665 0.0008 0.0201 0.0654

1 2 40 10 0.1630 0.0003 0.0784 0.0739

1 2 20 10 0.2246 0.0006 0.1064 0.1256

1 2 40 20 0.1369 0.0198 0.0803 0.0294

1 2 20 20 0.1891 0.0001 0.1093 0.0542

0.5 2 40 10 0.1526 0.0017 0.0757 0.0608

0.5 2 20 10 0.2240 0.0170 0.1097 0.0925

0.5 2 40 20 0.1312 0.0001 0.0786 0.0187

0.5 2 20 20 0.1789 0.0019 0.1058 0.0423

https://doi.org/10.1371/journal.pone.0222690.t001
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found on https://github.com/dapengh/lor-est-dataset. The objective of this study was to com-

pare the efficacy of two interventions administered at the individual level in terms of the risk

of a pig being treated or not. In this data, the random effects of different pens nested within

different rooms create dependency that should be accounted for in this model. Table 2 shows

the adjusted probability of being treated and the 95% confidence limits. The p-value of testing

significant differences between the two groups is 0.0000299.

Table 3 shows the comparison of two naive methods with the method proposed and true

estimation results. All three methods provide an accurate point estimate of log odds ratio,

while our proposed method outperforms the naive methods in terms of estimation of the stan-

dard error. The difference in the estimate of the standard error for each method and the true

standard error are also reported. The true estimate is the value obtained from fitting the gener-

alized linear mixed model in statistical software packages (e.g. lme4 package in R).

Another example is an observational study and the data is a subset of the dataset “cbpp”

from the R package lme4. The data description link is available at https://cran.r-project.org/

web/packages/lme4/lme4.pdf. The aim of these data are to study the within-herd spread of

Contagious Bovine Pleuropneumonia (CBPP) at different time periods (period 1 and 2) in

infected herds. In this example, cattle from multiple districts are studied, and therefore dis-

tricts create dependency that should be considered as a random effect in this model, much the

same way that housing units would create dependency in the swine RCT. Table 4 shows the

adjusted disease risk of the period effect and the 95% confidence limits. The p-value of the

period effect is 0.00127.

As with the RCT example, this observational study (Table 5) shows that the point estimates

of the log odds ratio are accurate for all approaches but the standard error of our proposed

method has the smallest difference from the estimate given by the software results. The extent

Table 2. Adjusted group-level risk of disease and 95% confidence intervals reported on the probability scale (0-1)

for RCT data using results from a generalized linear model (lme4 package). The model contains a fixed effect for

treatment and a random effect for pens (n = 24) nested within rooms (n = 2).

Treatment Risk Lower 96% Limit Upper 95% Limits

Treatment A 0.1939 0.1474 0.2507

Treatment B 0.2996 0.2381 0.3693

https://doi.org/10.1371/journal.pone.0222690.t002

Table 3. Estimates of Log odds ratio and its standard error corresponding to the RCT data in Table 2 using three

methods of calculation.

Method of estimation Log Odds Ratio Standard Error (SE) Difference in SE from truth�

True estimate 0.5759 0.1379�

Proposed method 0.5759 0.1380 0.0001

Naive Method 1 0.5759 0.0319 -0.106

Naive Method 2 0.5759 0.1364 -0.0015

https://doi.org/10.1371/journal.pone.0222690.t003

Table 4. Adjusted group-level risk of disease and 95% confidence intervals reported on the probability scale (0-1)

for observational data using results from a generalized linear model (lme4 package). The model contains a fixed

effect for period and a random effect for district (n = 15).

Period Mean Lower Limits Upper Limits

1 0.1976 0.1350 0.2798

2 0.0846 0.0481 0.1444

https://doi.org/10.1371/journal.pone.0222690.t004
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of the difference is smallest using our proposed approach and therefore we propose this

method.

Discussion

The aim of this paper is to help researchers extracting results from studies that only report the

adjusted disease risk of each arm and the significance test results of the effect size and back-

transform these to the log odds ratio averaged across a random effects scale. Our rationale

for sharing this information is that this approach to reporting was more common than we

expected in livestock reviews. For example, in one recent review, at least 10 of 75 relevant stud-

ies used this approach to reporting. Without a method to accurate estimate the log odds ratio

and its standard error, the results of such studies might be excluded from systematic reviews

and contribute to research wastage. We should note, that for parameter estimation in a gener-

alized linear mixed model, different software has different estimation methods. These estima-

tions methods although of interest, are not relevant here as our method seeks to convert the

adjusted group-level disease risk reported on a probability scale (i.e., between 0 and 1) to the

log odds ratio no matter what estimation method is used. One potential limitations of our

approach is requirement that the p-value of the treatment is reported. If a study contains more

than two treatments, this method is also valid if corresponding p-values are reported.
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