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Background: 265TNC SNP in the APOA-II gene promoter may be
associated with obesity risk and insulin resistance (IR). This study aims
to analyze the association between the APOA2−265TNC SNP and risk for
obesity and IR in adolescents.
Material and methods: The study was conducted on 500 adolescents.
They were 240 obese and 260 non-obese individuals, aged 16–21 years
old. Their mean age was 18.25 ± 2.54 years. Variables examined body
weight, height, waist circumference (WC), systolic and diastolic blood
pressure (BP), body fat percentage (BF%), and abdominal visceral fat
layer. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)
was used as a biomarker for IR. BF% was assessed by body composition
analyzer and abdominal visceral fat thickness was determined by
ultrasonography. The APOA2 −265TNC polymorphism genotype was
analyzed by PCR amplification of a 273-bp fragment.
Results: Genotype frequencies were in Hardy–Weinberg equilibrium.
The frequency of the mutant C allele was significantly higher in obese
cases than non-obese cases. After multivariate adjustment, waist, BF%,
visceral adipose layer and HOMA-IR were significantly higher in
homozygous allele CC carriers than TT + TC carriers. Homozygous
individuals for the CC allele had statistically higher values of energy
intake, total fat (g/day) and saturated fat (SATFAT) than carriers of the
T allele.
Conclusions: Homozygous individuals for the C allele had higher
obesity risk than carriers of the T allele and had elevated levels of
visceral adipose tissue. Moreover, the present study shows that the CC
polymorphism is associated with the development of IR [OR 1.89
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(1.35–2.91), P = .012] and remains significant after adjusting for gender,
age and body mass index.
© 2014 Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Insulin resistance, which represents a reduced physiological response of the peripheral tissues to the
action of the normal levels of insulin, is a major finding in several metabolic disorders, including type 2
diabetes and metabolic syndrome. Apolipoprotein A-II (APOA2) is the 2nd most abundant protein of HDL
particles, but its function remains largely unknown (Blanco-Vaca et al., 2001). Obesity-linked genetic
variations in the presence of other routine habits such as smoking, physical inactivity and unhealthy food
intake may greatly raise the risk of a person developing heart diseases (cardiovascular diseases, CVD).

Excess body fat, obesity, is one of the most common disorders in clinical practice. The location of the
body fat is a major determinant of the degree of excess morbidity and mortality due to obesity (Björntorp,
1997). At least two components of body fat are associated with obesity-related adverse health outcomes.
These are the amount of subcutaneous truncal or abdominal fat, and the amount of visceral fat located in
the abdominal cavity. Each of these components of body fat is associated with varying degrees of
metabolic abnormalities and independently predicts adverse health outcomes. Many complex traits are
thought to be inherited since they often run in families. However, these complex traits do not show typical
mendelian pedigree patterns. These non-mendelian diseases may depend on several susceptibility loci,
with a variable contribution from environmental factors. Discovering the major susceptibility locus may be
the key to advances in understanding the pathophysiology of a disease.

There have been several studies using association approaches in order to undertake systematic searches
for candidate genes in obesity defined as elevated body mass index (BMI, kg/m2) (Rankinen et al., 2002).

Apolipoprotein A-II (APOA-II) is the second most common protein in high-density lipoproteins. APOA-II
appears to impair the reverse cholesterol transport and antioxidant function of high-density lipoprotein, which
is consistent with the observation that increased APOA-II levels promote the development of atherosclerosis
(Warden et al., 1993). A functional polymorphism representing a T-to-C substitution at the−265 position of this
gene has been associated with waist circumference and lower levels of plasma APOA-II in Europeanmen (van't
Hooft et al., 2001), suggesting that genetic variation at the APOA2 may be associated with body fat distribution
phenotypes. Lower levels of visceral adipose tissue (VAT), both absolute and relative to their total body fat, have
been reported in African-American compared with White women (Albu et al., 1997; Lara-Castro et al., 2002),
which may be related to differences in genetic make-up between women of different ethnic backgrounds.

New obesity loci continue to be identified through genome-wide association studies in populations of
increasing size and ethnic diversity (Heid et al., 2010; Speliotes et al., 2010) but understanding of the
mechanisms by which known genetic variants contribute to obesity remains limited. Several well
established obesity candidates encode proteins that appear to modulate obesity risk via energy intake, a
key determinant of obesity risk (Cole et al., 2010).

In a previous investigation carried out onWhite Americans participating in the Genetics of Lipid Lowering
Drugs and Diet Network (GOLDN) study, the recessive effects for APOA2 −265TNC polymorphism were
observed (Corella et al., 2007). The APOA2 gene has been associated with obesity and IR in animal and human
studies with controversial results. Homozygous individuals for the C allele had higher bodymass index (BMI)
and obesity risk than did carriers of the T allele, but relationships between APOA2 −265TNC polymorphism
genotype and IR among Egyptian adolescents are unexplored till now.

Therefore, our objectives were to analyze the association between the APOA2−265TNC polymorphism
SNP and the risk of obesity and IR and study its association with anthropometric measurements, body fat
distribution and food consumption in a sample of Egyptian adolescents.

Materials and methods

A descriptive cross-sectional study was conducted on randomly selected 500 Egyptian adolescents.
They were 240 obese and 260 non-obese individuals. Their age ranged from 16 to 21 years old and their
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mean age was 18.25 ± 2.54 years. Obese cases had BMI greater than 95th percentile for age and gender
according to the National Egyptian Growth Curves of Children and Adolescents (Ghalli et al., 2008).

The data were collected from June 2011 to January 2013 and were extracted from a project entitled
“Obesity among Youth: Lifestyle and Genetic Factors” funded by the Science and Technology Development
Fund (STDF), Egypt. This study protocol was approved by the ethical committee board of the National
Research Centre of Egypt (no. 10/223). An informedwritten consent was obtained from all participants. All
individuals were clinically evaluated and anthropometric data were collected.

Anthropometric measurements

Anthropometric variables including height, weight, waist and hip were measured. Body weight was
measured with the patients in light clothing and without shoes. Height was measured with the patients
standing with their backs leaning against the stadiometer of the same scale. BMI was calculated as weight in
kilograms divided by height in meters squared (kg/m2). WC and hip circumference (HC) were measured in
cm using a plastic, non-stretchable tailor's tape. WC was measured with light clothing at a level midway
between the lower rib margin and the iliac crest standing and breathing normally. HC was measured at the
level at the widest circumference over the buttocks (at the greater trochanter). Subsequently the waist hip
ratio (WHR) was calculated as WC divided by HC. Anthropometric measurements were obtained according
to standardized equipment and following the recommendations of the International Biological Program
(Hiernaux, 1969).

Blood pressure (BP) was measured with the patients sitting with their left arm at heart level using a
professional Riester sphygmomanometer manufactured in Japan. Several measurements were made, from
which an average BP measurement was obtained. BF% was measured by Tanita Body Composition Analyzer
(SC-330).

Genotyping

Genomic DNA was extracted from peripheral blood leukocytes using the GeneJET™ Genomic DNA
Purification Kit (Fermentas, Germany) according to the manufacturer's instructions. Genotyping of−265TNC
polymorphism in theAPOA2 genewas carried out using polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) analysis (van't Hooft et al., 2001). Two pairs of primers were used to amplify the
promoter region of the APOA2 gene containing the polymorphism; upstreamprimer 5′ CAT GGG TTGATA TGT
CAG AGC-3′ and downstream primer 5′ TCA GGT GAC AGG GAC TAT GG 3′.

PCRwas carried out in a 25 μL total final volume containing 200 μMdNTPs (Finzyme, Finland), 10 pmol of
each primer, 2 U of Taq polymerase (Finzyme, Finland) and 500 ng DNA. Thermal cycling conditions were as
follows: denaturation at 95 °C for 10 min, followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at
59.5 °C for 30 s, and elongation at 72 °C for 30 s followed by a final elongation of 5 min.

Ten μL of successfully amplified PCR products was digested with a FastDigest BsmI Enzyme (Fermentas,
Germany), incubated at 37 °C for 5 min and the fragments were run in 3% agarose gel stained with
ethidium bromide, and analyzed under ultraviolet light. The BsmI enzyme cuts the PCR product (273 bp)
in two fragments 215 and 58 bp in the presence of the T allele.

We have sequenced 50 cases (25 obese and 25 controls) and compared the genotypes obtained from
sequencing and RFLP. No discrepancies in the results between the two methods were observed.

Abdominal ultrasonographic examination

Ultrasonography was carried out by using GE logic α 200-ultrasound machine. Visceral fat layer was
measured from the region just above the umbilicus (Hiernaux, 1969). The convex-array probe (3.5 MHz)
was used for measuring visceral abdominal fat and anterior wall of the aorta.

Dietary intake

Food intake was carried out using a 24 hour dietary recall. Cases were asked to recall their dietary
intakes of the previous 24 h. In particular, we asked about their intake of carbonated beverages, juices, and



Table 1
General characteristics of obese and non-obese adolescents.

Parameters Females
(n = 250)

Males
(n = 250)

Obese
(n = 120)

Non-obese
(n = 130)

Obese
(n = 120)

Non-obese
(n = 130)

Age (y) 17.25 ± 3.43 18.25 ± 4.43 17.65 ± 4.33 17.25 ± 3.43
BMI (kg/m2) 34.40 ± 5.96⁎⁎ 21.99 ± 3.45 32.75 ± 6.075⁎⁎ 19.86 ± 3.33
Waist (cm) 95.90 ± 12.23⁎⁎ 72.57 ± 8.94 98.05 ± 18.90⁎⁎ 71.79 ± 8.54
WHR .82 ± .06⁎⁎ .7710 ± .16 .88 ± .129⁎⁎ .813 ± .06
BF% 33.74 ± 13.05⁎⁎ 25.96 ± 12.93 33.88 ± 13.78⁎⁎ 22.63 ± 11.61
Systolic BP (mm Hg) 110.77 ± 14.81 109.60 ± 13.09 110.67 ± 16.37 108.80 ± 13.23
Diastolic BP (mm Hg) 71.79 ± 10.31 71.80 ± 7.93 71.42 ± 9.746 73.00 ± 10.00

⁎⁎ Statistically significant differences (P b 0.01) between obese and non-obese subjects.
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other casual intakes. Food frequency method assessed food consumption frequencies per day, week and
month bases by using a questionnaire. It was focused on different kinds of food consumption frequencies
rather than consumption of specific nutrients. The energy and nutrient contents were computed.

Biochemical analyses

Fasting plasma glucose and serum lipids (total cholesterol, HDL, LDL, triglycerides) were measured by
enzymatic colorimetric methods using a Hitachi autoanalyzer 704 (Roche Diagnostics Switzerland). Serum
insulin concentrationwas analyzed by chemiluminescent immunoassay (Immulite 2000, Siemens, Germany).
IR (fasting glucose × fasting insulin / 22.5)was calculated using theHomeostasisModel Assessment of Insulin
Resistance (HOMA-IR) method.

Statistical analysis

Quantitative variables were expressed as mean ± S.D., and qualitative variables were expressed as
percentages. Differences between groups were tested using an independent two-sample t-test and chi-square
test was used to test for differences in the distribution of categorical variables. A multivariate analysis was
carried out using various models, which determined the adjusted odds ratio (OR) for the analyzed SNPs
(Table 4). The confidence intervalwas 95%. Gender, age, BMI,waist-to-hip ratio andwaistwere the confounding
variables. To test for possible interactions between genotypes and phenotype parameters, General LinearModel
(GLM) ANOVA analysis was preformed.

Statistical analyses were done using SPSS 17.0 software (SPSS). P-values b0.05 were considered
statistically significant.

Results

The characteristics of the obese and non-obese cases are given in Table 1, where we compare the
anthropometric and clinical variables for the obese and non-obese individuals. There were significant
differences in BMI, WC, WHR, and BF% between the two groups. Obese adolescents had higher values than
non-obese in both genders. APOA2 genotype frequencies did not deviate from Hardy–Weinberg equilibrium
expectations and did not differ between males and females. Therefore, males and females were analyzed
together. The genotype distribution and allele distribution are presented in Table 2. The data indicate that
genotype tends to differ significantly between obese and non-obese adolescents in the CC and TT genotypes,
remaining significant when the genotypes in CC and TT + TC were grouped; the CC genotype was more
common in obese cases than in non-obese cases (CC frequency 32.41% in obese cases and 9.6% in non-obese
cases, P = .001). The allele frequency of the APOA2 −265TNC polymorphism was also significantly different
between the two groups (Table 2).

APOA2 genotype was evaluated by comparing homozygous minor allele carriers (CC) with combined
homozygous major (TT) and heterozygous (TC) subjects (Table 3). After adjusting for age, sex and BMI,



Table 2
Genotype distribution and allele distribution of APOA2 −265TNC polymorphisms.

Polymorphisms Genotypes Alleles Grouped genotypes

CC TC TT C T CC TT + TC

Non-obese (n = 260) 25 124 111 174 346 25 235
Percentage (%) 9.6 47.69 42.69 33.46 66.53 9.61 90.38
Obese (n = 240) 73 93 74 239 241 73 167
Percentage (%) 30.41 38.75 30.83 61.04 50.21 30.41 69.58
P value . 001 .04 .001 .001 .001 .001 .001
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anthropometric measures showed significant differences between homozygous and heterozygous carriers.
BMI,WC, BF% and visceral fat were significantly higher in CC subjects comparedwith combined heterozygous
(TC) and homozygous major (TT) carriers (P b 0.05). Moreover, significant elevated level of HOMA-IR was
observed in CC subjects compared with the carriers of T allele. Homozygous individuals for the CC allele had
statistically higher values of estimated energy intake, total fat intake (g/day) and saturated fat (SATFAT) than
carriers of the T allele.

Table 4 assessed the risk of the possible influence of the APOA2 polymorphism on IR episodes. The
study showed that the CC polymorphism is associated with the development of IR [OR 1.89 (1.35–2.91),
P = .012] and remains significant after adjusting for gender, age and BMI.

Discussion

Obesity is often associated with insulin resistance, and the European Group for the Study of Insulin
Resistance suggests that only about 25% of obese patients are insulin sensitive. Increased visceral fat area,
increasedmacrophage infiltration into the omental adipose tissue, enlarged adipocyte size in both omental and
subcutaneous fat depots, and omental adipocyte insulin resistance play important roles in the development of
insulin resistance in obese patients independent of body mass index (BMI) and total body fat mass.

The present study observed that CC homozygotes had higher BMI,WC, BF%, visceral fat, food consumption
and HOMA-IR than carriers of the T allele. These results were consistent with the findings of the previous
study of overweight individuals in other populations. Relatively few studies reported the association between
APOA2 polymorphisms and phenotypic traits (Armellini et al., 1991; Scott et al., 1985; Ferns et al., 1986; Vohl
Table 3
Associations between APOA2 −265TNC genotype and anthropometric and biochemical parameters and clinical features.

Parametersa CC
(n = 98)

TT + TC
(n = 402)

V

Adjusted Crude Adjusted Crude

BMI (kg/m2) 32.3 ± 7.4⁎ 35.9 ± 8.8⁎ 23.7 ± 8.3 24.9 ± 8.9 4.5%
Waist (cm) 87.9 ± 15.8⁎ 89.9 ± 15.9⁎ 82.8 ± 17.0 83.9 ± 17.9 3.2%
WHR .89 ± .11 .99 ± .12 .82 ± .19 .83 ± .29 1.1%
BF% 35.7 ± 11.4⁎ 36.9 ± 12.3⁎ 30.8 ± 12.4 32.9 ± 12.7 3.4%
Systolic BP (mm Hg) 108.7 ± 16.2 109.7 ± 16.7 110.66 ± 13.9 115.6 ± 14.1 1.4/%
Diastolic BP (mm Hg) 71.3 ± 10.4 73.3 ± 10.9 72.1 ± 9.2 75.1 ± 9.9 1.2%
Ultrasound visceral fat (cm) 68.4 ± 13.9⁎ 69.9 ± 13.9⁎ 45.4 ± 12.9 47.4 ± 13.2 2.3%
Energy intake (kcal/day) 1957.1 ± 87.9⁎ 1977.1 ± 89.9⁎ 1499.7 ± 87.1 1500.7 ± 87.9 3.6%
Total fat (g/day) 93.6 ± 31.6⁎ 96.6 ± 31.9⁎ 51.5 ± 29.5 53.5 ± 29.9 3.5%
SATFAT (g/day) 33.9 ± 8.9⁎ 35.9 ± 9.5⁎ 22.2 ± 7.9 23.1 ± 7.8 4.3%
HDL-C (mg/dL) 46.6 ± 7.8 48.6 ± 7.9 48.4 ± 7.8 49.9 ± 7.9 .9%
LDL-C (mg/dL) 115.7 ± 38.9 120.6 ± 38.8 110.64 ± 36.1 116.64 ± 36.9 1.2%
HOMA-IR 8.7 ± 7.5⁎ 9.7 ± 7.6⁎ 2.8 ± 2.5 2.9 ± 2.9 3.6%

V, percentage variance explained in the SNP.
⁎ Statistically significant differences (P b 0.05) between CC homozygous subjects and carriers of the T allele for the corresponding

variable.
a Data are adjusted for age, gender and BMI.



Table 4
Risk of insulin resistance episode associated with APOA2 −265CNT polymorphism.

Grouping OR 95% (CI) P value

APOA2(CC) 1.89 1.35–2.91 .012
APOA2(CC) + gender + age 1.96 1.18–3.65 .013
APOA2(CC) + gender + age + BMI 2.99 1.11–3.11 .002
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et al., 1997). Few genetic variants have been identified in the APOA2 gene (Martin-Campos et al., 2004).
Interestingly, a T–C transition at position−265 (rs no. 5082) affecting element of the APOA2 promoter has been
reported to be functional in 2 independent studies, both demonstrating a −30% drop in basal transcription
activity (van't Hooft et al., 2001; Fullerton et al., 2002). In one of these studies, the APOA2 polymorphism was
associated with waist circumference in men (van't Hooft et al., 2001). Another study (Lara-Castro et al., 2005)
reported an association between this polymorphism and abdominal fat depots in women.

An association between APOA2 −265TNC polymorphism and BMI or obesity only in the presence of
high-saturated fat intake in three American populations has been observed (Corella et al., 2009). Moreover,
with this gene–diet interaction other studies extend the findings to other geographical areas (Europe and
Asia), reporting thatwhen saturated fat intake is low (b22 g/day), this SNPdoes not have any effect on BMI or
obesity. However, when saturated fat intake is high (N=22 g/day), significant differences in anthropometric
variables were detected between CC individuals and T-allele carriers. Further adjustment for other
macronutrients did not change the significance of these findings, supporting the specificity of saturated fat
as a driver of this interaction (Corella et al., 2011). Other studies reported genotype-associated differences in
specific intake-related behaviors, which may contribute to obesity risk, identifying the possible role for
ghrelin inmodulatingAPOA2–nutrient interactions (Smith et al., 2012). Eating behaviors have been identified
as related to obesity risk (Mdel et al., 2010; Schlundt et al., 2003) and appear to be associated with APOA2
genotype in a manner consistent with obesity risk. The relationship between APOA2, saturated fat and
hormonal regulation of food intake has also been identified, which may be relevant to weight control. The
interactions between APOA2 and saturated fat for obesity may be mediated via modulation of plasma ghrelin
and expansion of knowledge of APOA2 and obesity to includemodulation of specific behaviors and hormonal
mediators not only broadens our understanding of gene–diet interactions, but also facilitates the pragmatic,
future goal of developing dietary guidelines based on genotype (Corella et al., 2011). Lower saturated fat was
associatedwith lower ghrelin in CC carriers, whichmay theoretically be expected to accompany lower energy
intake and smaller body size.

Despite the scarcity of previous data supporting a role of APOA2 in regulating food intake, numerous
experimental evidence demonstrate pivotal roles of another apolipoprotein, APOA4, as a satiety signal
(Fujimoto et al., 1992; Shen et al., 2005). Fujimoto et al. (1992) were the first to report that APOA4 is a satiety
factor secreted by the intestine after fat absorption and that this function of APOA4 is not shared by gut APOA1.
APOA2 is a member of the apolipoprotein multi-gene superfamily, which includes genes encoding soluble
apolipoproteins (e.g., APOA1 and APOA4) that share genomic structure and several functions. Although all
these apolipoprotein genes have been found to be related to obesity in at least one epidemiological study
(Rankinen et al., 2006), only APOA4 has been subscribed in regulation of food intake, acting as a satiety signal.
The present study shows an association between the APOA2 polymorphism and food consumption, suggesting
a potential new role of APOA2 in the regulation of human appetite. The mechanisms of this proatherogenic
capability of increased human apoA-II could be due to increased concentration of apoB-containing lipoprotein
and decreased HDL cholesterol (Chiesa et al., 1998; Zhong et al., 1994).

The relationship between MS and insulin resistance was strong as suggested by previous reports
(Sierra-Johnson et al., 2006). Regarding the APOA2 locus, several associationswith obesity, insulin-resistance
(IR) and diabetes have been reported in both animal (Castellani et al., 2001, 2004) and human studies (Elbein
et al., 1999; Vionnet et al., 2000; Xiang et al., 2004). Type 2 diabetes has been linked to chromosome 1q21–24
in several populations, supporting a role for the APOA2 gene (located in 1q23) as a potential candidate;
however, this association is still controversial. The present study showed that the CC polymorphism is
associatedwith the development of IR [OR 1.89 (1.35–2.91), P = .012] and remains significant after adjusting
for gender, age and BMI. Moreover, it was found that the overexpression of APOA2 in these mice increased IR
as demonstrated by 2–3 fold higher fasting insulin levels and a delayed clearance of glucose bolus (Castellani
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et al., 2001). These results were consistent with the other observation (Weng and Breslow, 1996) in
homozygous APOA2 knockoutmice. APOA2 deficiencywas associatedwith lowerHDL, free fatty acid, glucose,
and insulin levels, suggesting an insulin hypersensitivity state. More targetedmechanistic studies using these
experimental models have confirmed the role of APOA2 in IR (Sauvaget et al., 2004).

In summary, the present study emphasized that the homozygous individuals for the APOA2 −265CC
allele had higher obesity risk than carriers of the T allele. The functional polymorphism representing a
T-to-C substitution at the −265 position of this gene is associated with visceral adipose tissue and food
consumption. Moreover, the study showed that the CC polymorphism is associated with the development
of IR and remains significant after adjusting for gender, age and BMI.
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