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Summary

In all multicellular organisms, transcriptional networks orchestrate organ development. The 

Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model to 

investigate the spatiotemporal transcriptional signatures underlying developmental trajectories. 
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To map gene expression dynamics across root cell types and developmental time, we built a 

comprehensive, organ-scale atlas at single cell resolution. In addition to estimating developmental 

progressions in pseudotime, we employed the mathematical concept of optimal transport to infer 

developmental trajectories and identify their underlying regulators. To demonstrate the utility of 

the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at 

single cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for 

tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results 

support the atlas as a rich community resource for unraveling the transcriptional programs that 

specify and maintain cell identity to regulate spatiotemporal organ development.

Graphical Abstract

eTOC summary

How do transcriptional networks regulate organ development? Using scRNA-seq, Shahan and Hsu 

et al. produced an Arabidopsis root atlas, revealing gradual gene expression changes underlying 

differentiation of cell types and candidate regulators of cell fate. The atlas enabled interpretation of 

smaller scRNA-seq datasets and revealed new phenotypes in developmental mutants.

Introduction

Precisely controlled transcriptional networks specify cell identity, relate positional 

information, and regulate tissue maturation (Drapek et al., 2017). Defining how these 

networks orchestrate organ development and function requires detailed knowledge of 

Shahan et al. Page 2

Dev Cell. Author manuscript; available in PMC 2022 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatiotemporal gene expression patterns. However, in animal models such as the zebrafish 

embryo, cells migrate during development and thus present a challenge for cell lineage 

tracing and subsequent inference of gene expression dynamics (Farrell et al., 2018). The 

immobile cells and organization of the Arabidopsis thaliana root simplify cell lineage tracing 

and facilitate the study of spatiotemporal organ development (Dolan et al., 1993; Fig. 1A). 

Cell types are arranged in concentric layers around a central vasculature. Cell lineages are 

ordered longitudinally along a temporal developmental axis, with the oldest cells closest to 

the shoot and the youngest cells adjacent to the stem cell niche at the root tip. With each 

new cell division at the root tip, older cells are displaced shootward from the stem cell niche. 

Thus, root anatomy simplifies interrogation of the developmental trajectories from stem cell 

to differentiated tissue (Efroni and Birnbaum, 2016; McFaline-Figueroa et al., 2020).

The Arabidopsis root is a tractable model organ with established markers for most cell 

types as well as expression profiles for morphologically defined developmental stages 

(Birnbaum et al., 2003; Brady et al., 2007a; Li et al., 2016). Recently, pioneering studies 

applied droplet-based single cell RNA sequencing (scRNA-seq) to the Arabidopsis root 

and demonstrated the utility of this technology to identify new cell type markers, examine 

gene expression dynamics across pseudotime, and identify regulators that control cell type-

specific responses to environmental conditions (Denyer et al., 2019; Jean-Baptiste et al., 

2019; Ryu et al., 2019; Shulse et al., 2019; Zhang et al., 2019; Wendrich et al., 2020). 

These reports also established foundational principles for root scRNA-seq, including the 

successful capture of all major cell types from samples prepared from whole roots and the 

utility of known markers and gene expression profiles to accurately annotate major cell 

types. However, none of these first-generation atlases combined more than 12,500 cells and 

only Wendrich et al. (2020) inferred developmental progressions for more than three cell 

types. Further, each atlas is enriched for a subset of cell types or developmental stages at the 

expense of others (Fig. S1). Thus, there is currently no comprehensive Arabidopsis root atlas 

that captures a finely resolved spectrum of developmental states for all major cell types.

By contrast, recent developmental studies using animal or human samples profiled hundreds 

of thousands (Schiebinger et al., 2019) or even millions (Cao et al., 2019) of cells and 

high temporal resolution was achieved by densely sampling timepoints across development 

(Briggs et al., 2018; Farrell et al., 2018; Schiebinger et al., 2019; Massri et al., 2021). 

High pseudotemporal resolution from increased cell numbers provides greater statistical 

power and enables identification of a finely resolved order of transcriptional events, which 

is important for considering causal models of gene regulation (Schiebinger et al., 2019). For 

the Arabidopsis root, in which all cell types are represented at all developmental stages, 

greater pseudotemporal resolution across development will be gained with an atlas that 

integrates more cells for all cell types and developmental zones.

Here, we present a primary root gene expression atlas with an order of magnitude more cells 

than previous Arabidopsis datasets. Given the continuous nature of cell states represented 

in our data, we developed a largely cluster-agnostic annotation approach to avoid bias 

associated with choosing a clustering resolution. In addition to estimating pseudotime 

progressions for all cell types, we demonstrate the first application of an optimal transport-

based method, StationaryOT, to reconstruct developmental trajectories from plant scRNA-
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seq data. Cell fate probabilities calculated by StationaryOT shed light on how the fate 

acquisition of each cell type relates to all other major root cell types. Regressions applied 

to the cell fate probabilities and gene expression data identified known transcription factors 

(TFs) involved in cell identity and differentiation. Finally, we tested the ability of the 

atlas to inform new datasets and demonstrated the power of scRNA-seq to identify new 

developmental phenotypes by profiling two cell identity mutants, shortroot and scarecrow.

Results

Integration of over 110,000 cells produces an organ-scale atlas

To build an atlas, we used the 10X Genomics scRNA-seq platform to profile over 96,000 

root cells. We harvested 0.5 cm of tissue from five to seven-day-old primary root tips 

across thirteen sets of independently grown wild-type (WT) seedlings (Dataset S1). The 

transcriptional profiles of all samples were highly correlated, suggesting that batch effects 

such as differences in plant age are unlikely to substantively affect downstream analyses 

(Fig. S1). Gene expression matrices calculated by kallisto (Bray et al., 2016) and bustools 

(Melsted et al., 2019) served as input to Cell preprOcessing PIpeline kaLlistO busTools 

(COPILOT), our pre-processing software, which incorporates detection and removal of 

low-quality cells (Data S1; STAR Methods).

To add additional depth and assess lab-to-lab data variability, we selected three published 

root scRNA-seq datasets (Denyer et al., 2019; Ryu et al., 2019) to combine with data 

generated in this study (Dataset S1). After excluding genes affected by protoplasting (the 

process of dissociating plant cells from their cell walls; Denyer et al., 2019) we integrated 

110,427 cells into an organ-scale atlas (Fig. S1; Dataset S1; STAR Methods). A median of 

2,768 genes were detected per cell with 24,997 total genes detected, representing 90% of the 

coding genes in the Arabidopsis genome.

Cell annotation places tissues in known developmental contexts

Inspection of marker genes indicated that all major cell and tissue types are discernible 

as discrete topological features in 2D Uniform Manifold Approximation and Projection 

(UMAP) space (Fig. 1B). To infer precise cell type annotations, we combined the 

information from four independent approaches (STAR Methods; Figs. S1–S3; Datasets S1–

S3) and assigned each cell to one of fourteen cell types (Fig. 1C) and to one of seven 

developmental stages (Fig. 2A) in a largely cluster-agnostic fashion.

We first mapped cells to 3D root geometry locations (Schmidt et al., 2014) using novoSpaRc 

(Nitzan et al, 2019), an algorithm that reconstructs the locations of single cells in space 

based on scRNA-seq data (Dataset S1; STAR Methods). Secondly, we used SEMITONES 

(Vlot et al., 2020), an algorithm that identifies enriched features in single cell data without 

prior clustering, to estimate the enrichment of marker gene expression in cell neighborhoods. 

Third, we calculated the correlation coefficient of each cell’s expression profile to published 

gene expression profiles of root cell types isolated with fluorescent reporters (Brady et 

al., 2007a; Li et al., 2016). Finally, we used an information-theoretic approach to compute 

Index of Cell Identity (ICI) scores for each cell (Birnbaum and Kussell, 2011; Efroni et al., 
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2015) (Dataset S3). The ICI score is quantitative and represents the relative contribution of 

cell identities as determined from a reference expression profile dataset. Combining these 

approaches allowed the expression profile of each cell to inform the boundaries between cell 

types and developmental stages.

The resulting atlas ordination consists of cells organized within continuous branches 

corresponding to four major root tissues (Dolan et al., 1993), each connected to a central 

group of cells (Fig. 1C). Lateral root cap (LRC) and columella cells comprise the root cap 

and form a single branch. Trichoblast (hair) and atrichoblast (non-hair) cells constitute the 

epidermis and form a second major branch. Cortex and endodermis cells, which together 

make up the ground tissue, form a third branch. Finally, the phloem, xylem, procambium, 

and pericycle cell types are present in the stele tissue and form a fourth branch. Based 

on marker genes (Dataset S1), we distinguished additional cell types within the phloem 

(metaphloem and companion cells; protophloem), xylem (protoxylem and metaxylem), and 

pericycle (xylem pole and phloem pole pericycle). However, we note that fewer validated 

markers were available for these subtypes. Surprisingly, the ground tissue and epidermis 

cell types show a clear ‘sub-branching’ topology at the tips of the main branches on the 

UMAP (Fig. 1C). These bifurcations may reflect a developmental phenomenon since they 

are unlikely to reflect technical artifacts such as differences in protoplasting-induced gene 

expression signatures (Fig. S4).

Overall, atlas cell type proportions are comparable to both microscopy data (Cartwright et 

al., 2009; Fig. 1D) and previously published root scRNA-seq datasets. Expression profiles of 

previously characterized genes (not used in the annotation process) also support the accuracy 

of the annotation (Fig. 1E). Differential expression analyses across all cell type groups 

(STAR Methods) identified cell type-specific genes that may be useful for the construction 

of fluorescent reporter lines (Dataset S1; Fig. S5).

We assigned developmental stage annotations to vascular, epidermal, and ground tissue 

cell types by comparing each cell transcriptome with gene expression profiles of manually 

dissected root tissue segments corresponding to meristematic, elongation, and maturation 

zones (Brady et al., 2007a). Based on these annotations, young cells of the proximal 

meristem are at the base of each major branch followed by distal meristematic, elongating, 

and finally mature cells at the tips (Fig. 2A). To assign developmental stages to cells in the 

root cap, we calculated the spatial distance for each cell to the nearest QC cell using the 

imputed geometry from novoSpaRc (STAR Methods).

To assess the overall accuracy of the developmental stage annotations, we examined 

expression patterns of previously characterized genes. First, we annotated the atlas with 

gene expression profiles associated with DNA endoploidy levels (Fig. 2B) (Bhosale et al., 

2018; STAR Methods). In agreement with the annotation, the expression of genes associated 

with increasing ploidy is correlated with increasing maturation. Additionally, the expression 

of four G2/M phase cell cycle genes supports the meristematic zone annotation and indicates 

proximal versus distal root cap cells (Fig. 2C–F). The cyclins CYCB1;1 and CYCB1;2 are 

expressed in the proximal meristem while CDKB1;1 and CDKB2;1 are expressed in both 
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proximal and distal meristematic cells (Ishida et al., 2009). Lastly, developmental stage 

expression profiles of known genes agree with published in vivo characterizations (Fig. 2G).

Overall, the atlas annotations suggest that the combined transcriptome data accurately 

describe relationships between and within individual cell types. Similar to previous 

Arabidopsis root atlas UMAP and tSNE plots, older cells from each tissue type radiate from 

a central group of young cells. However, the integration of greater cell numbers captures 

more cell states along developmental time and therefore suggests a continuous progression 

of differentiation for all major root cell types.

Developmental progression can be inferred across individual tissue types

To analyze developmental progression in more detail, we started from a simple pseudotime 

analysis within annotated cell lineages. We subdivided the atlas into four tissue/lineage 

groups based on the stem cell of origin (Dolan et al., 1993) and quantified cell state 

progression using two methodologically distinct, non-graph-based tools: CytoTRACE 

(Gulati et al., 2020) and scVelo (Bergen et al., 2020). CytoTRACE uses gene diversity 

to estimate pseudotime while scVelo is based on the concept of RNA velocity. The results 

from both methods were strongly correlated (Dataset S4; STAR Methods), suggesting that 

they reflect true biological signal. We therefore averaged the pseudotime estimations into a 

‘consensus pseudotime’ annotation for each tissue (Figs. 3 and 4). Overall, the pseudotime 

estimations reflect biological knowledge. For example, the consensus time annotation for the 

ground tissue corresponds with the developmental stage annotation and with expression of 

known endodermis and cortex markers (Fig. 3A–F). As expected, given the 0.5 cm length of 

harvested root tissue, scaled expression (STAR Methods) of SCARECROW (SCR), MYB36, 

and CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN 1 (CASP1) represent markers 

for endodermis cells spanning the meristematic zone to early maturation zone. Expression 

of JACKDAW (JKD), a ground tissue marker, as well as cortex-specific markers CORTEX 

(AT1G09750) and NPF6.4 (AT3G21670) also match the expected profiles. Examples of 

newly identified genes with expression profiles specific to a subset of the developmental 

progression are shown for cortex (Fig. 3F). Differential expression analyses generated 

by partitioning the pseudotime ordering into ten groups (T0 to T9) identified a gradual 

progression of genes dynamically expressed during cortex and endodermis differentiation 

(Dataset S4), including previously characterized developmental regulators (Fig. 3G).

Similarly, differential expression analyses across ten pseudotime bins show gradual, 

overlapping waves of gene expression for stele, epidermis + LRC, and columella cells 

(Fig. 4). In agreement with previous work on the root meristem (Wendrich et al., 2017), 

these results suggest that gradual changes in gene expression also underlie differentiation 

in the elongation and maturation zones. Gradual, overlapping gene expression dynamics 

across development are also supported by a dearth of cell type-specific markers specific 

to a particular developmental zone (Fig. S6). Interestingly, there are two distinct groups of 

genes along the columella pseudotime progression (Fig. 4J), consistent with a rapid change 

in transcription that could reflect the differentiation of cells immediately after stem cell 

division (Hong et al., 2015). Also of interest was the lack of pericycle cells in the two 

most mature pseudotime bins (Fig. 4J). This agrees with previous observations that the 
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pericycle matures more slowly than other cell types and retains meristematic characteristics 

(Beeckman and De Smet, 2014).

Optimal transport analysis identifies developmental trajectories

Because pseudotime inference indicates that root cell types mature at different rates, we 

used an optimal transport (OT) based method to infer developmental trajectories across the 

entire atlas. This method was initially developed as a way to move large quantities of earth 

with minimal work (Monge, 1781). More recently, OT was used to infer developmental 

trajectories from animal and human scRNA-seq data (Schiebinger et al., 2019; Marjanovic 

et al., 2020; Massri et al., 2021) but has yet to be applied to plant data. OT connects 

cells from one static snapshot to their putative ancestors at earlier developmental stages 

and to their descendants at later developmental stages (S. Zhang et al., 2021). This 

allows developmental trajectories of individual cells or entire lineages to be followed 

through pseudotime. Compared to separating cells by lineage annotation and analyzing 

pseudotemporal trends within each lineage, OT allows us to probe further back in earlier 

pseudotime, where lineage-annotations are less reliable. Consequently, this allows us to 

analyze fate specification events.

The 0.5 cm portion of the root harvested for the atlas can be thought of as a system in 

equilibrium: cell divisions in the meristem create new cells, which are balanced against 

the flux of cells exiting this region. We applied stationary OT analysis (StationaryOT, Fig. 

5A) (S. Zhang et al., 2021), which leverages estimates of cellular growth rates to infer 

trajectories for systems in equilibrium. We used the consensus pseudotime to define groups 

of cells that represent terminal destinations (i.e., the ‘fates’; STAR Methods) and estimated 

growth rates for individual cell types based on time-lapse imaging data of dividing cells 

(Rahni and Birnbaum, 2019). Using these parameters, StationaryOT calculates a vector 

of fate probabilities for each cell in the atlas, i.e., the likelihood that a given cell will 

eventually give rise to a mature cell of a particular cell type. Individual fate probabilities 

can be visualized on the atlas UMAP coordinates and agree with our cell type annotations, 

as shown for endodermis (Fig. 5B). The maximum fate probability for each cell, which 

indicates the most likely ultimate cell lineage, agrees with our lineage annotations (Figs. 

5C and S7), and cells appear to gradually become more biased towards specific fates at 

later pseudotimes (Fig. 5C). Taken together, these results suggest that the developmental 

trajectories inferred by StationaryOT, which are largely independent of the atlas annotations 

and do not require segmentation of the atlas into constituent lineages, reflect existing 

biological knowledge for differentiation of each cell and tissue type.

Differentiation events can be visualized by projecting multiple fate probabilities in 

barycentric coordinates as ‘triangle plots’ (STAR Methods). Contrary to pseudotime 

inference methods, which are applied to individual tissues or cell lineages, these 

visualizations can be used to interrogate how fate acquisition of each cell type relates to 

all other cell types. To explore the divergence of endodermis and cortex identities, we 

designated a vertex of the triangle for each of these fates with the third vertex representing 

all other possible fates. Cells were then plotted according to their relative probabilities. The 

position of meristematic cells in the triangle interior indicates lower cortex or endodermis 

Shahan et al. Page 7

Dev Cell. Author manuscript; available in PMC 2022 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fate probabilities at earlier developmental stages (Fig. 5D). Mature cells are grouped 

at the cortex and endodermis vertices, which indicate 100% cortex or endodermal fate 

probabilities, respectively (Fig. 5F; STAR Methods). Plotting the expression of known 

endodermis markers indicates that endodermis fate probabilities increase with maturation 

as expected (Fig. 5G). Interestingly, in the elongation zone, endodermis cells are already 

strongly fated while cortex fate appears indeterminate (Fig. 5E). This could reflect the 

putative ‘ground state’ of the cortex for which the ground tissue was named and suggests 

that elongating cortex cells have the potential to acquire different fates (Esau, 1953; Cui, 

2015).

In another example, the fate probabilities for trichoblast and atrichoblast, which together 

form the epidermis, are more similar to each other than either is to lateral root cap cells, 

although all derive from the same stem cell (Fig. 5H). Similarly, columella root cap cell 

fates are distinct from all other fates except lateral root cap (Fig. 5I). Plotting cells by 

developmental zone annotations (Fig. 5J–L) indicates that atrichoblast and trichoblast cell 

fates are indeterminate in the meristem with some fluidity in the elongation zone, which 

agrees with previous observations that epidermal cell fate is not fixed in young cells (Berger 

et al., 1998a; Ryu et al., 2019).

For stele cell types, plotting cells according to fate probabilities reflects the distinct identities 

of xylem and phloem, both compared to each other and to procambium and pericycle cells 

(Fig. 5M–N). This is visualized on tetrahedron plots by, for example, the concentration of 

xylem cells on the side of the triangle between the ‘other’ and xylem vertices, indicating that 

the cells have higher fate probabilities for xylem than for phloem or any other cell type (Fig. 

5N). By contrast, procambium and pericycle fates appear to be fluid (Fig. 5M, O–Q), similar 

to the fluidity between atrichoblast and trichoblast fates.

Optimal transport analysis facilitates identification of developmental regulators

To identify TFs with expression patterns predictive of fate specification probabilities for 

each cell type, we applied L1-regularized linear regression (i.e., the Lasso) (Dataset S5; Fig. 

S7). Among top ranked genes were numerous known regulators with positive coefficients, 

indicating a positive influence on a given cell lineage (STAR Methods; Dataset S5). 

Examples include: i) MYB36 and SCR for meristematic and elongation endodermis; ii) 

JKD for meristematic and elongation cortex; iii) GLABRA2, MYB23, and CAPRICE 
for meristematic and elongation atrichoblast; and iv) RHD6 (BHLH83) for meristematic 

trichoblast. The re-discovery of known regulators for all major root cell types as top 

candidates supports the utility of the atlas itself as well as the StationaryOT approach to 

identify TFs with key roles in cell fate specification. Many of the genes identified by the 

regressions are unstudied and represent a rich resource for functional characterization.

scRNA-seq reveals differentiation pathways of cell identity mutants

In addition to identifying new candidate regulators, scRNA-seq allows us to ask how known 

regulators control tissue and organ development. In the root, the TFs SHORTROOT (SHR) 

and SCR function in a transcriptional regulatory complex and are essential for stem cell 

niche maintenance and tissue patterning (Benfey et al., 1993; Di Laurenzio et al., 1996). 

Shahan et al. Page 8

Dev Cell. Author manuscript; available in PMC 2022 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using annotation label transfer from the atlas to inform new datasets (Stuart et al., 2019), 

we asked how the loss of SHR or SCR function affects tissue composition as well as cell 

identity and differentiation.

Both shr and scr mutants lack the asymmetric cell division that patterns the ground 

tissue, resulting in a single mutant tissue layer instead of the cortex and endodermis 

cell layers. Previous detection of tissue-specific markers and morphologies revealed that 

the mutant layer has cortex-like attributes in shr (Benfey et al., 1993) but a mixture of 

cortex and endodermis characteristics in scr (Di Laurenzio et al., 1996). These phenotypes 

were reflected in the scRNA-seq data given the significant reduction of cells expressing 

endodermal markers in both shr and scr (Fig. 6A–C). A second striking observation was the 

decrease in protoxylem cell abundance in both mutants and the decrease of protophloem and 

metaphloem abundance in shr (Fig. 6C), consistent with reports of defects in shr and scr 
stele development (Levesque et al., 2006; Carlsbecker et al., 2010; Yu et al., 2010; Cui et 

al., 2011; Kim et al., 2020). In both mutants, we also identified a significant reduction in the 

abundance of xylem pole and phloem pole pericycle cells (Fig. 6C). This is surprising given 

that there are cells located in the radial pericycle position in both mutants (Kim et al., 2020; 

Di Laurenzio et al., 1996). However, in Arabidopsis, lateral roots are formed from xylem 

pole pericycle cells (Beeckman and De Smet, 2014) and lateral root development is altered 

in the shr mutant (Lucas et al., 2011). This observation previously led to the hypothesis 

that shr cells may differentiate into a state that cannot support normal lateral root formation 

(Lucas et al., 2011). Taken together, these results indicate a putative loss of pericycle identity 

in shr.

scRNA-seq suggests trans-differentiation of the scr mutant layer

We next asked how individual cells contribute to the reported mixed identity of the scr 
mutant layer (Di Laurenzio et al., 1996). One hypothesis is that cells acquire an endodermis 

or cortex identity early in development and the mutant layer is a heterogeneous mixture of 

the two cell types along the entire cell file. Alternatively, each cell may have a mixture of 

cortex and endodermis attributes. A third hypothesis is that cells acquire one identity early 

in development and subsequently change their fate. To distinguish among these possibilities, 

we used StationaryOT to calculate scr cell fate probabilities. scr cortex and endodermis 

cells exist on a continuum between cortex and endodermis fates, as indicated by the cells 

aligned on the side of the triangle plot between the cortex and endodermis vertices (Fig. 

6D). This reflects the probabilities of both endodermis and cortex fates for these cells. In 

the shr dataset, although some cells are annotated as endodermis, the lack of cells near the 

endodermis vertex coupled with low confidence scores following label transfer via Seurat 

(Fig. 6E) suggests that few if any shr cells are endodermis-like. Similar to shr but unlike WT, 

scr endodermis cells do not show a progression from the central part of the triangle toward 

the endodermis vertex. This suggests that scr cells may not gradually acquire endodermis 

identity from an undifferentiated state.

To further explore the developmental progression of the scr mutant layer, we extracted 

cortex and endodermis-annotated cells from the scr dataset. We asked if the proportion of 

cells with each cell-type annotation changes according to developmental zone. We observed 
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that most meristematic and elongating scr cells are confidently classified as cortex, though 

a subset of cells with low cortex prediction scores is evident in the elongation zone 

(Fig. 6F). Differentiating scr cells, however, are confidently annotated as either cortex or 

endodermis, though some cells seem to have attributes of both. By contrast, nearly all shr 
mutant layer cells are confidently annotated as cortex (Fig. 6F). In agreement with these 

results, consensus pseudotime annotation labels transferred from the atlas suggest that the 

youngest cells of the scr mutant layer are primarily cortex-like while endodermis identity is 

most evident in older cells (Fig. 7A–C). By contrast, cortex identity is predominant in all 

developmental states for shr mutant layer cells (Fig. 7D–F). Together, these results support 

the hypothesis that scr mutant layer cells are cortex-like in the early stages of development 

but acquire attributes of endodermal identity as they age.

To test our hypothesis in vivo, we asked if spatial expression patterns of known cortex 

and endodermis markers are altered in the scr mutant layer. In WT roots, transcriptional 

reporters for MYB36, an endodermis marker, and AT1G09750 (CORTEX), a cortex marker, 

are expressed in the elongation zones of their respective cell types (Fig. 3D–E; Liberman 

et al., 2015; Lee et al., 2006). The MYB36 reporter is also expressed in the meristematic 

zone of the endodermis. However, scRNA-seq data suggests that these expression patterns 

are altered in the scr mutant layer: CORTEX expression is reduced to the early elongation 

zone while MYB36 is expressed in older cells of the elongation and maturation zones but 

not in the meristem (Fig. 7G–H).

Consistent with the scRNA-seq observations, expression from a MYB36 transcriptional 

reporter was visible only in the late elongation and maturation zones of the scr mutant layer 

while signal from a CORTEX transcriptional reporter was diminished in the elongation and 

maturation zones (Fig. 7I–P). Additionally, a transcriptional reporter for the meristematic 

cortex, CO2, was previously shown to be robustly expressed in young mutant layer cells 

closest to the QC in scr-4 (Heidstra et al., 2004). Taken together, the in vivo expression 

patterns of MYB36, CORTEX, and CO2 reporters validate developmental observations 

made from scRNA-seq data and suggest that young scr mutant layer cells are cortex-like 

while the identity of older cells changes to more endodermis-like. Although endodermal 

identity has been considered independent of SCR and the existence of SCR-independent 

regulation of MYB36 has previously been proposed (Drapek et al., 2018), our results 

indicate that SCR is required in meristematic and early elongation cells for MYB36 
expression and endodermal identity.

Discussion

Observations made from WT and mutant data lay the foundation to address fundamental 

questions regarding common versus shared developmental regulatory programs between 

cell types, cell identity transitions, and the roles of neighboring cells in determining cell 

identity. Building organ-scale gene expression maps is also essential to drive technological 

innovation such as reprogramming cell identity and inducing phenotypic changes via cell 

type-specific gene editing. To address these goals, we built a comprehensive root scRNA-seq 

atlas, developed an iterative pipeline to annotate each cell individually, and developed 
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COPILOT, a species-agnostic quality control software for scRNA-seq data. An interactive 

web interface is available for the atlas at https://phytozome-next.jgi.doe.gov/tools/scrna/.

The resolution of developmental progression represented in the atlas provides an opportunity 

to ask how cell fate specification and stabilization differ between cell types, especially those 

that arise from divisions of the same stem cell. For example, genes uniquely expressed in 

the cortex or endodermis early in development for each cell type may include new regulators 

of cell type specification in the ground tissue. StationaryOT, unlike pseudotime estimation 

methods, allows insight into transcriptional similarities across cell type fate specification. An 

intriguing question is how and why cell types that arise from the same stem cell, such as 

procambium and phloem, are more transcriptionally distinct than cell types which arise from 

different stem cells, e.g., procambium and pericycle.

Transcriptional regulators of tissue patterning, cell identity specification, and differentiation 

have previously been identified for each root tissue. However, we have by no means 

discovered all regulators and we have limited understanding of what connects known 

gene regulatory networks (GRNs) operating at different developmental stages in individual 

cell types (Drapek et al., 2017). The regression we applied to StationaryOT and gene 

expression data identified a number of uncharacterized genes as candidate regulators of cell 

fate. Although we highlighted candidates predicted to push cells toward a given lineage, 

the analysis also identified genes for each cell type that do not favor the lineage. These 

genes will be interesting to perturb and test for phenotypes with approaches such as cell 

type-specific overexpression. Given the applicability of StationaryOT to the full atlas, the 

candidates may also include TFs that coordinate developmental processes across cell and 

tissue types.

For future studies, the atlas represents a rich resource to infer GRNs underlying the 

differentiation of each cell type with tools such as CellOracle (Kamimoto, Hoffmann, and 

Morris, 2020). The atlas data can also be compared to or combined with data from other 

modalities to examine gene regulatory relationships and narrow down the candidate TFs 

that regulate cell fate decisions. For example, GRNs inferred from the atlas data could 

be compared to DAP-seq data (O’Malley et al., 2016) to determine if TFs of interest 

bind to regulatory regions of predicted downstream genes. Another promising avenue to 

identify transcriptional regulators controlling cell fate and differentiation is the combination 

of chromatin accessibility (scATAC-seq) and scRNA-seq data (Stuart and Satija, 2019; 

Rautenstrauch et al., 2021), the feasibility of which has been demonstrated for Arabidopsis 
and rice roots (Dorrity et al., 2021; Farmer et al., 2021; T-Q Zhang et al., 2021).

Beyond WT root development, the atlas enables interrogation of cell identity and tissue 

composition changes in a mutant context. The putative trans-differentiation from cortex 

to endodermis identity in the scr mutant layer represents a new system with which 

to investigate transcriptional changes underlying cell identity transitions. In regeneration 

studies, plant cells show a widespread ability to acquire new fates (Efroni et al., 2018), 

which raises questions such as how do cells ‘forget’ their old fate and are there unstable 

transitional states required for identity transitions. To date, there are few transcriptome-level 

datasets describing cell identity changes in plants, although such transitions represent 
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important developmental processes including pericycle cells undergoing identity changes 

during lateral root formation (Von Wangenheim et al., 2016; Gala et al., 2021). The scr 
scRNA-seq data will allow us to probe questions about these transitional states, such as, “Do 

cells express heterogeneous mixtures of cortex and endodermal identity” and, “Do cortex 

cells ‘de-differentiate’ prior to expression of endodermal markers?”

To facilitate the utility of the atlas as a community resource, we produced comprehensive 

tutorials and toy datasets to demonstrate how the atlas annotation labels can be transferred 

to new datasets. In addition to analyzing mutants, the atlas can guide interpretation of 

scRNA-seq data from plants responding to environmental stress, as well as data from crop 

species for which comprehensive root cell-type markers are unavailable.

Limitations of the Study

We relied only on transcriptional profiles to determine a cell’s identity and developmental 

state, which excludes other information such as proteomic profiles. We note that the atlas 

developmental stage annotation is based on correlation with microarray data from tissue 

segments hand-dissected according to morphological markers. The boundaries between 

developmental zones in the atlas may not correlate precisely with root morphology due 

to variability between roots and between individuals in interpreting the markers.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact

• Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Philip N. Benfey 

(philip.benfey@duke.edu).

Materials Availability—Seeds for the scr-4/pCORTEX:erGFP and scr-4/
pMYB36:H2B:3xYFP lines are available from Philip N. Benfey upon request.

Data and Code Availability

• Single-cell RNA-seq data have been deposited at GEO with the accession 

number GSE152766 and are publicly available as of the date of publication. 

Accession numbers are listed in the key resources table. Microscopy data 

reported in this paper will be shared by the lead contact upon request.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Seeds from wild type Arabidopsis thaliana ecotype Columbia (Col-0), shortroot-2 (Col-0; 

ABRC stock number CS2972), and scarecrow-4 (Landsberg background; ABRC stock 
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number CS6505; we backcrossed to Col-0 > 5 times) were surface sterilized with a 50% 

(v/v) bleach, 0.05% (v/v) Tween-20 solution for 10 minutes and subsequently stratified for 

48 hours at 4°C. Seeds were sown at a density of ~150–300 seeds/row on 1X Linsmaier and 

Skoog (LSP03-1LT, Caisson Labs; pH 5.7), 1% sucrose media covered by 100 μm nylon 

mesh. Plates were placed vertically in a Percival chamber programmed to 16h light, 8h dark 

conditions at 22°C.

METHOD DETAILS

Protoplast Isolation and scRNA-seq—Five days after sowing, 1,000–3,500 primary 

roots/sample were cut ~0.5 cm from the root tip and placed in a 35 mm-diameter dish 

containing a 70 μm cell strainer and 4.5 mL enzyme solution (1.25% [w/v] cellulase 

[ONOZUKA R-10, GoldBio], 0.1% Pectolyase [Sigma], 0.4 M mannitol, 20 mM MES 

(pH 5.7), 20 mM KCl, 10 mM CaCl2, 0.1% bovine serum albumin, and 0.000194% (v/v) 

ß-mercaptoethanol). Roots were harvested 3–4 hours after the lights were illuminated in 

the growth chamber set to long day conditions. After digestion at 25°C for 1 hour at 

85 rpm on an orbital shaker with occasional stirring, the cell solution was filtered twice 

through 40 μm cell strainers and centrifuged for 5 minutes at 500 × g in a swinging bucket 

centrifuge. Subsequently, the pellet was resuspended with 1 mL washing solution (0.4 M 

mannitol, 20 mM MES (pH 5.7), 20 mM KCl, 10 mM CaCl2, 0.1% bovine serum albumin, 

and 0.000194% (v/v) ß-mercaptoethanol) and centrifuged for 3 minutes at 500 × g. The 

pellet was resuspended with washing solution to a final concentration of ~1000 cells/μL. 

The protoplast suspension was then loaded onto microfluidic chips (10X Genomics) with 

v3 chemistry to capture either 5,000 or 10,000 cells/sample. Cells were barcoded with 

a Chromium Controller (10X Genomics). mRNA was reverse transcribed and Illumina 

libraries were constructed for sequencing with reagents from a 3’ Gene Expression v3 

kit (10X Genomics) according to the manufacturer’s instructions. cDNA and final library 

quality were assessed with a Bioanalyzer High Sensitivity DNA Chip (Agilent). Sequencing 

was performed with a NovaSeq 6000 instrument (Illumina) to produce 100bp paired end 

reads.

Transgenic Lines—Plants homozygous for the scr-4 allele (Fukaki et al., 1998) 

were crossed with previously published pCORTEX:erGFP (Lee et al., 2006) and 

pMYB36:H2B:3xYFP (Drapek et al., 2018) transcriptional reporters. F2 generation 

seedlings were imaged at 5 days old. Individuals homozygous for the scr-4 allele were 

identified by the presence of a mutant layer. pCORTEX:erGFP/scr-4 seedlings were grown 

on 1X MS plates with 10 μg/mL BASTA to confirm presence of the reporter construct prior 

to imaging.

Microscopy and Image Processing—Roots were stained with 10 mg/ml propidium 

iodide (PI) for 1 minute and imaged with a Zeiss 880 confocal using a x40 objective. The 

following are excitation (ex) and emission (em) parameters. PI: ex: 561 nm; em: 600–650 

nm; YFP: ex: 488 nm, em: 530–560 nm; GFP: ex: 488 nm; em: 500–550 nm. Median 

longitudinal sections were chosen for each image and representative images are shown. 

All image analyses were performed in ImageJ. The minimum signal for each channel was 

adjusted by measuring the intensity histogram of the background and removing the mean 
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plus two standard deviations from the signal. Brightness was adjusted for each channel to 

maximize the range of display. When GFP or YFP signals from two images are directly 

compared, the maximum brightness was adjusted identically for each image.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq Data Pre-processing—FASTQ files were generated from Illumina BCL 

files with Cell Ranger (v3.1.0) mkfastq (10X Genomics). Subsequently, gene-by-cell 

raw count matrices of spliced and un-spliced transcripts were generated using kallisto 

(Bray et al., 2016) (v0.46.2) and bustools (Melsted et al., 2019) (v0.40.0) as well as 

R packages BUSpaRse (Moses and Pachter, 2020) (v1.1.3) and BSgenome (v1.54.0; 

Pagès, 2020). The pipeline is summarized on our scKB GitHub repository (https://

github.com/ohlerlab/scKB). Reads were aligned to the Arabidopsis genome BSgenome 

object (“BSgenome.Athaliana.TAIR.TAIR9”) with TAIR10 gene annotation file. Samples 

sc_9 and sc_10 (Dataset S1) contained a mixture of Arabidopsis and rice (Oryza sativa X. 

Kitaake) root protoplasts. We mapped the reads to a concatenated version of the Arabidopsis 
TAIR10 and rice MSU7 genomes and retained only the reads which specifically mapped 

to the Arabidopsis genome. The matrices of spliced and un-spliced counts were combined 

into a total count matrix. Genes with no counts in any cell were removed. Cells were 

filtered based on the following. First, putative dying cells were identified based on the 

enrichment of mitochondrial gene expression (> 5% of the total UMI counts) and the 

mode of the putative dying cells’ count distribution was treated as the initial boundary to 

separate cells into two groups representing low and high-quality cells. Second, expression 

profile references were built for both low and high-quality cells by taking the average of 

log-normalized counts. Third, the whole distribution of low-quality cells was recovered by 

comparing the Pearson correlation coefficient of each high-quality cell to the two references. 

In other words, if cells in the high-quality group have higher correlation to the low-quality 

cell profile than the high-quality cell profile, then those cells would be re-annotated as 

low quality. COPILOT offers functionality that allows iterative filtering until there are 

no cells more similar to the low-quality cell expression profile than the high-quality cell 

expression profile. However, in cases where the count distributions of high-quality cells and 

low-quality cells are not clearly separated, iterative filtering would result in over-filtering, 

which removes many cells that should be retained as high-quality cells. Therefore, to avoid 

over-filtering, we forced the algorithm to perform the cell filtering procedure only once. 

Finally, the low-quality cells and cells enriched in mitochondrial expression were removed 

along with the top 1% of high-quality cells in terms of total UMI counts in order to address 

any issues associated with outliers. In other words, after iterative filtering and removing 

cells having enriched mitochondrial expression, cells are further filtered for outliers. We 

used the top 1% of cells in terms of total UMI counts as a cut-off. Putative doublets were 

removed using DoubletFinder (McGinnis et al., 2019) with default parameters according 

to the estimated doublet rate (10X Genomics Chromium Single Cell 3’ Reagent Kit User 

Guide (v3 Chemistry)). This pre-processing pipeline is available as an R package, COPILOT 

(https://github.com/ohlerlab/COPILOT), with a jupyter notebook tutorial. In downstream 

analyses, we did not consider mitochondrial, chloroplast, or known protoplasting-affected 

genes (Denyer et al., 2019) (log2 fold-change >= 2 or <= −2 after protoplasting). These 

exclusions were biologically motivated with the goal to minimize noise that may affect 
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dimensionality reduction or clustering. e.g., chloroplast development is repressed in roots 

and protoplasting causes stress-related gene expression changes.

Normalization and Dimensionality Reduction—Using Seurat version 3.1.5, data 

were normalized using the SCTransform method (Hafemeister and Satija, 2019) followed by 

principal component analysis (PCA) and non-linear dimensionality reduction using UMAP. 

Fifty principal components were calculated using the RunPCA function with parameters 

“approx” set to FALSE. UMAP embedding was generated by RunUMAP function using all 

50 principal components with parameters n_neighbors = 30, min_dist = 0.3, umap.method 

= “umap-learn”, metric = “correlation”. All steps are incorporated into the COPILOT R 

package and a jupyter notebook demonstrating the analysis is provided (https://github.com/

ohlerlab/COPILOT).

Integration of Seurat Objects—Data were integrated following the Seurat reference-

based integration pipeline (Stuart et al., 2019; Butler et al., 2018). The sample with 

the highest median UMI/gene per cell and number of genes detected was chosen as the 

reference (sample name: sc_12; Dataset S1). Overall, 16 WT replicates were used to build 

the atlas, including three previously published samples (Dataset S1). A jupyter notebook 

demonstrating the integration process is available on Github (https://github.com/ohlerlab/

COPILOT).

Plotted Gene Expression Values—‘Log-normalized’ indicates expression values 

extracted from the slot ‘data’ of a Seurat object’s ‘SCT’ assay, which contains the log-

normalized, ‘corrected’ counts produced by the SCTransform function (Hafemeister and 

Satija, 2019). ‘Scaled Expression’ indicates batch-corrected, log-normalized values extracted 

from the slot ‘data’ of a Seurat object’s ‘integrated’ assay. These values are scaled such that 

any value above 10 is set to 10 (Stuart et al., 2019). However, the integrated assay only 

contains genes that are shared among all the samples that are integrated, which excluded 

some genes of interest. Therefore, given that the observed batch effect among our samples is 

small (Fig. S1), we chose to make several plots with expression values from the ‘data’ slot of 

a Seurat object’s ‘SCT’ assay.

Cell Type and Developmental Stage Annotation—The atlas annotation is based 

on comparison to published whole-transcriptome profiles (Brady et al., 2007a; Li et al., 

2016) of root cells isolated from reporter lines as well as known markers (Dataset S1) that 

have been previously validated and show specific local expression on the atlas UMAP. We 

combined four annotation methods, described below.

Annotation Based on Spatial Mapping—We built a 3D root geometry reference based 

on confocal image stacks published with the interactive Arabidopsis root analysis tool 

iRoCS (Schmidt et al., 2014). The x, y and z confocal image coordination (in micrometers) 

of each cell’s centroid was manually documented as a location in 3D geometry followed 

by labeling of cell type, developmental zone, and distance from QC (in number of cells). 

The 3D root geometry records 3,957 cell locations covering 0.2 cm from the primary root 

tip (Fig. S2 and Dataset S1). A subset containing 50,000 atlas cells was mapped to the 3D 

root geometry using novoSpaRc (Nitzan et al., 2019) with default parameters and binarized 
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spatial expression profiles of 49 markers based on published images of transcriptional 

reporters or in situ hybridizations (Dataset S1). These markers serve as anchors that 

bridge the scRNA-seq data to the root geometry. The mapping accuracy was estimated 

by performing left-one-out cross validation over 100 times. Average Pearson correlation of 

0.7 was achieved between predictions of the mapped model and ground truth. The mapping 

information of each cell from the scRNA atlas to a location was extracted, and each cell was 

annotated according to its mapped location. Distal root cap refers to root cap cells located at 

the two outermost cell layers of root cap while proximal root cap cells include root cap cell 

layers closer to QC. This classification is based on the observation that the cells mapped to 

the outermost cell layer share the same top markers (Columella: AT3G61930; Lateral root 

cap: AT1G33280) with the cells mapped to the second outermost layer. The cell layers closer 

to QC share the same sets of markers as well (Columella: AT2G04025, AT1G78520; Lateral 

root cap: AT1G79580). AT3G61930 is treated as a marker for proximal and distal columella 

in the annotation method in the next section.

Marker Annotation—The enrichment scores of known cell type-specific markers (De 

Rybel et al., 2013; Schürholz et al., 2018; Muñiz et al., 2008; Menand et al., 2007; Bonke et 

al., 2003; Clay and Nelson, 2005; Lee and Schiefelbein, 2002; Brady et al., 2007b; Kamiya 

et al., 2016; Huang et al., 2017; Miyashima et al., 2019; Matsuzaki et al., 2010; Wallner 

et al., 2017; Ishida et al., 2009; Taniguchi et al., 2017; Kamiya et al., 2015; Aida et al., 

2004; Kubo et al., 2005; Lee and Schiefelbein, 1999) (Dataset S1) were calculated for each 

cell in the atlas using SEMITONES (Vlot et al., 2020; github.com/ohlerlab/SEMITONES). 

SEMITONES uses cluster/reference-free, rank based statistics to calculate the significance 

of local enrichment of gene expression based on a distance between cells. Dimension 

reduction was performed on the raw cell-by-gene matrix and used to estimate the distance 

among cells to save computational resources. We chose UMAP to reduce dimensions, and 

distance among cells in the UMAP space was estimated via a radial basis function over the 

Euclidean distance (RBF kernel) metric. The size of a cell neighborhood was determined 

by setting the parameter “gamma” to 0.8. A gene is considered significantly enriched with 

respect to a cell if its enrichment score is more than 5 standard deviations away from the 

mean of the permutation null distribution. This permutation null distribution is obtained 

by applying enrichment scoring to 100 times permuted expression vectors. Cells were then 

annotated with a cell type label according to which significantly enriched marker had the 

highest enrichment score.

To complement the SEMITONES annotation approach, marker gene expression z-scores 

were calculated for a second marker annotation that depends on hard-clustering. In this 

approach, clusters were first defined using the Seurat FindClusters function by setting an 

extremely high modularity parameter (res = 500), which results in 3,034 clusters that only 

have tens of cells each. These finely-resolved clusters were then annotated by comparing 

the average marker gene z-scores. Cells that were annotated with the same cell identity 

by the SEMITONES and z-score approaches were considered confidently annotated. This 

combination was particularly useful to annotate very young cells at the base of the UMAP 

because it incorporates high resolution from the z-score approach with low noise from the 

SEMITONES annotation.
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Correlation Annotation—Prior to scRNA-seq sample integration, Pearson correlation 

coefficient was calculated between each cell and whole-transcriptome reference expression 

profiles for cell types and developmental zones. We used bulk RNA-seq data (Li et al., 

2016) previously generated for 14 cell types isolated with FACS. Further, we compared 

each cell in the atlas to ATH1 microarray data generated for thirteen cell types and thirteen 

tissue segments hand-dissected along the longitudinal axis of the root (Brady et al., 2007a). 

Each expression profile was built by first aligning the quality-filtered FASTQ reads, which 

are processed by Trimmomatic (Bolger et al., 2014) (v0.39) with default parameters and 

quality-checked by FastQC (Andrews, 2010) (v0.11.8), to the TAIR10 genome using STAR 

(Dobin and Gingeras, 2016) (v2.7.1a) with default parameters. Then, count normalization 

was carried out with DESeq and vst function in R package DESeq2 (Love et al., 2014) 

(v1.24.0) with default parameters. 181 genes that are highly variable across cell types in 

both RNA-seq and microarray data were kept, while 500 highly variable genes across 3 

developmental zones and 809 highly variable genes across 13 developmental sections were 

selected, respectively. The SCTranform log-normalized counts in each cell and DEseq2 

normalized counts in each expression profile were used to calculate Pearson correlation 

coefficient. Each cell was labeled with the cell type and developmental zone with which 

it had the highest correlation coefficient. We defined a high confidence annotation as 

correlation coefficient > 0.6.

Index of Cell Identity (ICI) Calculation—Another method to infer cell identity was an 

Index of Cell Identity (ICI)-based classification approach (Efroni et al., 2015). We identified 

13 datasets (Birnbaum et al., 2003; Brady et al., 2007a; Li et al., 2016; Lee et al., 2006; 

Nawy et al., 2005; Clark et al., 2019; Dinneny et al., 2008; Gifford et al., 2008; Bargmann 

et al., 2013; Yadav et al., 2014; Birnbaum and Yuan, 2015) consisting of cell-type specific 

gene expression profiles (RNA-seq or ATH1 Microarray) for the 18 cell types considered 

for this atlas (Fig. S3; Dataset S3). RNA-seq data was preprocessed by adapter- and 

quality-trimming raw FASTAQ reads using the BBDuk tool (BBTools suite; sourceforge.net/

projects/bbmap/), using adapter sequences found in the adapters.fa resource within bbtools, 

and parameters, k=23, mink=11, hdist=1, ktrim=r, and qtrim=10. Trimmed reads were 

mapped with the STAR (Dobin and Gingeras, 2016) utility (v2.7.2b) using default 

parameters with counts per gene quantified using the quantMode GeneCounts parameter. 

Read counts were then processed using the DESeq2 R package (Love et al., 2014) (v1.26.0), 

using a design matrix that treats datasets generated with the same marker:GFP construct as 

replicates, by running the estimateSizeFactors, estimateDispersions, and the vst functions 

to model gene expression. Microarray expression datasets were processed using the gcrma 

(Gentry et al., 2017) R package (v2.58.0). RNA-seq and microarray expression datasets 

were then harmonized using the FSQN (Franks et al., 2018) R package (v0.0.1) to model 

the RNA-seq gene expression distributions using the microarray data as a reference. FSQN-

processed data from both the combined ATH1 and RNASeq datasets, as well as the DESeq2-

processed RNASeq datasets alone, were then used to build two ICI specificity score (spec) 

tables (using the same methodology as described by Efroni and colleagues (2015), binning 

expression of each gene into 10 bins, with a minimum background bin set to 3). Markers 

were identified from this spec table, using a total information level of 50, and normalized, 

scaled expression of all identified markers was examined in all original datasets. Based on 
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how well correlated each dataset was with its associated datasets of the same cell type, some 

datasets were filtered out. After dataset filtering, the final spec tables were re-calculated 

with the same parameters. The spec tables were then used (with an information level of 

50) to compute ICI scores, p-values (using the permutation procedure described previously 

by Efroni et al., 2015) for all 18 cell types for cells in the atlas, using the log-transformed 

data values in the SCT assay of each individual dataset’s Seurat object. For each cell, the 

highest-scoring cell type (from either the combined ATH1/RNASeq or RNASeq only spec 

tables) was assigned as the ICI-derived annotation. We defined a high confidence annotation 

as adjusted p-value < 0.01.

Combination of Annotation Methods—Final cell type annotations were assigned by 

combining information from the four annotation approaches. For procambium, metaxylem, 

and protoxylem cell types, which lack bulk RNA-seq or microarray references, we used 

only spatial mapping and marker annotation methods. For the remaining cells, if a cell had 

the same label from at least two of the four annotation methods, then it was annotated 

as such. Otherwise, the cell was temporarily treated as un-annotated during the first final 

annotation step. In the second step, we leveraged information from Seurat by clustering with 

a low modularity parameter (res = 0.5) to further prune out noise. The resulting annotation 

(“consensus annotation”) represents the most confidently annotated cells. We built new 

reference expression profiles for each cell type by taking the average of the expression 

values for cells in the consensus annotation. All cells were then re-annotated using the 

correlation-based approach by comparison to these newly built references. The annotation 

of QC cells was performed separately since the correlation-based approach results in cells 

annotated as QC but that are enriched in expression of cell cycle genes (Dataset S1), which 

does not agree with the low cell division activity of the QC. In an alternative method, we 

identified 158 QC cells [~0.1 % of the atlas, which is similar to QC cell type proportions 

from microscopy data (Cartwright et al., 2009) that have high averaged z-scores of validated 

QC markers and low averaged z-scores of cell cycle genes in the SEMITONES-defined 

neighborhood with enriched expression of QC markers. Finally, we performed another round 

of denoising by clustering to obtain the final annotation.

To assign a developmental stage annotation to each cell, we used an approach similar 

to that described for cell type annotation, during which we used microarray-based whole-

transcriptome profiles from thirteen root longitudinal sections as reference expression 

profiles (Brady et al., 2007a). Sections meristem 1–6, elongation 7 and 8, and maturation 

9–12 correspond to the atlas meristem, elongation, and maturation labels, respectively. In 

practice, cell type and developmental stage annotations were performed simultaneously, 

meaning that the newly built references described in previous sections refer to the 

combination of developmental stage and cell type. A jupyter notebook demonstrating the 

annotation process is available from Github (https://github.com/ohlerlab/COPILOT).

Ploidy Annotation—We assigned each cell a ploidy label based on correlation with four 

published bulk RNA-seq profiles (Bhosale et al., 2018) (Fig. 2B; Dataset S1). A jupyter 

notebook demonstrating the annotation process is available from Github (https://github.com/

ohlerlab/COPILOT).
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Differentially Expressed Genes—To identify cell type and cell type + developmental 

stage marker genes, we used the default Wilcoxon test available from the Seurat 

FindMarkers function on scaled expression. Significant markers for cell type + 

developmental stage were selected based on the following criteria: adjusted p-value < 0.05, 

average log fold change > 3, and pct.dff > 0.4, where pct.diff is defined as the difference of 

gene percentage expression between the cluster considered and the rest of the cells. Genes 

that were identified as markers for multiple cell types were reassigned to the cell type 

with the highest average log fold change and pct.diff. Marker specificity was estimated by 

percentage expression in cells that do not belong to the cluster considered. The expression 

pattern of marker genes was also verified with Seurat’s dot plot tool.

In addition to cluster-dependent differential expression analysis implemented in Seurat, the 

cluster-agnostic tool SEMITONES was used to search for cell type + developmental stage 

marker genes de novo based on scaled expression. Reference cells for each cell type + 

developmental stage were chosen by searching for cells with the highest average similarity 

based on a similarity matrix calculated via the RBF kernel on 50 UMAP dimensions.

In DE analyses along pseudotime bins, we used the Seurat FindMarkers function to first 

prefilter features using a log2 fold-change threshold of 1 and a minimum percentage 

difference in expression of 0.25. We then performed differential expression testing for 

each combination of cell type and pseudotime bin using the ROC test implemented in 

Seurat FindMarkers. A classifier was built for each gene based on the ability of that 

gene’s expression level to distinguish between two groups of cells. The first group of 

cells corresponds to the pseudotime bin of interest within a particular cell type whereas 

the second group is the remaining cells within the trajectory for that tissue. Classification 

power based on Area under the ROC Curve (AUC) was used to estimate the performance 

of the classifier. An AUC value of 1 indicates increased expression values in the first group 

that can perfectly distinguish the two groupings, whereas an AUC of 0.5 indicates that the 

gene has no predictive power to distinguish the groups. Only markers with an AUC greater 

than 0.75 were retained for downstream analysis. We rank ordered markers based on AUC, 

percentage difference, and fold-change.

Bifurcation Patterns on Atlas UMAP—To examine bifurcation patterns within cell 

lineages, ground tissue and epidermis sub-branches were labeled based on clusters identified 

with Seurat (modularity parameter res = 0.5) (Fig. S4). Gene ontology analysis was 

conducted on identified DE genes using R package “gprofiler2” (Kolberg et al., 2020).

Pseudotime Estimation—Pseudotimes were inferred with the R package CytoTRACE 

(Gulati et al., 2020) (v0.1.0) and Python-based scVelo (Bergen et al., 2020) (v0.1.25). We 

opted not to use graph-based tools given their dependency on the selection of dimensional 

reduction embeddings and parameters. The batch-corrected and scaled (‘integrated’ assay in 

Seurat object) expression values were used as input for CytoTRACE and scVelo. Instead of 

using the default scaled expression values which were centered at 0 and capped at 10, all 

the negative values were treated as no expression and the values were floored at 0. The ratio 

of spliced and un-spliced transcripts of each gene and cell was calculated using raw counts. 

The ratio was then multiplied by the batch-corrected non-negative expression count matrix 
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to generate the corresponding spliced and unspliced count matrices, which serve as input 

for scVelo. Latent time was then estimated by running pp.moments function with parameter, 

n_pcs = 50, n_neighbors = 100 and tl.velocity function with mode set to “dynamical” in 

scVelo, while CytoTRACE was implemented with default parameters.

A consensus pseudotime was derived by taking the average of CytoTRACE and scVelo-

inferred latent time. Consensus time was estimated for each tissue/lineage independently 

to address differences in maturation rates. The consensus time for QC cells were then 

averaged and all the cells in the trajectory were divided into ten evenly sized groups 

(T0-T9) each containing the same number of cells. We chose ten bins after examining 

the data annotated according to correlation with microarray data from twelve manually 

dissected longitudinal tissue sections (Brady et al., 2007a). Of the twelve section labels, 

we found that two (Meristem-section 6 and Maturation-section12) were outliers and had 

fewer cells than the other ten sections. We therefore chose ten bins to more evenly spread 

the cells across all bins. A jupyter notebook demonstrating how results from the two tools 

were combined is provided under the GitHub repository for COPILOT (https://github.com/

ohlerlab/COPILOT).

Genes Dynamically Expressed across Pseudotime—We applied the approach 

described under ‘Differentially expressed genes’ to identify genes that vary along the 

developmental progression of each tissue type. We used the combination of cell type and 

consensus time group (10 groups ranging from T0 to T9) as identity of interest among which 

differential expression analysis was performed. Spearman’s correlation of each marker 

with consensus time was considered as an additional metric to aid in selecting genes that 

vary along the gradient of differentiation. Ten genes were selected for each cell type and 

consensus time group combination. Genes were arranged according to their highest rank 

along consensus time. Pseudo-bulk expression profiles within each consensus time group 

were calculated for each gene and row scaled expression values were then displayed using 

ComplexHeatmap in R (Gu et al., 2016) (v2.10.0). All code used to identify and plot genes 

differentially expressed across pseudotime is available as a jupyter notebook on GitHub 

(https://github.com/ohlerlab/COPILOT).

Computing Trajectories with StationaryOT—Daily growth rates were estimated from 

imaging data of the growing meristem over a period of up to a week (Rahni and Birnbaum, 

2019). Using these growth rates and examining the proportion of cells in each developmental 

stage, we estimated that roughly 5% of the cells in each lineage would be replaced in a 

6-hour period. We selected the top 5% most differentiated cells from each lineage as sinks, 

as defined by pseudotime. We applied StationaryOT using entropic regularization with the 

regularization parameter set to ε = 0.025, and the cost matrix normalized to have unit mean. 

However, we found the results to be robust using quadratic regularization and varying the 

time and degree of regularization by a factor of two. Due to computational limitations, the 

dataset was partitioned into 10 subsets and StationaryOT was applied to each subset. This 

was repeated 10 times with random partitions to account for sampling error. Cell-by-cell 

averaging was performed on the computed fates to create a set of consensus fates. Between 

a single subset in a partition and the consensus fates in the full atlas, 97% of cells shared 
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the same maximum fate type and the maximum fate values had a correlation of 0.96. 

Accounting for all fate values, rather than just maximums, the correlation rose to 0.99.

Visualizing Fate Probabilities—StationaryOT assigns a vector of fate probabilities to 

each cell. Up to three fates are visualized at a time (e.g., endodermis, cortex, and other being 

the sum of the remaining fates) using barycentric coordinates to represent 3-dimensional 

probability vectors in a two-dimensional triangle plot. A corner of the triangle is associated 

with each of these possible fates, and cells are positioned according to their relative 

probabilities as follows:

Let a, b, c denote the vertices of the triangle in R2 and let p = (p1, p2, p3) denote the 

probability vector we wish to visualize. The components of p are used as coefficients in a 

convex combination of the vertices. In other words, the probability vector p is mapped to 

p1a + p2b + p3c ∈ R2. Note that p1 + p2 + p3 = 1, so each probability vector is mapped to 

a point inside the triangle. Cells perfectly fated to obtain a single fate are positioned exactly 

at the corresponding vertex, while cells with indeterminate fates are positioned in the interior 

of the triangle. The very center of the triangle corresponds to cells that are equally likely 

to choose any of the three fates, and cells along an edge have zero chance of reaching the 

opposite vertex.

Lasso Regression—To identify genes that play roles in lineage determination, we 

applied Lasso regression to gene expression data and fate data from StationaryOT. This 

analysis was applied to cells in each developmental stage, and then the full dataset. As a 

result, we obtained lists of genes with possible lineage determining roles for each stage. 

Lasso is a linear regression method with an L1 regularization term to control sparsity 

(Tibshirani, 1996). We applied Lasso to gene expression matrices Es, for each developmental 

stage (meristem, elongation, maturation) and the full atlas. For the regressions, we restricted 

Es to only contain expression data from transcription factors (Pruneda-Paz et al., 2014). 

Note that cells from the root cap were assigned meristematic, elongation, and maturation 

stage labels according to correlation annotation with bulk RNA-seq datasets generated from 

hand dissected tissue. This was done to create a fit that is applicable to all cell types, 

and hence is more selective in its component genes. The regression was performed on a 

lineage-by-lineage basis against fs,L, fate probabilities for cells from stages, to a lineage L. 

In this setting, the objective function for Lasso is:

1
2n fs, L − Esw 22 + α w

1

Here, n is the number of cells, w is a vector of regression coefficients, and α is 

a regularization coefficient. To determine an optimal α for each regression, αopt,s,L, 

that balanced sparsity and predictive power, we tested a range of α for each stage 

and lineage. We created a graph of R2 versus the number of non-zero coefficients for 

each fit. We then chose αopt,s,L by selecting the value of α corresponding to the knee 

point of the graph, which was determined using the Kneedle algorithm (Satopaa et al., 

2011). An example of these graphs for the meristematic zone are found in Fig. S7. 

The linear_model. Lasso function from the Python package scikit-learn was used as the 

Shahan et al. Page 21

Dev Cell. Author manuscript; available in PMC 2022 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



solver for the regressions (https://scikit-learn.org/stable/about.html#citing-scikit-learn). The 

regression assigns a coefficient wi to each gene i, which determines its predicted impact on 

lineage determination. Specifically, the coefficient for a gene is a prediction of how much 

a unit change in that gene’s atlas expression values (after normalization and integration) 

affects a cell’s probability of achieving that lineage. Coefficients can be either positive or 

negative: a positive coefficient for a gene implies that up-regulation of that gene favors the 

given lineage, while a negative coefficient implies that down-regulation favors the lineage. 

The magnitude of these regression coefficients can be used to rank genes in terms of lineage 

determining capacity, providing candidates for further investigation. Gene lists for each 

stage and lineage are included in Dataset S5.

shortroot and scarecrow Mutant Analysis—Annotations were transferred from the 

atlas to two scr-4 biological replicates, two shr-2 biological replicates, and five wild type 

biological replicates that were grown and processed together with the mutants (WT samples 

sc20, 21, 30, 31, and 51). Label transfer was performed following the Seurat pipeline. 

A jupyter notebook tutorial is available on Github (github.com/Hsu-Che-Wei/COPILOT). 

Mutant and WT data were integrated following the Seurat reference-based integration 

pipeline (Stuart et al., 2019; Butler et al., 2018).

Cell Identity Differential Abundance—We used differential abundance analysis to 

examine which cell types were enriched or depleted in shr or scr compared to WT 

(Amezquita et al., 2020). First, we quantified the number of cells assigned to each label 

on a per sample basis. We then used the EdgeR package (Robinson et al., 2010; McCarthy 

et al., 2012) to fit a negative binomial generalized linear model in which the counts represent 

cells per label. Normalization was conducted according to the number of cells per sample. 

Separate contrasts were used to compare shr versus WT or scr versus WT, each with a 

blocking factor to account for any potential batch effects between different experimental 

runs. Differences in abundance were tested using the function glmQLFTest. P-values were 

adjusted for multiple testing according to Benjamini and Hochberg (1995) and cell type 

labels with a false discovery rate less than 0.05 were considered significantly altered. We 

then used ComplexHeatmap (Gu et al., 2016) in R to plot the log2 fold-change estimates 

(mutant/WT) from EdgeR.

ADDITIONAL RESOURCES

Data deposition: https://www.ncbi.nlm.nih.gov/geo/

Interactive web browser for the atlas: https://phytozome-next.jgi.doe.gov/tools/scrna/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• scRNA-seq of >110,000 cells produced a comprehensive Arabidopsis root 

atlas

• Gradual, overlapping waves of gene expression underly development of all 

cell types

• Developmental trajectories enable visualization of cell specification events

• scRNA-seq of the scarecrow mutant reveals a cell identity change occurs over 

time
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Figure 1. 110,427 cell root atlas representing all major cell types.
A) Developmental zones (left) and radial cell types (right) of the Arabidopsis root. White 

border indicates the location of stem cells surrounding the Quiescent Center. Illustration 

adapted from the Plant Illustrations repository (Bouché, 2017).

B) Expression of known cell type markers. The color scale for each plot represents log 

normalized, corrected UMI counts for the indicated gene.

C) UMAP with cell type labels. The crossing over or apparent mixture between some 

cell types, e.g., trichoblast and atrichoblast, is a result of 2D projection and absent in 3D 

(Supplementary Movie 1).

D) The proportion of each cell type group in the atlas is comparable to in vivo cell type 

proportions (Cartwright et al., 2009).

E) Cell type expression for 40 genes, the spatial expression profiles of which have been 

previously characterized. Dot size represents the percentage of cells in which each gene is 
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expressed (% expressed). Dot colors indicate the average scaled expression of each gene in 

each cell type group with warmer colors indicating higher expression levels.

CC: companion cell; QC: quiescent center; PPP: phloem pole pericycle; XPP: xylem pole 

pericycle; LRC: lateral root cap. See also Figures S1– S6, Datasets S1– S3, Data S1, and 

Supplementary Movie 1.
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Figure 2. Expression profiles of known genes support the atlas developmental stage annotations.
A) UMAP with developmental stage annotations. LRC: lateral root cap.

B) UMAP with cell ploidy annotations based on gene expression profiles from Bhosale et al. 

(2018).

C-F) Scaled expression (STAR Methods) of four previously characterized cyclin genes 

(Ishida et al., 2009).

G) Developmental stage expression profiles for 35 genes expressed across the four major 

root tissue types. Dot size represents the percentage of cells in which each gene is expressed 

(% Expressed). Dot colors indicate the average scaled expression of each gene in each 

developmental stage group with warmer colors indicating higher expression levels. Root 

cap: lateral root cap and columella. See also Figures S1– S6 and Datasets S1– S2.
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Figure 3. Pseudotime estimates reflect the dynamics of ground tissue differentiation.
A) Endodermis and cortex-annotated cells (ground tissue) were extracted from the atlas and 

re-embedded in a 2D UMAP. QC cells were included to help anchor pseudotime estimations.

B) Ground tissue cells annotated with developmental stage labels.

C) Ground tissue cells annotated with consensus pseudotime group labels. T0 denotes the 

youngest cells.

D-E) Scaled expression patterns (STAR Methods) of known endodermis and cortex markers.

F) Newly identified cortex-expressed genes are candidates for marker development.

G) Scaled expression of 90 and 94 non-redundant, differentially expressed genes across 

consensus pseudotime groups for cortex and endodermis, respectively. Warmer colors denote 

higher expression. Although thousands of differentially expressed genes were identified 

across pseudotime, only the most strongly differentially expressed genes for each of the ten 

pseudotime bins were plotted for simplicity. See also Dataset S4.
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Figure 4. Pseudotime progressions indicate gradual gene expression changes underlie 
development across tissues and developmental zones.
A-C) Cells annotated as trichoblast, atrichoblast, and lateral root cap (A), columella (B), and 

stele (C) were extracted from the atlas and re-embedded in individual UMAPs.

D-F) UMAPs annotated by developmental stage.

G-I) UMAPs annotated by consensus time groups.

J) Scaled expression of the top ten non-redundant, most highly differentially expressed 

genes across consensus pseudotime groups for each cell type. See also Dataset S4.
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Figure 5. Optimal transport identifies developmental trajectories.
A) The root tip, denoted here as the 0.5 cm harvested for scRNA-seq, remains in equilibrium 

over a time period of duration dt. Individual cells progress through developmental stages, 

including dividing (green; transit amplifying divisions following stem cell divisions), 

enlarging (blue; elongation zone), and exiting the region of interest (red; early maturation 

zone).

B) Endodermis fate probability (right) agrees with endodermis annotations (left), visualized 

on the UMAP.

C) All fate probabilities are visualized on the UMAP (right). Cells are colored according 

to the lineage of maximum fate probability and cells fade to grey as the fate specification 

becomes less determined (i.e., as the maximum fate probability decreases).
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D-Q) StationaryOT fate probabilities reflect known developmental relationships and, in 

some cases, fate fluidity between cell types. For each plot, the dataset was down-sampled to 

10,000 cells to facilitate visualization.

D-F) Triangle plots with cells plotted according to cortex, endodermis, and all other fate 

probabilities. Cells annotated as cortex and endodermis are colored light and dark blue, 

respectively, with all other cells in gray. The three plots show cells from each of the three 

developmental stages.

G) Increasing endodermis fate probabilities agree with developmental stage annotations and 

with expression patterns of SCARECROW (SCR) and MYB36. The legend shows z-scores 

of gene expression, where a score of 1 is one standard deviation above mean expression.

H-I) Cells are arranged on tetrahedron plots according to cell fate probabilities from 

epidermis and root cap tissues. The top vertex of each face of the tetrahedron plots (looking 

down) contains all other cell type fates besides the three labeled at each of the remaining 

vertices.

J-L) Cells are plotted according to atrichoblast, trichoblast, and all other fate probabilities. 

Cells annotated as atrichoblast and trichoblast are colored accordingly with all other cells in 

gray.

M-N) Tetrahedron plots representing stele cell fate probabilities. Xylem, phloem, and 

pericycle terminal fates from pseudotime estimates were used for StationaryOT but stele 

cells are colored here according to annotated sub-types.

O-Q) Cells are plotted according to pericycle, procambium, and all other fate probabilities. 

See also Figure S7.
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Figure 6. Atlas informs cell type abundance and identity changes in shr and scr mutants.
A) UMAPs with cell type annotations representing WT integrated with shr and scr. Data 

from each genotype was down-sampled to 10,000 cells to facilitate comparison.

B) UMAPs from A but labeled with developmental stage annotation.

C) Differential abundance analysis using the full integrated WT, shr, and scr dataset reports 

significant changes in per-label cell type abundance between mutants and WT. *** False 

Discovery Rate (FDR) < 0.001; ** FDR < 0.01; * FDR < 0.05.

D) Triangle plots illustrating cell fate probabilities calculated by StationaryOT. Cell type 

color legend is the same as A.

E) Triangle plots show cells arranged according to endodermis, cortex, and all other 

fate probabilities for shr (top) and scr (bottom) as calculated by StationaryOT. Each dot 

represents one cell. Dots are colored by endodermis annotation confidence scores after label 
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transfer from the WT atlas by Seurat. Zero and one are the lowest and highest confidence 

scores, respectively.

F) Data density plot of the cortex classification score subtracted from the endodermis 

classification score for each cell, plotted by developmental stage. On the x-axis, a value 

of 1 indicates confident endodermal classification while a value of −1 indicates confident 

cortex classification. The annotation of each scr and shr cell was assigned using a weighted 

vote classifier based on reference cell labels from the atlas (Stuart et al., 2019). Cell 

type classification scores range from zero (lowest confidence) to one (highest confidence). 

Absolute cell numbers are represented by the shaded bars. See also Datasets S1 – S2, Data 

S1.
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Figure 7. Spatial expression patterns of MYB36 and CORTEX transcriptional reporters are 
consistent with cortex to endodermis fate transition in the scarecrow mutant layer.
A) Cortex, endodermis, and QC cells extracted from the scr dataset and re-embedded in a 

UMAP.

B) Developmental stage annotation labels were transferred from the WT atlas to the scr 
mutant layer cells.

C) Consensus pseudotime group annotation labels were transferred from WT ground tissue 

to scr. Warmer to cooler colors represent the developmental progression from youngest to 

oldest cells, respectively.

D) Cortex and endodermis cells were extracted from the shr dataset and re-embedded in a 

UMAP.

E-F) As for scr, developmental stage (E) and consensus time group annotation labels (F) 

were transferred from the WT atlas to shr mutant layer cells.
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G-H) Scaled expression of MYB36 and AT1G09750 (CORTEX reporter) in cells of the scr 
mutant layer.

I-L) pMYB36:H2B:3xYFP reporter in WT (I,J) and scr-4 (K,L) showing loss of meristem 

and elongation zone expression in scr mutant. Blue arrowheads mark the longitudinal 

location of the first and last cells in the image with visible YFP.

M-P) pCORTEX:erGFP reporter in scr-4/pCORTEX:erGFP F2 progeny with WT ground 

tissue phenotype (M,N) and scr-4 mutant layer phenotype (O,P) showing reduced expression 

of cortex marker as cells mature in the mutant. Red and green channel overlay images (I, K, 

M, O) are propidium iodide-stained roots (magenta) and YFP or GFP signal. Green channel 

images (J, L, N, P) are YFP or GFP alone. Scale bars are 200 μm. White arrowheads mark 

the beginning of the elongation zone. See also Dataset S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

N/A N/A N/A

Biological Samples

Arabidopsis thaliana ecotype Columbia-0 N/A N/A

Arabidopsis: pCORTEX:erGFP Lee et al., 2006 N/A

Arabidopsis: pMYB36:H2B:3xYFP Drapek et al., 2018 N/A

Arabidopsis: scarecrow-4 Fukaki et al., 1998 ABRC stock number CS6505

Arabidopsis: shortroot-2 Levesque et al., 2006 ABRC stock number CS2972

Chemicals, Peptides, and Recombinant Proteins

Linsmaier and Skoog medium Caisson Labs Product number LSP03–1LT

Cellulase ONOZUKA R-10 GoldBio Cat#C8001.0005

Pectolyase Sigma Cat#P3026

Bovine Serum Albumin Sigma Cat#A3912

β-mercaptoethanol Sigma Cat#M6250

Mannitol Sigma Cat#SLBV3117

MES Sigma Cat#6120

KCl Fisher Scientific Cat#AM9640G

CaCl2 Sigma Cat#21115

Propidium iodide Sigma Cat#P4170

Basta (Glufosinate ammonium) Fisher Scientific Cat#J66186-MD

Critical Commercial Assays

Chromium Single Cell Controller 10X Genomics Product Code 120263

Chromium i7 Multiplex Kit 10X Genomics Product Code 120262

Chromium Single Cell 3’ GEM Library & Gel Bead Kit v3 10X Genomics Product Code 1000092

Chromium Chip B Single Cell Kit 10X Genomics Product Code 1000074

DNA High Sensitivity Bioanalyzer Kit Agilent Cat#5067–4626

Deposited Data

Single Cell mRNA Sequencing data This Study GSE152766

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_1

This Study GSM4625993

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_9_at

This Study GSM4625994

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_10_at

This Study GSM4625995

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_11

This Study GSM4625996

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_12

This Study GSM4625997
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REAGENT or RESOURCE SOURCE IDENTIFIER

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_20

This Study GSM4625998

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_21

This Study GSM4625999

Single Cell RNA-Seq scr mutant Arabidopsis root cells - 
sc_25

This Study GSM4626000

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_30

This Study GSM4626001

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_31

This Study GSM4626002

Single Cell RNA-Seq scr mutant Arabidopsis root cells - 
sc_36

This Study GSM4626003

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_37

This Study GSM4626004

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_40

This Study GSM4626005

Single Cell RNA-Seq wild type Arabidopsis root cells - 
sc_51

This Study GSM4626006

Single Cell RNA-Seq shr mutant Arabidopsis root cells - 
sc_52

This Study GSM4626007

Single Cell RNA-Seq shr mutant Arabidopsis root cells - 
sc_53

This Study GSM4626008

Single Cell RNA-Seq wild type Arabidopsis root cells – 
col0

This Study GSM4626009

Single Cell RNA-Seq wild type Arabidopsis root cells – 
tnw1

This Study GSM4626010

Single Cell RNA-Seq wild type Arabidopsis root cells – 
tnw2

This Study GSM4626011

Experimental Models: Organisms/Strains

Arabidopsis thaliana

Oligonucleotides

TCTCCATACCTCAAACTCCTCC N/A F genotyping primer for shortroot-2

TTGCCTCTCCGTCTACTGC N/A R genotyping primer for shortroot-2

CTTATCCATTCCTCAACTCTATT Fukaki et al., 1998 F genotyping primer for scarecrow-4. Amplifies 
mutant allele.

TGGTGCATCGGTAGAAGAATT Fukaki et al., 1998 R genotyping primer for scarecrow-4

TTATCCATTCCTCAACTTCAGT Fukaki et al., 1998 F genotyping primer for scarecrow-4. Amplifies 
WT allele.

Recombinant DNA

N/A N/A N/A

Software and Algorithms

Cell Ranger v3.1.0 10X Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/installation

scKB This Study https://github.com/ohlerlab/scKB

COPILOT This Study https://github.com/ohlerlab/COPILOT

Seurat v3.1.5 Stuart et al., 2019; 
Butler et al., 2018

https://satijalab.org/seurat/

Dev Cell. Author manuscript; available in PMC 2022 April 18.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation
https://github.com/ohlerlab/scKB
https://github.com/ohlerlab/COPILOT
https://satijalab.org/seurat/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shahan et al. Page 44

REAGENT or RESOURCE SOURCE IDENTIFIER

iRoCS Schmidt et al., 2014 https://lmb.informatik.uni-freiburg.de/resources/
opensource/iRoCS/

novoSpaRc Nitzan et al., 2019 https://github.com/rajewsky-lab/novosparc

SEMITONES Vlot et al., 2020 github.com/ohlerlab/SEMITONES

Trimmomatic v0.39.0 Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

FastQC v0.11.8 Andrews, 2010 https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

STAR v2.7.1a & v2.7.2b Dobin and Gingeras, 
2016

https://github.com/alexdobin/STAR

DESeq2 v1.24.0 & v1.26.0 Love et al., 2014 https://bioconductor.org/packages/release/bioc/
html/DESeq2.html

BBTools Joint Genome Institute https://jgi.doe.gov/data-and-tools/bbtools/

gcrma v2.58.0 Gentry et al., 2017 https://www.bioconductor.org/packages/release/
bioc/html/gcrma.html

FSQN v0.0.1 Franks et al., 2018 https://github.com/jenniferfranks/FSQN/

gprofiler2 v0.2.1 Kolberg et al., 2020 https://cran.r-project.org/web/packages/gprofiler2/
index.html

CytoTRACE v0.1.0 Gulati et al., 2020 https://cytotrace.stanford.edu/

scVelo v0.1.25 Bergen et al., 2020 https://scvelo.readthedocs.io/installation/

ComplexHeatmap v2.10.0 Gu et al., 2016 https://bioconductor.org/packages/release/bioc/
html/ComplexHeatmap.html

StationaryOT S. Zhang et al., 2021

EdgeR v3.36.0 Robinson et al., 2010; 
McCarthy et al., 2012

https://bioconductor.org/packages/release/bioc/
html/edgeR.html

Original Codes

DOI:10.5281/zenodo.5775932 This Study https://zenodo.org/badge/latestdoi/421176705 
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